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Abstract

We compile a dataset comprising seven million residential real estate transactions in the

United Kingdom to examine homeowner valuation of dwelling sustainability. Home-

owners pay a premium for more energy-efficient dwellings. Exploitation of the spatial,

temporal, tenurial, and vintage heterogeneity in the premium shows that homeowners

price the energy efficiency of their dwellings following economic principles. We propose

a simple valuation model to recover the discount rates used by homeowners, which pro-

vide direct measures for rates used to discount investments in sustainable development

and climate change mitigation. The rates demonstrate that homeowners accept lower

returns for greener dwellings, indicating non-pecuniary incentives.
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1 Introduction

Sustainable development is integral to climate change mitigation. McKinsey (2022) estimates

an annual investment of $1.7 trillion in physical assets until 2050 under a net-zero transition.

However, there is a vacuum of empirical evidence on how these investments can be appraised,

which precludes private capital and optimal regulation. We examine homeowner valuation of

dwelling sustainability to overcome this informational barrier. We compile a comprehensive

dataset with seven million residential real estate transactions and provide large-scale evidence

that energy efficiency is priced in an economically meaningful manner. A ten-point increase in

the energy efficiency rating of a dwelling (rated from 1 to 100) is associated with a premium of

165 bps. The premium increases in geographies where utility savings from greener dwellings

are higher and decreases in market segments where energy efficiency investments are difficult

to recoup. Then, we derive expectations of marginal utility savings and use a simple valuation

model to recover the discount rates used by homeowners to appraise dwelling sustainability.

Homeowners apply lower discount rates for greener dwellings. Lastly, we show that regulatory

interventions contributed to an increase in the demand for greener dwellings. These findings

indicate that homeowners derive non-pecuniary benefits from dwelling sustainability.

Residential real estate is uniquely positioned to address climate risk as both a significant

part of the problem and the solution. On one hand, dwellings account for 50% of emissions

produced and 70% of energy consumed by the building sector, which adds floor area equal to

the surface of the city of Paris each week.1 On the other hand, the long-duration nature of

dwellings exposes them to climate-related risks, which are reflected in their prices (Baldauf,

Garlappi, and Yannelis, 2020; Giglio, Maggiori, Rao, Stroebel, and Weber, 2021). Therefore,

insights recovered from homeowner valuation of dwelling energy efficiency can be informative

for appraising investments in sustainable development and climate change mitigation. Since

housing forms the largest component of household portfolios, dwelling prices can be expected

1The emissions and energy consumption metrics for the building sector are provided by Intergovernmental
Panel on Climate Change (2022, Chapter 9). The projected increase in the floor area of the building sector
is provided by International Energy Agency (2021, Chapter 3).
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to reflect not only a careful evaluation of the structural risks and operational costs, but also

personal values, such as environmental consciousness.

Our starting point is the universe of 9.8 million residential property transactions recorded

in the United Kingdom between 2010 and 2020. To examine homeowner valuation of dwelling

sustainability, we develop a custom algorithm that precisely matches the dwelling underlying

each transaction to its energy performance and structural characteristics. The resultant data

contains 7.02 million transactions with 5.77 million unique properties, representing one-fifth

of all dwellings in England and Wales. We then obtain economic, social and housing quality

indicators from the national archives, and historical weather records provided by the national

meteorological office. These figures are aggregated and compiled using various geospatial and

regional mappings provided by public authorities. We extensively validate that the properties

of the compiled data closely correspond to those of the sources.

The baseline analysis exploits the regulatory landscape in the United Kingdom, wherein

the energy efficiency rating of a dwelling must be disclosed to prospective buyers and tenants.

Dwellings receive numerical ratings between 1 and 100 following a rigorous inspection by an

accredited accessor. We use a hedonic regression model to show that a ten-point increase in

the energy efficiency rating of a dwelling is associated with an energy premium of 165 bps at

a 1% significance level and with an adjusted R-squared of 78%. This improvement in energy

performance corresponds to a reduction in annual emissions by 14 kgC02/m
2. Our robustness

checks show that unobserved property characteristics are not driving the premium.

To confirm that energy efficiency ratings are exogenous, we compute expectations of the

residuals conditional on ratings and show that, consistent with the theory, these expectations

remain close to zero. We also show that the premium persists in a homogenised sample with

dwellings marked as new at the time of purchase. Next, we address potential heterogeneity in

the external factors that affect dwelling prices by increasing the granularity of region-specific

fixed effects by seven times. The premium persists. We further corroborate our observations

by verifying that the estimates of coefficients associated with our hedonic controls and fixed
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effects make economic sense. For instance, the period-specific fixed effects obtained from our

model closely track the official property price index published by the government.

Then, we leverage the richness of our data to examine the spatial, temporal, tenurial, and

vintage heterogeneity in energy premium. First, we document that the premium appreciates

in regions where marginal improvements in energy performance yield greater utility savings.

Our findings suggest that homeowners factor expected utility savings when pricing dwelling

energy efficiency. Second, we show that energy premium remains persistent over the duration

of our sample. This provides reassurance that our estimates are not being driven by a specific

time period. Third, we show that buy-to-let landlords pay a lower premium than buy-to-live

homeowners. The spread in premium between the two market segments complements extant

literature that posits various market imperfections preventing landlords from recouping their

investments in energy efficiency (see Jaffe, Stavins, and Cleveland, 2004; Iwata and Yamaga,

2008; Davis, 2012; Gerarden, Newell, and Stavins, 2017; Cajias, Fuerst, and Bienert, 2019;

Berkouwer and Dean, 2022). Lastly, we demonstrate that homeowners are attentive towards

information about dwelling energy efficiency, evidenced by an attenuation in premium when

the issued ratings are older than two years.

Motivated by the economically meaningful variation in energy premium, we use a simple

valuation model to recover the discount rates that homeowners use to value dwelling energy

efficiency. We interpret the utility savings from a marginal improvement in energy efficiency

rating as dividends, growing at the same rate as utility prices. Discounting these dividends at

a constant rate for 80% of the transactions in our data with a perpetual ownership contract

reduces our model to the Gordon (1982) growth model for infinitely lived assets. We condition

this model on the energy efficiency rating of a dwelling to measure the marginal preference

corresponding to a unit rating improvement. Doing so enables us to incorporate the declining

structure of marginal utility savings from subsequent improvements in energy efficiency. We

recover the marginal net discount rates by computing marginal utility savings from our data

and calibrating their present value to the energy premium.
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The implied marginal net discount rates decrease with subsequent increases in the energy

efficiency ratings. Homeowners discount utility savings from a marginal improvement in the

energy efficiency of a dwelling rated 40 (80) at 6.97% (3.79%). A downward-sloping structure

of discount rates shows that homeowners accept lower returns for greener dwellings. We term

this difference as the green premium, which can be interpreted as the non-pecuniary benefits

derived by homeowners from dwelling sustainability. Next, we use an unconditional version of

our model to compute an aggregate net discount rate of 4.43%. The implied rate is consistent

with Groom and Maddison (2019) who calibrate an economic model to obtain a short (long)

run rate of 4.5% (4.2%) for investments in social welfare, such as climate change mitigation.

Like Groom and Maddison (2019), we conclude that the rate used by regulators (3.5%) does

not reflect the societal preferences revealed by private decisions.

Finally, we study homeowner decisions to improve the energy efficiency of their dwellings.

We show that subsequent rating improvements become more expensive – which supports our

finding that higher-rated dwellings are less likely to have their ratings improved and undergo

smaller rating improvements. We examine changes in the likelihood of rating improvements

around a regulation that imposed minimum energy efficiency standards on lower-rated rental

properties. Consistent with Clara, Cocco, Naaraayanan, and Sharma (2024), we observe that

lower-rated rental properties were more likely to have their ratings improved post-regulation.

In addition, we show that higher-rated rental properties and lower-rated non-rental dwellings

– not subject to the minimum energy efficiency standards – were also more likely to have their

ratings improved post-regulation. This finding indicates that the regulation indirectly led to

an increase in the demand for greener dwellings. Lastly, we confirm that the regulation does

not impact energy premium, consistent with the view that it does not affect household utility

costs. This finding underscores an economically meaningful variation in energy premium and

further rationalises the use of our valuation model.

Our work is closely related to an emerging body of literature that models climate risk in

property values. Bernstein, Gustafson, and Lewis (2019) show that coastal dwellings exposed

to projected sea-level rise sell at an approximately 7% discount relative to otherwise similar
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dwellings. In contrast, Murfin and Spiegel (2020) find no significant price effects when they

match residential real estate transactions with property-elevation and tidal data to compare

prices of otherwise similar dwellings but for which the time to inundation will differ depending

on the pace of sea-level rise. Baldauf, Garlappi, and Yannelis (2020) show that the dwellings

projected to be underwater because of climate change and located in climate change denier

neighbourhoods sell for about 7% more than homes in believer neighbourhoods. Keys and

Mulder (2020) find that sales volume for dwellings in communities exposed to sea-level rise

declined by 16-20% from 2013 to 2018, relative to lesser exposed areas, followed by a lagged

impact on dwelling prices from 2018 to 2020. We extend this body of literature by showing

that homeowners respond to climate risk and sustainability more broadly, and not only when

dwellings are subjected to more immediate disaster risks. This distinction becomes important

because disaster risks can influence dwelling prices via channels other than environmental

concern, such as changes in insurance premia or threat of physical destruction.

