Conference Agenda

Session
Plenary 4: Flash Presentations Part 1
Time:
Wednesday, 24/Aug/2022:
12:00pm - 12:30pm

Session Chair: Dirk Muschalla
Location: Lecture Hall BMT

BMTEG138 (HS BMT), Biomedical Engineering Building at Stremayrgasse 16, 8010 Graz, ground floor

Presentations

Water quality modelling with rhodamine WT dye using EPA WASP in an urban drain in Thane, India

Kapil Gupta1, Kuldeep Swarnkar1, Vinay Shivaji Nikam2, Jonathan M Pearson3

1Indian Institute of Technology Bombay, India; 2Enviro-con Urban Hydro-environment Centre, Thane, India; 3University of Warwick, Coventry, U.K.

  • This study aims to model the dissolved oxygen in an urban drain in Thane City in the Mumbai Metropolitan Region in India using EPAs WASP model v 8.32. Field measurements of DO and dye tracing measurements using rhodamine WT (water tracer) dye were carried out to determine the longitudinal dispersion coefficient. The findings of this study provide key data and predictive model for robust assessment of water quality in urban drains during dry weather and monsoon rainfall conditions.


Sewage monitoring to reveal population health and environmental habits – H2020 SCOREWATER PROJECT Barcelona pilot

Christoph Wagner1, Jordi Raich2

1s::can GmbH, Austria; 2scan Iberia Sistemas de Medición S.L.U

For the SCOREWater project a comprehensive scheme of monitoring the sewage network in Barcelona, Spain, was set up. Online monitoring stations are continuously measuring the quality and quantity of wastewater streams from three districts with different socio-economic backgrounds. Additionally, refrigerated autosamplers are taking samples which are later analyzed in the lab.

The network includes partners ranging from public bodies operating the sewage network of Barcelona to public health organizations and public research centers focusing on scientific criteria of sewer epidemiology, artificial intelligence and socioeconomic aspects and is rounded of by policy makers for waste disposal and equipment manufacturers.



Effects of sewage sampling strategy on the representativeness of grab samples for conductivity and turbidity

Ryuichi Watanabe1, Hidenori Harada1, Mariane Y. Schneider2

1Kyoto University, Japan; 2University of Tokyo, Japan

Characterizing the representative sewage quality by the sewage grab sampling as preliminary survey is essential for sewerage development in Southeast Asian countries. In this study, effects of the number of sampling days (Nday) and the number of samples per day (Nsample/day) on the representativeness of grab sampling were discussed with a modeled grab sampling. Increasing Nday contributed to the convergence of the range of relative errors for both conductivity and turbidity. Moreover, increasing Nsample/day would be effective to increase the representativeness of the suspended matter sample. The findings are expected to contribute on the development of appropriate sewage sampling methodology.



Comparing Subwatershed Delineation Methods for New York City Parks in ArcGIS Arc Hydro

Nandan Hara Shetty1, Jeffrey Botula2

1The Citadel, United States of America; 2New York City Parks Department

Collaboration with NYC Parks has identified two competing methods for measuring subwatershed area. The first, a program called Arc Hydro, is a common geospatial model for hydrology that operates within ArcGIS. While Arc Hydro delineates subwatershed boundaries, it requires specialized training and hydraulic data. The second method for drawing subwatersheds is to simply use the standard ArcGIS tools in tandem with elevation data. To compare the benefits of each approach, we delineated subwatersheds for eight of New York City’s parks using the two models. This paper will help point land managers towards the appropriate measurement tool for differing subwatershed situations.



Evaluating the Performance of a Local Real Time Control Project for Flood Risk Reduction in Burton, UK

Saba Rabab1, James Shucksmith1, Alma Schellart1, Alexander Ball2

1University of Sheffield, United Kingdom; 2Severn Trent Water Limited, United Kingdom

  • Implementation of CENTAUR local RTC system to reduce urban flood risk
  • Evaluation of the system performance by using real time operational field data and InfoWorks modelling.
  • Effectiveness of RTC in reducing urban flood risk is considered.


Coupling DSM-flux technology and Node biosensor for BOD monitoring in CSO

Gislain Lipeme1, Mathieu Lepot1, Stéphane Vacherie1, Jean-Michel Monier2

1UNIV LYON, INSA LYON, DEEP, 69621 Villeurbanne, France; 2HYDREKA, A Halma Company, 69009 Lyon, France

CSO are among challenging urban wet weather discharges to manage. They convey contaminated combined sewer waters without any treatment leading to huge impacts on riverine environment. The Device for Stormwater and combined sewer flows Monitoring and the control of pollutant fluxes (DSM-flux) represents a new pre-calibrated and pre-designed device to monitor and control the quantity and the quality of CSO, as well as to trap sediments conveyed in these overflows. A Node biosensor has been intalled in the DSM-flux to monitor BOD. Results demontrate that coupling DSM-flux with biosensor such as Node supports the regulation of CSO for water authorities.



How to get from geodata to sewer models in SWMM by open source

Jannik Schilling, Jens Tränckner

Universität Rostock, Germany

The Stormwater Management Model (SWMM) developed by the US EPA, is a well-established software in the field of urban drainage modelling. So far, SWMM does not provide direct import functions for geodata, although the required information regarding sewer networks and catchment characteristics is usually available as geospatial data. To date, there are mainly script-based open source approaches (e.g. R, python) to convert geodata into an input file for swmm. We want to present an open-source QGIS-plugin that enables the export of geodata (layers, files) to input files for SWMM as well as the import of existing input files into QGIS.