This manuscript is also positioned within the literature that investigates the mechanisms

through which energy efficiency is capitalised into dwelling prices. The regulatory landscape

in the United Kingdom operates within the larger mandate by European Commission (2002),

which asks member states to certify dwelling energy efficiency. Consequently, several studies

examine whether more sustainable dwellings transact at a premium (Brounen and Kok, 2011;

Cajias and Piazolo, 2013; Fuerst, McAllister, Nanda, and Wyatt, 2016; Jensen, Hansen, and

Kragh, 2016). However, the literature frequently laments the insufficient volume and veracity

of data required to draw definitive conclusions (Amecke, 2012; Cerin, Hassel, and Semenova,

2014; Davis, McCord, McCord, and Haran, 2015). For instance, Högberg (2013) emphasises

that insights obtained from data sampled from a specific region are not readily generalisable.

Hence, an important contribution of our manuscript is to break this hiatus by developing a

mapping algorithm that precisely identifies dwellings across different sources at a large scale.

Our compiled data is simultaneously five times larger than the second-largest study (Cajias,

Fuerst, and Bienert, 2019) and spans twice the duration of the second-longest study (Fuerst,

Haddad, and Adan, 2020). We show that our data is sampled proportionately across space,
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time, market segments, and dwelling characteristics. This allows us to establish a robust link

between dwelling prices and energy performance, and to deepen this stream of work through

an examination of heterogeneity in the energy premium.

In contemporaneous work to ours, Clara, Cocco, Naaraayanan, and Sharma (2024) focus

on the impact of minimum energy efficiency standards on rental properties. They show that

lower-rated properties underwent low-cost retrofits to meet the regulatory threshold and that

the expected rent increase did not offset the expenses incurred. In contrast, our manuscript

focuses on how dwelling sustainability is capitalised into prices and the implied net discount

rates. We show that homeowners price energy efficiency of their dwellings following economic

principles and derive non-pecuniary benefits from greener dwellings. The latter observation

elucidates why homeowners are willing to bear the excess cost burden to have the ratings of

their dwellings improved, even when these dwellings are not subject to regulation.

Lastly, our work contributes to the active and ongoing debate in the economics of climate

change on the appropriate discount rate to be used when valuing investments in sustainability

(Stern, 2007; Nordhaus, 2007; Kaplow, Moyer, and Weisbach, 2010; Schneider, Traeger, and

Winkler, 2012; Groom and Maddison, 2019). The economic foundations of these manuscripts

are built on the application and interpretation of Ramsey (1928) rule, which guides optimal

intertemporal trade-offs in climate policy. Giglio, Maggiori, Rao, Stroebel, and Weber (2021)

demonstrate that real estate prices directly reflect climate risk. They build a tractable asset

pricing model that integrates physical climate risk to understand how the term structure of

discount rates in residential real estate can inform the appropriate choice of rates for climate

change abatement. We extend this stream of literature by recovering the aggregate discount

rates through a direct examination of homeowner valuation of energy efficiency. Our goal is

not to develop an economic or asset pricing model, but to examine what a simple valuation

framework can tell us about societal preferences from private decisions. The distinguishing

feature of our manuscript is the measurement of cross-sectional heterogeneity in preferences.
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Overall, we note that homeowners derive both pecuniary and non-pecuniary benefits from

dwelling sustainability. Our findings have important implications for policymakers who wish

to understand the potential barriers and incentives to raising the energy profile of the housing

stock. Our findings are also relevant to market participants such as real estate private equity

funds and developers, who are interested in understanding whether, to what extent, and the

conditions under which their investments in sustainable development will be valued.

We conclude this section with an outline of the manuscript. Data compilation and sample

properties are discussed in Section 2. Section 3 measures the energy premium and Section 4

examines its heterogeneity. Section 5 recovers the discount rates homeowners use to appraise

dwelling sustainability. Section 6 examines homeowner decisions to improve dwelling energy

efficiency and regulatory impact. Section 7 concludes.

2 Data

We compile official datasets on the energy performance of buildings, price paid for residential

property transactions, socio-economic indices, gridded land surface temperature records, and

urban classifications, published by various departments of the UK Government to compile a

comprehensive dataset that contains 7,022,645 transactions and 5,769,651 unique dwellings.

Section 2.1 discusses data construction and Section 2.2 examines sample properties.

2.1 Data construction

We introduce the main sources of data used in the manuscript and how they were compiled in

a sequential manner. Technical details are deferred to Section IA.1 of the Internet Appendix.

2.1.1 Transaction values

The Price Paid Data (PPD) is published by HM Land Registry, and provides information

about residential property transactions recorded starting January 1, 1995. For each transac-

tion, the database documents the selling price, the date, and select building characteristics

such as property type, tenure, and whether the property is new. There are 9,808,400 trans-
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actions recorded between January 1, 2010 and December 31, 2020.2 Our goal is to maximise

the number of transactions retained in the final compiled sample.

2.1.2 Energy performance of dwellings

The Energy Performance of Buildings Register is maintained by the Department for Levelling

Up, Housing & Communities and publishes data on Energy Performance Certificates (EPC)

issued for residential properties starting October 1, 2008, grouped by 341 local authorities

(or administrative units) in the United Kingdom.3 Each EPC provides current and potential

measurements for the energy efficiency, the environmental impact (e.g., carbon emissions),

and the utility costs (e.g., heating, electricity) of the dwelling for which the EPC was issued.

It also records several property characteristics, such as total floor area, built form, proportion

of the habitable area glazed, and construction period. The register contains 17,827,487 EPCs

for 14,960,081 unique dwellings between January 1, 2010 and December 31, 2020.

In order to investigate the relationship between property values and energy efficiency,

and to control for building and transaction characteristics, we must link each transaction

recorded in the Price Paid Data with a valid EPC. A valid EPC is defined as the most recent

certificate for a dwelling issued no earlier than ten years before the transaction date, as per

the law. However, there does not exist a unique key or locational identifier that can provide

a one-to-one mapping between the two datasets. Therefore, the only method to link the two

datasets is through address matching.

Unfortunately, addresses are not entered consistently within and between datasets. For

example, FLAT 42, 16A BROADWAY, 413 may also be recorded as 42 BROADWAY, 16A 413. One

method to link addresses is to use approximate matching techniques such as the Levenshtein

distance, which computes the minimum number of single-character edits required to change

one word into the other. However, such methods suffer from several drawbacks, as illustrated

in Section IA.1.1 of the Internet Appendix. Furthermore, given the heterogeneous nature of

2We restrict our sample between January 1, 2010 and December 31, 2020, because the Energy Performance
of Building Register (Section 2.1.2) starts in 2008Q4 and does not contain sufficient data for 2008 and 2009.

3We refer to local authorities as districts, regions, or boroughs interchangeably.
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real estate, inexact matches may distort results substantially. Therefore, we design a custom

algorithm that produces exact matches, which is detailed in Section IA.1.2 of the Internet

Appendix. The trade-off is a smaller dataset post-compilation. We are able to uniquely map

7,239,549 transactions to their EPCs.

We validate and sanitise each feature in the mapped data. Section IA.1.3 of the Internet

Appendix documents the implementation details. In particular, Table IA.1 enumerates the

features and Table IA.2 summarises the key operations in the order in which they are carried

out, with an account of the number of entries lost at each step. The resultant sample contains

7,022,645 transactions.

2.1.3 Upgrade costs

The Energy Performance of Buildings Register also maintains a separate recommendations

document that complements each EPC. Each document provides a list of energy performance

improvements and their expected range of costs – that is, from minimum to maximum – to

upgrade the property from its current to its potential energy efficiency rating. We extract the

cost metrics from each document. For each certificate, we take the average of the suggested

range of upgrade costs for each recommended line item. Then, we aggregate these values to

obtain a measure of the total upgrade cost associated with that certificate.

2.1.4 Socio-economic indices

The English Indices of Multiple Deprivation (IMD) are published by the Ministry of Housing,

Communities & Local Government for the years 2007, 2010, 2015 and 2019. They measure

the quality of life experienced by people living in a region. An assortment of indicators

covering economic, social, and housing issues are weighted to produce seven component

indices – Income, Employment, Health Deprivation, Education, Crime, Housing Barrier, and

Living Environment – and an overall composite index for every Lower-layer Super Output

Area (LSOA). LSOA are a geographic hierarchy designed to improve the reporting of small-

area statistics in the United Kingdom.
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There are four considerations in compiling the indices for analysis. First, the format in

which these indices are recorded is inconsistent across reports. Second, the LSOA classifi-

cation used in 2007 and 2010 is different from that used in 2015 and 2019. Third, we must

select one of two formats in which the indices are reported: scores or ranks. Fourth, we must

interpolate indices for those years between 2010 and 2020 for which we do not have an IMD

report. Section IA.1.4 of the Internet Appendix explains how we address each consideration.

We use the Postcode to LSOA 2011 Lookup published by the Office of National Statistics to

assign each postcode in our compiled dataset to its corresponding LSOA 2011. We then use

LSOA 2011 and transaction year to link IMD to previously compiled data.

2.1.5 Degree days

Heating degree days is a measure derived from the historical temperature observations of a

region, and is directly proportional to the heating requirements of buildings in that region.

To construct degree days, we use temperature averages (TAS) published by the Met Office

from 1862 to 2020 derived from a network of land surface observations. The data is available

at various frequencies (daily, monthly, annual) and at various resolutions (5×5km, 12×12km,

25×25km). We use monthly TAS recorded over 10,432 5×5km grid points (each represented

by a coordinate). Section IA.1.5 of the Internet Appendix documents how year-wise degree

days measures for each region are constructed in detail. We use the LSOA 2011 Boundaries

database published by the Office of National Statistics to extract representative coordinates

for each of the 32,844 LSOA 2011, and assign to them the degree days values for years 2008

through 2021 corresponding to the closest 5×5km grid. As in the case of IMD, we use LSOA

2011 and transaction year to link degree days to previously compiled data.

2.2 Sample properties

The dataset compiled in Section 2.1 contains 7,022,645 transactions. In Section 3, we remove

entries with missing values for any of the included features when estimating the regressions.
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Figure 1: Transactions sampled each quarter

This figure shows proportion of transactions sampled over time. The bars correspond to the
primary (left) y-axis, and the horizontal dashed line corresponds to the secondary (right)
y-axis. For each quarter, the light grey bars mark the total number of transactions recorded
in the Price Paid Data, while the dark grey bars mark the number of transactions retained
in the regression sample. The dashed line illustrates the proportion of transactions sampled.

The resultant regression sample contains 5,453,475 transactions.4 In this section we compare

the properties of the regression sample to that of the parent datasets described in Section 2.1.

If the properties of our sample closely match with that of the population data, then we can be

reassured that our analysis in the subsequent sections is generalisable, and that the estimates

obtained from our regressions are representative of the population parameters.5

For each quarter, Figure 1 plots the number of transactions retained in the sample against

the number of transactions in the Price Paid Data (PPD). We note that the horizontal dashed

line, which shows the proportion of transactions retained, is stable over the duration of our

sample. Figure IA.4 in Section IA.1.6 of the Internet Appendix shows that for each quarter,

new dwellings are sampled proportionately from the PPD. Figure 2 shows that dwellings are

also sampled proportionally from the PPD across regions with different urban classifications.

4This metric corresponds to the full-sample regression in Column (2) of Table 1 in Section 3.2.1.
5Though we refer to the parent datasets as the population data, it is not strictly true. Properties that may

not have had their energy profiles appraised would not be present in the Energy Performance of Buildings
Register, as an EPC was not issued. Similarly, Price Paid Data (PPD) may not include transactions that
were not registered with the HM Land Registry at the time of a sale.
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Figure 2: Distribution of entries by urbanisation

The light grey bars illustrate the proportion of entries present in the regression sample for
regions classified into various rural-urban categories. The dark grey bars illustrate a similar
breakdown for the Price Paid Data. The rural-urban classifications are published by the
Department for Environment, Food & Rural Affairs, and categorise local authority districts
in the United Kingdom from most rural (1) to most urban (6).

Additionally, Figure IA.5 in Section IA.1.6 of the Internet Appendix shows that the number of

transactions sampled for each local authority is approximately proportional to its population.

Finally, the Quantile-Quantile (QQ) plot in Figure 3 charts the quantiles of the degree day

measure and the composite multiple deprivation index corresponding to transactions in the

PPD (x-axes) against those in our regression sample (y-axes). The circular markers line up

along the 45-degree dashed line, indicating that the distribution of measures in our sample

and the PPD are nearly identical.

We now compare distributions of some key features of interest. The QQ plot in Panel (a)

of Figure 4 plots quantiles of the logarithm of transaction prices in the PPD (x-axis) against

those retained in the regression sample (y-axis). The circular markers closely align with the

45-degree dashed line, indicating that the distribution of the property prices in our sample is

representative of that in the population. The four QQ plots in Panel (b) of Figure 4 chart the

quantiles of property sizes (areas) in the Energy Performance of Buildings Register (x-axis)

against those retained in the sample (y-axis). Modest deviations from the 45-degree line are
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Figure 3: Distribution of environmental controls

(a) Degree days (b) Multiple deprivation index

The Quantile-Quantile (QQ) plot in Panel (a) charts quantiles of the degree days measure
corresponding to transactions in the Price Paid Data (x-axis) against those in the regression
sample (y-axis). Panel (b) replicates the results for the composite multiple deprivation index.
The quantiles are represented by the circular markers. The 45-degree dashed line represents
a perfect correspondence.

expected because we restrict our sample to properties with a total floor area between 20 and

400 squared meters.6

Note here that we map the energy certificates for only those properties that correspond to

a sale in the HM Land Registry over the duration of our sample. Because the rates at which

properties are sold are heterogeneous across different market segments, the composition of

tenures (e.g., owner-occupied, private-rental) and property types (e.g., flats, houses) in our

sample differs from that of the Energy Performance of Buildings Register.7 We account for

the changes in composition by performing subsample analysis for different market segments

6The distribution of total floor area is heterogeneous across property types. For instance, the median size
of a flat in the Energy Performance of Buildings Register is 54m2 while a house is 88m2. Therefore, the size
restriction eliminates 1.79% of flats but only 0.05% of houses from the data.

7In fact, our merged sample produced in Section 2.1 provides a reasonable benchmark for the rate at which
properties across different market segments have been sold over time. We also note here that our exact-
matching approach (see Section IA.1.2 of the Internet Appendix) slightly undersamples flats and maisonettes
because when multiple housing units in the same building omit their SAON, it is not possible to uniquely
identify them.
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Figure 4: Distribution of features used in the dependent variable

(a) Logarithm of price (b) Total floor area

The Quantile-Quantile (QQ) plot in Panel (a) charts quantiles of the logarithm of property
prices in the Price Paid Data (x-axis) against those in regression sample (y-axis). Panel (b)
shows QQ plots for total floor area for each property type present in the Energy Performance
of Buildings Register. The quantiles are represented by the circular markers. The 45-degree
dashed line represents a perfect correspondence.

Figure 5: Distribution of energy efficiency ratings

(a) Current ratings (b) Potential ratings

The Quantile-Quantile (QQ) plot in Panel (a) charts quantiles of current energy efficiency
scores in the Energy Performance of Buildings Register (x-axis) against those in the regres-
sion sample (y-axis). Panel (b) replicates the analysis for potential energy efficiency ratings.
The quantiles are represented by the circular markers. The 45-degree dashed line represents
a perfect correspondence.
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(see Section 4.3). Reassuringly, we learn that the properties of our sample match those of the

Energy Performance of Buildings Register for all other features enumerated in Table IA.1

in Section IA.1.3 of the Internet Appendix. Panels (a) and (b) of Figure 5 show QQ plots

for the numerical current and potential energy efficiency ratings respectively, revealing that

the energy profile of the housing stock in our sample represents that of the population

dataset. Similarly, Figure IA.6 in Section IA.1.6 of the Internet Appendix illustrates that

the composition of the properties belonging to different construction age bands in our sample

represents that observed in the Energy Performance of Buildings Register. Finally, Table IA.3

in Section IA.1.6 of the Internet Appendix reports that dwellings with multiple transactions

are sampled proportionately from the PPD.

Overall, this section documents that the properties of our regression sample closely match

those of the population datasets, reassuring us that the subsequent analyses are generalisable.

3 Measuring energy premium

This section explores whether the energy efficiency of dwellings is priced in the UK residential

real estate market. Starting October 01, 2008, it became a legal requirement for homeowners

to hold a valid Energy Performance Certificate (EPC) when selling or renting out a property.

These certificates are generated using a government-approved software following a thorough

inspection and documentation by an accredited assessor. Figure 6 shows a schematic diagram

illustrating the lead page of an EPC.8 Dwellings receive a numerical energy efficiency rating

between 1 (least sustainable) and 100 (most sustainable). The ratings are publicly accessible

and must be disclosed on marketplace listings (UK Government, 2007). In general, dwellings

with better ratings are expected to expend less energy, exhibit more resilience to climate risks,

and increase the utility of homeowners who care about sustainability. Hence, dwellings with

higher ratings should command an energy premium.

8EPC documents are typically four to six pages long, and include comprehensive information on the energy
efficiency of the property, its environmental impact, recommended improvements, and technical details about
the property’s energy use. The cost of inspection and EPC issuance ranges between £60 and £120.
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Figure 6: Schematic diagram of an Energy Performance Certificate

The schematic diagram illustrates the lead page of an Energy Performance Certificate (EPC).
It mirrors the lead page of the sample certificate provided by the UK Government, accessible
at https://assets.publishing.service.gov.uk/media/5a748d20ed915d0e8bf19346/1790388.pdf,
a copy of which is included in Section IA.2.1 of the Intenet Appendix. The lead page provides
identifying information about the dwelling, its current and potential energy efficiency ratings,
a breakdown of its utility expenditures, and recommendations for improving the energy profile
of the dwelling. The subsequent pages provide additional and more granular information.
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3.1 Methodology

We use hedonic regression models to estimate the energy premium. A hedonic pricing model

is a revealed preference method that makes two main assumptions. The first assumption is

that the value of a composite object can be decomposed into its constituent components and

the external factors that affect the value of that object. The second assumption is that the

market values these individual components and factors. These models are widely used in real

estate finance to appraise property values, where the market prices are determined jointly by

the structural characteristics of a dwelling (e.g., floor area, number of habitable rooms, age

of property) and the socio-economic and environmental characteristics of the surrounding

area (e.g., ambient temperature, proximity to green spaces, quality of schooling, access to

transportation hubs). Thus, a hedonic pricing model can be used to determine the extent to

which a structural characteristic or an external factor impacts property prices. See Baranzini,

Ramirez, Schaerer, and Thalmann (2008) for an overview of hedonic methods in residential

real estate markets.

While hedonic models can be general and nonlinear, we assume that the marginal con-

tribution of each constituent component and external factor to the overall property price is

linear and additive. This assumption enables us to deploy a linear regression for estimation,

which yields several advantages. First, ordinary least squares (OLS) is the standard method

of estimating energy premium in the literature, which allows us to directly relate our results

to those obtained in prior studies. Second, the statistical properties of the estimates obtained

are well understood. Third, augmenting the model with additional covariates, interaction

effects, or time-varying components is straightforward. This makes it easier to examine the

temporal, spatial, and tenurial heterogeneity in the estimated premium. Furthermore, linear

regressions can be naturally extended to difference in differences and regression discontinuity

methods that are used in this paper to examine regulatory impact.

Finally, Figure IA.7 in Section IA.2.2 of the Internet Appendix shows that the distribu-

tion of the price per unit area is approximately log-normal. Therefore, using its logarithm
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as the dependent variable helps us assume that the residual follows a conditional normal

distribution, in addition to being zero-mean and homoskedastic. Hence, we obtain the most

precise unbiased estimates. This allows us to compare our estimates to those obtained from

all unbiased estimators, and not only linear ones.

Adapting the notation from Giglio, Maggiori, Rao, Stroebel, and Weber (2021), the unit

of observation in our hedonic regression model is transaction i ∈ I (where |I| is the number

of transactions in the sample) of dwelling h, in region r, at time t. The dependent variable

in our model is the logarithm of transaction price per unit area of the underlying property,

denoted by log (P/A)ihrt. We represent the energy efficiency rating of dwelling h associated

with transaction i as Sih, and estimate the following regression specification:

log (P/A)ihrt = αr + δt + ξSih + θBh + γTi + νIMDrt + ωDDrt + εihrt. (1)

The terms αr and δt denote region- and time-specific fixed effects, respectively. We introduce

four categories of hedonic controls.9 Building properties – such as total floor area, dwelling

condition, property type, and number of habitable rooms – are denoted by Bh. Transaction

characteristics – such as tenure, transaction type, and ownership type – are denoted by Ti.

The indices of multiple deprivation are denoted by IMDrt, and control for the quality of the

economic, social and housing conditions of region r at time t. We control for the prevailing

climatic condition using degree days measure denoted by DDrt, which is directly proportional

to the heating requirements of a property in that region. Table 1 enumerates the fixed effects

and the hedonic controls included in the analysis.

The parameters associated with the hedonic covariates are represented by θ, γ, ν, and

ω, respectively. We are most interested in the estimate of ξ, the parameter associated with

energy efficiency rating, which provides a measure for energy premium. Lastly, we denote the

residual with εihrt.

9In a hedonic model, the structural characteristics (Bh and Ti) and external factors (MDIrt and DDrt)
are referred to as hedonic controls.
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3.2 Results

This section dicusses the results obtained from estimating Equation (1). Section 3.2.1 reports

the results for the energy premium, addresses endogeneity, and performs robustness checks.

Section 3.2.2 reports results corresponding to the hedonic covariates and Section 3.2.3 reports

those corresponding to the fixed effects. The economic plausibility of estimates corresponding

to the hedonic covariates and fixed effects lends credibility to the estimated energy premium.

3.2.1 Energy premium

Column (1) of Table 1 reports the estimate for energy premium (ξ̂) obtained from the baseline

regression specified in Equation (1). The regression is estimated over a sample of 5.4 million

transactions, the underlying properties of which have an energy efficiency rating between 21

and 91. Standard errors are double-clustered by region and time. The adjusted R-squared

is 78.8%. We observe that a marginal increase in the energy efficiency rating of a dwelling

is associated with a premium of 16.54 bps (t-statistic = 60.30). The estimate is modest

compared to the values implied by previous studies, which range from 19.5 bps (Hyland,

Lyons, and Lyons, 2013) to 45 bps (Cajias and Piazolo, 2013).10 Notwithstanding, the high

economic magnitude of observed energy premium raises the concern that ξ̂ is capturing the

effect of an unobserved variable, such as the quality or the condition of a dwelling at the

time of transaction.

If energy efficiency ratings are exogenous, then the expectation of residual εihrt conditional

on Sih should be zero for all Sih. Figure IA.8 in Appendix IA.2.2 reveals that E[εihrt|Sih] ∕= 0

for properties with energy efficiency ratings less than 21 (label G) or greater than 91 (label A).

Therefore, restricting the sample to properties with energy efficiency ratings between 21 and

91 yields an unbiased estimate for energy premium. Indeed, when properties with all ratings

10Hyland, Lyons, and Lyons (2013) report a 1.3% premium for each unit improvement on a 15-point scale.
We multiply 1.3% by 15 and then divide by 100 to arrive at a 19.5 bps estimate. Cajias and Piazolo (2013)
report a 45 bps premium for each 1% improvement in dwelling energy efficiency.
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Table 1: Estimates for energy premium

(1) (2) (3) (4) (5)

Baseline Including New Excluding Outcode

Regression Labels AG Condition London Fixed Effect

Energy Rating 0.1654*** 0.1942*** 0.3121*** 0.1683*** 0.1510***

(0.003) (0.003) (0.044) (0.003) (0.002)

(Fixed Effects)

Local Authority Yes Yes Yes Yes No

Time (Year) Yes Yes Yes Yes Yes

Outcode No No No No Yes

(Structural Controls)

Total Floor Area Yes Yes Yes Yes Yes

Property Type Yes Yes Yes Yes Yes

Built Form Yes Yes Yes Yes Yes

Habitable Rooms Yes Yes Yes Yes Yes

New Condition Yes Yes No Yes Yes

Construction Band Yes Yes Yes Yes Yes

Glazed Area Yes Yes Yes Yes Yes

Multi-Glaze Proportion Yes Yes Yes Yes Yes

(Transaction Controls)

Tenure Yes Yes Yes Yes Yes

Transaction Type Yes Yes Yes Yes Yes

Ownership Yes Yes Yes Yes Yes

(Climatic Control)

Degree Days Yes Yes Yes Yes Yes

(Deprivation Indices)

Income Yes Yes Yes Yes Yes

Employment Yes Yes Yes Yes Yes

Health Deprivation Yes Yes Yes Yes Yes

Education Yes Yes Yes Yes Yes

Crime Yes Yes Yes Yes Yes

Housing Barrier Yes Yes Yes Yes Yes

Living Environment Yes Yes Yes Yes Yes

Observations 5,400,384 5,453,475 14,267 4,721,908 5,400,433

Adjusted R2 0.7876 0.7871 0.7465 0.7421 0.8153

This table reports estimates of energy premium obtained from regression specified in Equation (1). Column (1)
limits the sample to dwellings with energy efficiency ratings between 21 and 91, while Column (2) expands the
sample to include dwellings with ratings below 21 or above 91. Column (3) focuses on dwellings recorded by
HM Land Registry as being in new condition. Column (4) excludes the 33 boroughs within the Greater London
area. Column (5) replaces borough-level fixed effects with outcode-level fixed effects. The dependent variable
is the logarithm of price per unit area. The estimates are multiplied by 100 and should be read as percentages.
Standard errors are reported in parentheses and are double-clustered by region and time. Lastly, p-values less
than 0.10, 0.05, and 0.01 are demarcated by one (*), two (**), and three (***) stars, respectively.
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are included, we find that the estimate for energy premium reported in Column (2) of Table 1

is biased upwards from 16.54 bps to 19.42 bps.

To further mitigate endogeneity, we homogenise dwelling conditions by estimating Equa-

tion (1) exclusively on a sample of 14,267 properties recorded in HM Land Registry as being

in a new condition at the time of transaction. Column (3) of Table 1 reports the result. We

observe that the energy premium appreciates to 31.21 bps. This suggests that retrofit value

is not driving the premium and that homeowners purchasing new dwellings are perhaps more

attentive to the energy performance of their dwellings. The latter interpretation is supported

by the findings in Section 4.4. Moreover, Section 6.1 shows that the median cost, expressed

as a proportion of dwelling price, associated with a unit improvement in the energy efficiency

rating of a dwelling is 42 bps. Therefore, if anything, the observed premium is too low.

We perform several additional robustness checks. Column (4) of Table 1 shows excluding

the 33 boroughs of the Greater London area has a negligible impact on the observed premium.

This provides reassurance that the demand inelasticity and high density of housing in London

are not confounding the results. A refined vignette is provided by Table IA.8 in Section IA.3

of the Internet Appendix, which shows that the premium persists across subsamples of regions

based on the various levels of urbanisation defined by the Department for Environment, Food

& Rural Affairs. Next, we re-estimate Equation (1) with outcode-level fixed effects and report

the results in Column (5) of Table 1. We observe that the premium depreciates to 15.10 bps.

Outcodes represent a much more granular geographic classification within which the energy

performance of dwellings is expected to be more homogenous. Hence, a modest depreciation

in the observed premium is unsurprising as the fixed effects will absorb variations specific to

these finer geographic divisions.

Finally, subsequent sections demonstrate that estimates of the coefficients associated with

the fixed effects and the hedonic controls are quantitatively justified. We further observe that

the premium is not only persistent over the duration of our sample but is also heterogeneous

in an economically meaningful manner. Section IA.2.3 of the Internet Appendix also shows
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that our conclusions are robust to potential discontinuities around different labels or groups

into which energy efficiency ratings are categorised. These findings lend additional credibility

to the observed energy premium.

3.2.2 Hedonic controls

Table 2 reports the estimates of parameters associated with select hedonic controls included

in Equation (1). It is reassuring to observe that the estimates are plausible from an economic

standpoint. For instance, a 10m2 increase in the floor area is associated with a 2.8% decline

in the price per unit area, which indicates economies of scale. Similarly, properties in a new

condition sell at a premium of 3.46%. Dwellings purchased with the intention of occupation

transact at a 5.26% premium relative to those with an intention of leasing out. We observe

that the value of a dwelling declines with age, except for those constructed before the 20th-

century, which transact at higher prices. Indeed, period properties command higher market

valuations owing to their unique character and history. Unsurprisingly, bungalows (+22.44%)

and houses (+7.86%) are more expensive than flats, and a covenant for perpetual ownership,

known as a freehold, is more valuable (+6.29%).

Turning our attention towards location-based covariates, we observe that property values

decline by 0.08% for each unit increase in the degree days measure. One potential explanation

is a higher demand for housing in more temperate regions. However, the effect is economically

small. A higher deprivation index value indicates lower deprivation. Thus, large and positive

estimates corresponding to income, education, and crime indices suggest that more affluent

neighbourhoods command a substantial premium. The employment index does not predict

property prices.11 Counterintuitively, the estimate corresponding to the health deprivation

index is negative. Affluent neighbourhoods are expected to have better access to healthcare.

Hence, a likely reason is that a higher number of cases are reported.12 The negative coefficient

11The effect of the employment index on property prices is likely absorbed by income and education indices.
In addition, regions with higher income but otherwise similar employment rates are likely more expensive.

12The health deprivation index is not based on access to healthcare, but rather, derived from statistics on
mortality, morbidity, disabilities, and mood or anxiety disorders. An alternative explanation could be that
the population in inexpensive neighbourhoods is younger, and therefore, healthier.
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Table 2: Hedonic regression estimates for select independent variables

Energy Rating 0.1654*** (0.003)

(Property Type) Total Floor Area -0.2768*** (0.002)

Maissonette Omitted Habitable Rooms 1.8725*** (0.046)

Flat 1.9054*** (0.179)

House 9.7657*** (0.356) (Ownership)

Bungalow 24.3535*** (0.730) Freehold 6.2906*** (0.332)

Leasehold Omitted

(Construction Band)

1900 pior 7.9430*** (0.188) (Tenure)

1900-1929 Omitted Social Rental Omitted

1930-1949 3.2282*** (0.208) Private Rental 8.3240*** (0.336)

1950-1966 1.6009*** (0.208) Owner Occupied 13.8544*** (0.375)

1967-1975 1.6389*** (0.242)

1976-1982 4.2634*** (0.248) Degree Days -0.0844** (0.036)

1983-1990 7.9269*** (0.259)

1991-1995 10.6504*** (0.285) (Deprivation Indices)

1996-2002 11.6236*** (0.285) Income 17.1983*** (0.854)

2003-2006 10.5750*** (0.338) Employment 0.8910 (0.908)

2007 onwards 10.2033*** (0.366) Health Deprivation -4.8404*** (0.853)

Education 43.0583*** (0.572)

(New Condition) Crime 5.8186*** (0.365)

No Omitted Housing Barrier -2.5547*** (0.252)

Yes 3.4599*** (0.773) Living Environment -1.6334*** (0.402)

Observations 5,400,435 Adjusted R2 0.7876

This table reports the estimates obtained from Equation (1) for selected independent variables. Other covariates in-
clude region fixed effects, time fixed effects, built form, glazing characteristics, and transaction type. The dependent
variable is the logarithm of price per unit area. The estimates are multiplied by 100 and should be read as percent-
ages. The standard errors are two-way clustered by region and time. The associated p-values are reported in paren-
theses; values less than 0.10, 0.05, and 0.01 are demarcated by one (*), two (**), and three (***) stars, respectively.

corresponding to the living environment index indicates poorer air quality and higher road

accidents in more congested (but expensive) areas. The negative estimate corresponding to

the housing barrier index is unsurprising because a higher value indicates more affordability.

3.2.3 Fixed effects

Panel (a) of Figure 7 tracks the evolution of property prices over the duration of our sample,

relative to 2010. The solid black line tracks price growth implied by the time fixed effects in

the baseline regression, whereas the dashed line tracks the price growth implied by the price

index published by HM Land Registry. We observe that the former closely tracks the latter.

For each local authority, Panel (b) of Figure 7 illustrates the relative price of a dwelling that

25



Figure 7: Fixed effects obtained from baseline regressions

(a) Time (b) Region

Panel (a) illustrates the appreciation in property prices relative to 2010. The solid line shows
the price growth implied by the estimates of the time fixed effects obtained from Equation (1).
The dashed line shows the price growth implied by the property price index published by HM
Land Registry, accessible at https://landregistry.data.gov.uk/app/ukhpi. Panel (b) illustrates
relative property prices implied by the region fixed effects obtained from Equation (1) through
a heatmap. Prices are benchmarked to a dwelling which costs £10,000/m2 in Kensington and
Chelsea, the most expensive borough in the United Kingdom. The values reported in the legend
are spaced in accordance with the logarithmic colour scale used in the heatmap.

costs £10,000/m2 in Kensington and Chelsea, the most expensive local authority in the UK.

As expected, regions farther from London are more affordable. Overall, estimates for region

and time fixed effects are realistic from an economic standpoint.

3.3 Environmental impact

EPCs also provide information about the annual carbon emissions of the underlying dwellings.

These carbon emissions are transformed into an environmental impact rating from 1 (highest

emissions) to 100 (lowest emissions). In practice, homeowners are unlikely to rely on carbon

emissions or environmental impact ratings because energy efficiency ratings provide a more

holistic view of dwelling sustainability, are easier to interpret, and inform policy decisions.13

13Energy efficiency ratings are the standard metric for communicating dwelling sustainability. For instance,
real estate sales and lettings agencies use the infographic corresponding to energy efficiency ratings in Figure 6
to advertise the energy performance of the listings. Similarly, when queried, open-access government lookup
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Figure 8: Carbon emissions and ratings

This figure shows the annual carbon emissions of dwellings (y-axis), measured
in tonnes C02 per squared meter, corresponding to the energy efficiency of a
dwelling (x-axis). The solid (dashed) black line represents the mean (median)
annual carbon emissions. The grey shaded area shows the interquartile range.

Furthermore, we observe that environmental impact ratings are highly correlated with energy

efficiency ratings (95% with a t-statistic of 8.16 × 103), and hence do not contain sufficient

incremental information when appraising dwelling sustainability.14 However, the high corre-

lation between the two measures indicates that insights obtained from examining homeowner

valuation of dwelling sustainability can be readily applied to appraise investments in climate

change mitigation.

To this end, it would be instructive to measure how marginal improvements in the energy

efficiency rating of a dwelling translate to reductions in annual carbon emissions. Figure 8

shows the annual carbon emissions of dwellings (y-axis), measured in tonnes C02 per squared

meter, corresponding to the energy efficiency of a dwelling (x-axis). The solid (dashed) black

line represents the mean (median) annual carbon emissions. The grey shaded area shows the

tools return the energy efficiency ratings of dwellings. In addition, not all EPCs contain information about
carbon emissions or environmental impact ratings on their lead page, which is more heavily scrutinised.

14Section IA.2.5 of the Intenet Appendix shows that reestimating hedonic regressions with environmental
impact ratings yields approximately identical results as energy efficiency ratings.
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interquartile range. We observe that decreases in annual carbon emissions are approximately

linear in increases in energy efficiency ratings. On average, dwellings rated 21 (111 kgC02/m
2)

generate 13.75 times more carbon emissions annually than those rated 91 (8 kgC02/m
2). We

further observe that the interquartile range becomes more concentrated (dispersed) with an

increase (decrease) in energy efficiency ratings. This suggests a higher variation in the energy

performance of brown dwellings.

Lastly, we regress annual carbon emissions of dwellings on their energy efficiency ratings,

and find that a unit improvement in the energy efficiency rating is associated with a reduction

of 1.4 kgC02/m
2 per year, with a t-statisic of −5.17×103 and an adjusted R-squared of 79%.

As a benchmark, the median dwelling in our sample is rated 65 and generates 43.9 kgC02/m
2

in emissions per year.

4 Heterogeneity in energy premium

This section examines the spatial, temporal, tenurial, and vintage heterogeneity in the energy

premium. The economically meaningful variation in the observed premium supports the use

of a valuation model in Section 5 to recover the discount rates that homeowners use to value

the energy efficiency of their dwellings.

4.1 Spatial lens

Dwellings with better energy efficiency ratings are expected to consume less energy and thus,

incur lower utility expenditures. We posit that homeowners should be willing to pay a higher

energy premium in regions where a marginal improvement in the energy performance of the

dwelling is expected to yield greater reductions in utility expenditures. We observe from the

decomposition of these expenditures that heating (hot water) costs constitute 72.5% (17.3%)

of the total utility bill for a typical household in our sample.15 The heating requirements of a

dwelling are directly proportional to the degree days measure corresponding to its location.

15 We divide the current heating (hot water) expenditures by the total utility expenditures of the dwelling
and compute the sample average.
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Hence, we expect properties in regions with higher degree days to benefit from greater energy

savings for each unit improvement in energy efficiency rating. This motivates us to examine

energy premium conditional on the degree days by augmenting the hedonic regression model

in the following manner:

log (P/A)ihrt = αr + δt + ξSih + ωDDrt + µ(Sih ×DDrt)

+ θBh + γTi + νIMDrt + εihrt,
(2)

where the unit of observation and the meaning of symbols are same as that in Equation (1).

The interaction term between the energy efficiency rating (of property h underlying trans-

action i) and the degree days measure (for region r in year t) is denoted by Sih ×DDrt, and

the corresponding parameter is denoted by µ. The estimate for energy premium for a region

with degree days measure d is given by ξ̂ + dµ̂.

Panel (a) of Figure 9 plots the estimates for energy premium (left y-axis) conditional on

degree days (x-axis) obtained from Equation (2), using a dashed black line. We observe that

the premium in regions with degree days equal to 10 is 8.52 bps, and increases 2.6 times to

22.49 bps in regions with degree days equal to 40. The cross-hair marked by the intersection

of the dashed grey lines represents the unconditional estimate for energy premium (16.54 bps)

obtained in the preceding section, and corresponds to a region with degree days equal to 27.

Indeed, the histogram (right y-axis) shows that the density (distribution) of degree days is

approximately the highest (centred) around this value.

We corroborate our findings through an alternative methodology. For each borough in our

sample with at least 10,000 transactions, we run a separate hedonic regression (Equation (1)

without the region-specific fixed effect term as r is now fixed for each borough) and collect the

region-specific estimates for energy premium. Then, we round the values for degree days in

each borough to the nearest integer, group boroughs by their rounded degree day values, and

compute the corresponding energy premium by taking the average of the regional estimates

for each group. We refer to these values as subsample estimates, which are plotted using
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Figure 9: Energy premium conditional on degree days

(a) Conditional estimates (b) Heatmap

Panel (a) plots the estimates for energy premium (left y-axis) conditional on degree days (x-axis)
obtained from Equation (2), using a dashed black line. The secondary (right) y-axis corresponds
to the histogram that shows the distribution of the degree days measure. The cross-hair marked
by the intersection of the grey dashed lines represents the unconditional estimate for energy
premium (16.54 bps) obtained in Section 3, and corresponds to a region with degree days equal
to 27. The circular light-grey markers are obtained by first running separate hedonic regressions
(Equation (1), but without the region-specific fixed effect term as r is now fixed) for each borough
with at least 10,000 transactions and collecting the region-specific estimates for energy premium.
The boroughs are then grouped by their degree days measure rounded to the nearest integer.
The markers represent the average value for energy premium in each group. Panel (b) shows the
region-specific estimates for energy premium obtained during this procedure through a heatmap.
Boroughs marked with a light-grey hatch contain less than 10,000 entries. The values of energy
premium correspond to the colour scale provided in the legend at the bottom.

circular light-grey markers in Panel (a) of Figure 9. Notwithstanding minor dispersion, the

circular markers are well aligned along the dashed bold line.

Panel (b) of Figure 9 shows the borough-specific estimates for energy premium through

a heatmap. We note that the premium is highest in high-altitude and coastal regions, and

lowest in inland temperature geographies. Thus, homeowners pay a higher premium in colder

regions, where marginal improvements in the energy performance of dwellings are expected
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to yield greater reductions in utility expenditures. Our findings provide compelling evidence

that homeowners value the energy performance of their dwellings in a rational manner.

4.2 Temporal lens

We assume a temporal perspective to examine how energy premium evolves over the duration

of our sample using two methodologies. Our first approach involves estimating the following

hedonic regression separately for each quarter starting 2010-Q1 until 2020-Q4:

log (P/A)ihrt = αr + ξtSih + θBh + γTi + νIMDrt + ωDDrt + εihrt, (3)

where the unit of observation and the meaning of symbols are same as that in Equation (1),

with two differences. First, we drop the time fixed-effects term δt as t is now fixed for each

of the 44 quarter-specific regressions. Second, we include the subscript t in the parameter

associated with the energy efficiency rating, ξt, since it is now specific to the period for which

the regression is run.

Our second approach is to estimate a single hedonic regression over the full sample, but

allow energy premium to vary over time by introducing an interaction term between energy

efficiency score and an indicator variable for time, as follows:

log (P/A)ihrt = αr + δt + ξSih + µt( t × Sih)

+ θBh + γTi + νIMDrt + ωDDrt + εihrt,
(4)

where the unit of observation and the meaning of symbols are same as that in Equation (1).

The indicator variable for quarter t is denoted by t. Hence, the time invariant component

of the effect of energy efficiency ratings on property prices is captured by ξ, and µt captures

the time varying component. For instance, the estimate of energy premium for 2015-Q2

can be computed as ξ̂ + µ̂t=2015Q2. In contrast to the quarter-wise subsample regressions,

Equation (4) accounts for the quarter fixed effects δt, but forces the estimates for the hedonic

covariates to remain constant over the duration of the sample.

Figure 10 shows the quarter-specific estimates for energy premium. The solid black line

corresponds to the estimates obtained from the subsample regressions (Equation (3)), while
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Figure 10: Evolution of energy premium

This figure tracks the evolution of energy premium over the duration of our sample. The
solid line plots estimates obtained from period-wise subsample regressions in Equation (3).
The dashed line plots the estimates obtained from the time-interacted effects model in
Equation (4). The horizontal dashed grey line represents the estimate for energy premium
obtained over the full sample (Equation (1) in Section 3).

the dashed black line corresponds to the estimates obtained from the interacted-effects model

(Equation (4)). The horizontal dashed grey line represents the estimate for energy premium

obtained over the full sample (Equation (1) in Section 3). We observe an appreciation in the

premium between 2010-Q1 and 2014-Q1 from 12.82 bps to 19.87 bps. This appreciation can

be attributed to an increase in the awareness and adoption of energy efficiency ratings after

their introduction in 2008-Q4. Thereafter, the values remain fairly close to the unconditional

estimate of 16.54 bps. Temporal persistence in the observed premium provides reassurance

that the energy performance of dwellings is being priced by the market in a consistent manner

and that our estimates are not being driven by a specific time period.

4.3 Tenurial lens

The residential real estate market can be broadly divided into two segments (that is, tenures):

owner-occupied (or buy-to-live) and private-rental (or buy-to-let). Cajias, Fuerst, and Bienert

(2019) advocate that these two segments respond heterogenously to energy efficiency ratings.
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The authors attribute this heterogeneity to the different channels through which buy-to-live

homeowners and buy-to-let landlords recoup their investments in energy efficiency. Home-

owners who occupy their dwellings can directly recover their investments through reductions

in energy expenditures. However, landlords who lease out their properties must recover their

investments by transferring these costs to the tenants through higher rents. Thus, the energy

premium paid by landlords is contingent on the achievable rental values net of utility costs,

which are typically covered by tenants.

Fuerst, Haddad, and Adan (2020) find that improvements in the energy efficiency ratings

of dwellings are associated with a higher rental yield in the United Kingdom. Clara, Cocco,

Naaraayanan, and Sharma (2024) corroborate this finding, but note that the rental increases

are insufficient to offset the capital expenditures required to undertake most improvements.

In the context of German rental markets, Cajias, Fuerst, and Bienert (2019) argue that rent

caps prevent landlords from sufficiently increasing rental prices. Although the rental market

in the United Kingdom has not been subject to similar restrictions over the duration of our

sample, several market imperfections prevent landlords from charging higher rents for more

energy efficient dwellings.

For instance, information asymmetries can originate from the unwillingness of tenants to

incur the attention costs required for acquiring home-specific information due to a shorter

residency. The 2020-2021 English Housing Survey reports that the typical length of a dwelling

occupancy is 16 years, whereas that for a tenancy is only 4.2 years (UK Government, 2022a).

The resultant information asymmetries preclude landlords from credibly communicating the

energy efficiency of a property to prospective tenants (Gerarden, Newell, and Stavins, 2017).

The problem is compounded by the provision of fixed price tariffs in the United Kingdom,

wherein utility providers charge a fixed tariff each month that does not vary with the monthly

energy consumption. These fixed price tariffs depend on the conditions of the energy market

and on property sizes, but do not factor in the energy profile of individual dwellings. Utility

expenditures are typically covered by the tenants. Therefore, prospective tenants considering
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fixed-price contracts will be indifferent to dwellings with better energy efficiency ratings since

the corresponding reductions in energy consumption will not translate to lower utility costs.

Conversely, landlords could continue underinvesting in energy efficiency despite rising utility

expenditures (Davis, 2012). Iwata and Yamaga (2008) remark that the heavier utilisation of

properties by tenants discourages landlords from undertaking building improvements – such

as energy performance – resulting in lower market valuations.

To examine the tenurial heterogeneity in energy premium, we split our dataset by market

segment: owner-occupied with 4,792,950 (88.8%) observations and private-rental with 564,939

(10.5%) observations.16 Then, we estimate period-wise subsample regressions (Equation (3)

in Section 4.2) seperately for each segement.17 The results are shown in Figure 11. Quarterly

estimates for energy premium corresponding to the owner-occupied (private-rental) market

segments are represented by the solid (dashed) black line. The two horizontal stippled lines

represent the overall segment-specific estimates obtained from Equation (1).

We observe that the energy premium paid by buy-to-let landlords and buy-to-live home-

owners is 7.85 bps and 17.72 bps, respectively. Notwithstanding the volatility in the quarterly

estimates corresponding to the private-rental market segment – attributable to the smaller

period-specific subsamples – the spread in energy premium between the two market segments

is temporally persistent. Tables IA.8 and IA.9 in Section IA.3 of the Internet Appendix show

that this spread is persistent across regions with different levels of urbanisation and prop-

erty types, respectively. Finally, we validate that expectations in utility savings from energy

efficiency improvements are homogenous across market segments. Thus, differences in these

16We discard the remaining 0.7% observations with tenure as “social rental” because the selling and letting
prices for these properties are regulated by the government to provide affordable housing.

17Fuerst, McAllister, Nanda, and Wyatt (2015) explain why running regressions separately for the market
segments is preferable over estimating a single model with an interaction term between energy ratings and
tenure, because there might be systematic differences in the structural characteristics (Iwata and Yamaga,
2008) and energy profile (Rehdanz, 2007) of the housing stock across the two market segments. In addition,
the hedonic covariates are expected to be priced differently across the two market segments. For instance,
buy-to-let landlords are expected to pay a higher premium for the number of habitable rooms than buy-to-live
homeowners, as individual rooms can be rented separately to generate more income.
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Figure 11: Evolution of energy premium by tenure

This figure tracks the evolution of energy premium – by tenure – over the duration of our
sample, obtained from period-wise subsample regressions in Equation (3). The solid line
plots estimates obtained for owner-occupied market segment, and the dashed line plots
the estimates obtained for the private rental market segment. The two horizontal stippled
lines represent the overall segment-specific estimates obtained from Equation (1).

expectations are not driving the spread. Our findings confirm the economic reasoning artic-

ulated in extant literature and underscore the meaningful variation in energy premium.

We conclude this section by presenting an alternative vignette to our findings. Bernstein,

Gustafson, and Lewis (2019) consider buy-to-let landlords as “sophisticated investors”, and

argue that landlords purchasing a dwelling for investment (or as a second home) make more

informed and rational investment decisions (that is, they exhibit fewer biases in their invest-

ment behaviour). This assumption helps them reconcile their findings that when subjected to

disaster risk, the discount in property prices observed in the owner-occupied market segment

is substantially lower. Therefore, the higher energy premium observed in the owner-occupied

market segment could be explained by homeowners overestimating the pecuniary benefits or

deriving non-pecuniary benefits from more energy-efficient dwellings.
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4.4 Vintage lens

We show that homeowners pay attention to the information contained in Energy Performance

Certificates (EPCs) when valuing the energy efficiency of dwellings by exploiting the timing

of the certificate issuance. We categorise transactions into five vintages based on the duration

between the date of certificate issuance and property sale: 0 to 2 years, 2 to 4 years, 4 to 6

years, 6 to 8 years, and 8 to 10 years. EPCs older than ten years are no longer valid. Panel (a)

of Figure 12 shows the frequency of different vintages in our sample. Approximately 70% of

EPCs issued are less than two years old at the time of transaction. We observe a stark drop

in the frequency of transactions with older EPCs. Only 3.3% of transactions are associated

with EPCs older than eight years. To examine vintage heterogeneity in the energy premium,

we estimate the following regression:

log (P/A)ihrt = αr + δt + ξSih + µλ( λ × Sih)

+ θBh + γTi + νIMDrt + ωDDrt + εihrt,
(5)

where the unit of observation and the meaning of symbols are same as that in Equation (1).

The term λ denotes the indicator variable for vintage λ, and µλ is the parameter associated

with the interaction term between λ and Sih, the energy efficiency rating. Thus, the energy

premium corresponding to a vintage of 2 to 4 years can be obtained as ξ̂ + µ̂λ=2-4 years.

Panel (b) of Figure 12 reports the results obtained from estimating Equation (5). The

bars represent vintage-specific (x-axis) estimates of energy premium (y-axis). The horizontal

dashed line denotes the unconditional estimate obtained from Equation (1) in Section 3. We

observe that the energy premium corresponding to older (newer) vintages is lower (higher).

The premium is 18.89 bps when the vintage is 0 to 2 years, which is close to the unconditional

estimate of 16.54 bps. It attenuates to a range from 10 to 13 bps for vintages between 2 and

8 years, and reduces to only 4.78 bps when the vintage is 8 to 10 years. These observations

suggest that homeowners perceive EPCs with newer vintages to contain more accurate and

reliable information about the energy performance of the underlying dwelling. More broadly,

the observations indicate that homeowners use EPCs to appraise dwelling sustainability.
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Figure 12: Energy premium conditional on vintage

(a) Frequency (b) Conditional premium

Panel (a) shows the frequency (y-axis) of different vintages (x-axis) in our sample through a
bar chart. Transactions are categorised into five vintages based on the duration between the
date of certificate issuance and property sale: 0 to 2 years, 2 to 4 years, 4 to 6 years, 6 to 8
years, and 8 to 10 years. Panel (b) reports the results obtained from Equation (5). The bars
represent the vintage-specific (x-axis) estimates of energy premium (y-axis). The horizontal
dashed line denotes the unconditional estimate obtained from Equation (1) in Section 3.

5 Discount rates and green premium

Motivated by the economically meaningful variation in the energy premium observed in the

preceding sections, this section presents a simple valuation framework to recover the discount

rates that homeowners use to value the energy efficiency of their dwellings. The approach is

adopted from Giglio, Maggiori, and Stroebel (2015). Our main objective is not to develop a

new economic or asset pricing model but to examine what a simple valuation approach can

tell us about societal preferences from private decisions.
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5.1 Valuation framework

Consider two otherwise identical dwellings with energy efficiency ratings s and s+1, respec-

tively. The difference in these ratings indicates a marginal improvement in energy efficiency,

which translates into lower utility expenditures. We denote the expected utility savings as:

E[∆U(s, s+ 1)] = E[U(s)− U(s+ 1)], (6)

where U(s) represents total annual utility expenditure of the dwelling with energy efficiency

rating s. Section 4.1 provides evidence that homeowners price marginal improvements in the

energy performance of dwellings based on expected utility savings. Therefore, if we interpret

these annual utility savings as dividends paid in perpetuity and discount them at a constant

marginal rate r(s, s+ 1), the present value of these savings can be equated to the difference

in prices between the two dwellings, ∆P (s, s+ 1) := P (s+ 1)− P (s), as follows:

∆P (s, s+ 1) =
E[∆U(s, s+ 1)]

r(s, s+ 1)− g
, (7)

where g is the growth rate of utility savings. Equation (7) is the Gordon (1982) growth model

for infinitely lived assets. The discount rate r(s, s+1) is conditioned on s, and thus captures

the marginal preference corresponding to a unit improvement in the energy efficiency rating

of a dwelling from s to s+1. This enables us to capture the cross-sectional heterogeneity in

preferences between homeowners who purchase green versus brown dwellings. For exposition,

we rearrange the equation and divide the numerator and the denominator by dwelling price

with energy efficiency rating s as follows:

r(s, s+ 1)− g =
E[∆U(s, s+ 1)] /P (s)

∆P (s, s+ 1) /P (s)
=

∆u(s, s+ 1)

∆p(s, s+ 1)
, (8)

such that the relationship between the term in the denominator and energy premium becomes

more transparent. We calibrate ∆p(s, s+ 1) using ξ̂ obtained from estimating Equation (1)

on transactions with a freehold covenant. Freeholds are perpetual ownership contracts and

constitute approximately 80% of our baseline regression sample. We recover the net discount

rates using expectations of marginal utility savings computed in Section 5.2 and report the

results in Sections 5.3.
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5.2 Computing expected marginal savings and premia

We now describe the methodology to obtain expected marginal savings. Let us denote each

transaction in our sample with i ∈ I, such that |I| is the number of entries in the sample. For

transaction i, we denote the current and potential energy efficiency ratings of the underlying

dwelling as Scurrent
i and Spotential

i , respectively. Similarly, we denote the current and potential

annual utility expenditures associated with the underlying dwelling as U current
i and Upotential

i ,

respectively. It follows that Scurrent
i ≤ Spotential

i and U current
i ≥ Upotential

i .

Lastly, ∆Ui(s, s+1) denotes the incremental utility savings from a marginal improvement

in the energy efficiency rating of dwelling i from s to s+1. We assume that ∆Ui(s, s+1) is

uniform between Scurrent
i and Spotential

i , and compute it as follows:

∆Ui(s, s+ 1) =
U current
i − Upotential

i

Spotential
i − Scurrent

i

, Scurrent
i ≤ s < Spotential

i . (9)

We note that for a given observation i, ∆Ui(s, s+1) only exists for values of s between the

current and potential energy efficiency ratings of the underlying dwelling and is not defined

when Scurrent
i = Spotential

i . For each s, we represent the set of observations for which Ui(s, s+1)

exists as I(s). To obtain the expected utility savings from a marginal improvement in energy

efficiency rating from s to s+ 1, we average over I(s) as follows:

∆u(s, s+ 1) =
1

|I(s)|
!

s∈I(s)

∆ui(s, s+ 1), (10)

where ∆ui(s, s+1) := ∆Ui(s, s+ 1)/Pi.
18 Panel (a) of Figure 13 reports the marginal utility

savings obtained from Equation (10). The y-axis represents the marginal savings, expressed

as a proportion of property price, obtained from improving the energy efficiency rating from

the value shown in the x-axis by one unit. The graph shows declining returns with subsequent

increases in energy performance. The expected savings obtained from a marginal increase in

18 Overall, our approach yields two advantages. First, it enables us to compute marginal savings (expressed
as a percentage of dwelling price) from a unit improvement in energy efficiency while keeping the underlying
dwelling fixed before the aggregation step. This is useful because prices are also simultaneously determined
by other hedonic covariates. Second, for each dwelling, this approach also extracts marginal savings figures
for a range of energy efficiency ratings and not only the current rating assigned to the dwelling. This increases
the number of observations corresponding to each rating conditional on which the expectation is computed.
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Figure 13: Marginal savings and premia

(a) Marginal savings (b) Marginal premia

Panel (a) shows the marginal utility savings obtained from Equation (10) using a stipped
black line. The y-axis represents the marginal savings, expressed as a proportion of prop-
erty price, obtained from improving the energy efficiency rating from the value shown in
the x-axis by one unit. Panel (b) shows the implied value (y-axis) of a dwelling with a
given rating (x-axis) relative to a dwelling rated 65 (the median rating in the sample). The
diagonal dashed black line represents the relative valuation of dwellings obtained from Equa-
tion (1) estimated on a sample of transactions with a freehold covenant. The solid black
line represents the relative valuation obtained from a modified version of Equation (1) with
each energy efficiency rating treated as a distinct categorical variable. The solid grey line
represents relative valuations obtained from the modified model on a sample of dwellings
with ratings between 81 and 91.

the energy efficiency of a dwelling rated 91 (0.24 bps) are 7.3 times lower than those obtained

from a dwelling rated 21 (1.75 bps).

We calibrate∆p(s, s+ 1) in Equation (8) to 18.47 bps, which is the estimate of ξ obtained

from Equation (1) using 80% of the transactions in our data with a freehold covenant. The

main concern with our choice of calibration is that it implicitly assumes that ∆p(s, s+ 1) is

invariant with s. Given the declining structure of the graph for marginal utility savings, we
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might expect a declining marginal premia from subsequent improvements in energy efficiency.

However, Figure IA.8 in Section IA.2.2 of the Internet Appendix shows that the expectation

of the residuals obtained from Equation (1), conditioned on energy efficiency ratings, remains

close to zero. This indicates that dwelling prices have a linear relationship with the ratings.

Notwithstanding, we further validate that ∆p(s, s+ 1) is invariant with s by estimating

Equation (1) with energy efficiency ratings treated as a distinct categorical variable. Hence,

the coefficient associated with each numerical rating is estimated separately. The differences

in estimates corresponding to subsequent energy efficiency ratings provide the most granular

and parametrically unconstrained measure for marginal energy premia. The solid black line

in Panel (b) of Figure 13 represents the predictions obtained from the modified specification.

The y-axis corresponds to the value of a dwelling rated on the x-axis relative to a dwelling

rated 65 (the median rating in our sample). Hence, the relative value of a dwelling rated 65

is one. The diagonal dashed black line represents the relative valuation of dwellings obtained

from our original specification.

We observe that the solid black line is well aligned with the dashed black line, supporting

our choice of calibration. In addition, we also note a drop in the solid black line corresponding

to dwellings rated between 83 and 89, followed by a sharp reversion to the dashed black line.

This highlights the limitations of the parametrically flexible approach. Heterogeneity in the

composition of dwellings across different ratings can coerce rating-specific fixed effects (that

is, individual coefficients of numerical ratings) to absorb the effect of other covariates which

are negatively correlated with dwelling prices. For example, the built form of the properties

rated between 83 and 89 could belong to a less desirable category. To examine whether this

rationale is behind the trough in the graph, we run the modified specification on a sample of

dwellings rated between 81 and 91 and plot the predictions obtained from the homogenised

sample with a solid grey line in the figure.19 The trough attenuates, and the graph realigns

with the predictions obtained from the original specification.

19We chose a range between 81 and 91 because it cleanly corresponds to the range of dwellings sorted into
the alphabetical label B (see Figure 6 in Section 3).
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5.3 Implied net discount rates

This section discusses the conditional and unconditional net discount rates implied by our

valuation framework.

5.3.1 Marginal rates and “green premium”

Figure 14 reports the marginal net discount rates obtained from Equation (8) using a stippled

black line. The y-axis corresponds to the rate r(s, s+1)−g that homeowners use to discount

marginal savings from a unit improvement in the energy efficiency rating of dwellings rated s

on the x-axis. On average, homeowners discount utility savings from a marginal improvement

in the energy efficiency of a dwelling rated 80 (40) at 3.79% (6.97%). The downward-sloping

graph implies that homeowners are willing to accept lower returns for greener dwellings.

We term this difference as the green premium, which can be interpreted as non-pecuniary

benefits derived by homeowners from dwelling sustainability.

5.3.2 Aggregate rates, climate change, and policy implications

Homeowners use an aggregate net discount rate of 4.38% to value dwelling energy efficiency.

We obtain the aggregate value by computing the unconditional expectation of the measures

for marginal utility savings computed in Section 5.2 and dividing it by the energy premium.

Dwellings are specifically exposed to climate-related risks which are reflected in their prices

(Baldauf, Garlappi, and Yannelis, 2020; Giglio, Maggiori, Rao, Stroebel, and Weber, 2021).

Therefore, discount rates recovered from homeowner valuation of dwelling energy efficiency

can provide direct measures for the rates used to appraise investments in sustainable devel-

opment and, more broadly, climate change mitigation.

There is a widespread disagreement in the literature on the appropriate rate that should

be used to discount public investments in climate change abatement. Stern (2007) advocates

a rate of 1.4%, with a view of intergenerational equity. Lower rates assign greater value to

the welfare of future generations. In contrast, Nordhaus (2007) argues that a rate of 5.5% is

more appropriate from an empirical standpoint. Higher rates reflect the view that capital is
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Figure 14: Implied marginal net discount rates

This figure illustrates the marginal net discount rates obtained from Equation (8)
using a stippled black line. The y-axis corresponds to the rate r(s, s + 1) − g that
homeowners use to discount marginal savings from a unit improvement in the energy
efficiency rating of dwellings rated s on the x-axis. The vertical grid lines represent
the thresholds around the alphabetical labels into which the numerical ratings are
clustered (see Figure 6 in Section 3). The circular markers denote the representative
numerical rating for each cluster. The marginal net discount rates corresponding to
the markers are denoted by horizontal dashed lines, and the respective values are
reported in parenthesis.

scarce, and climate investments compete with alternative valuable investments in societies

(Nordhaus, 2013). Groom and Maddison (2019) remark that the divergence in discount rates

can be attributed to differences in the interpretation and the measurement of the parameters

used in the underlying economic models.20 They propose a short (long) rate of 4.5% (4.2%).

The aggregate rate that we recover is consistent with Groom and Maddison (2019).21

20Economists typically use the Ramsey (1928) rule to compute discount rates used for public interventions,
which is driven by three parameters: (i) pure rate of time preference, (ii) consumption growth, and (iii) the
elasticity of marginal utility. Stern (2007) and Nordhaus (2007) calibrate the pure rate of time preference to
0.1% and 1.5%, respectively.

21The manner in which the unconditional expectation of utility savings is computed has an impact on the
implied aggregate net discount rate. In our calculation, we simply average over all ratings and all dwellings.
This approach is straightforward. However, because we assume that marginal savings are uniform between

43



In comparison, the value adopted in official guidance by the UK Government (2022b) is

3.5%. Setting the discount rate too high could prevent socially desirable projects from being

undertaken (Zhuang, Liang, Lin, and De Guzman, 2007). Hence, regulators may strategi-

cally but understandibly select lower values to make public undertakings more attractive.

However, setting the value too low could result in a suboptimal policy design. For instance,

consider the ‘Green Deal’ introduced by the UK Government in 2013, which offered loans

to homeowners to improve the energy efficiency of their dwellings. The rationale behind the

loans was that the resultant expected utility savings would offset the cost of the repayments.

The National Audit Office (2016) reports that the annual utility savings from improving loft

insulation were estimated to be £15. Our valuation framework implies a present value equal

to £342 (£428) when these savings are discounted at 4.38% (3.5%). Therefore, the regulator

would overestimate the benefits of the scheme by 25%, relative to homeowners. The scheme

was discontinued in 2015 following a low uptake.

Unlike the regulator who wishes to optimise social welfare, homeowners could be expected

to assume a myopic view and perceive improvements in dwelling energy efficiency as private

investments. They may also be exposed to project- or property-specific risks that cannot be

diversified away. As a result, the higher discount rate observed in the residential real market

could be attributed to a higher marginal rate of return on investment in the private sector.

Therefore, while it may be appropriate for regulators to continue using lower discount rates

to support socially desirable projects, the rates applied for projects where public and private

sectors compete for the same pool of funds should reflect the opportunity cost of capital in

the private sector.

current and potential energy efficiency ratings of dwellings, we implicitly double-count them or put differently,
overweight estimates obtained from dwellings with higher upgradeability. To address this, we can first average
marginal savings over each dwelling and then take the mean of dwelling-specific measures. This results in an
implied net discount rate of 4%, which equals the value that Nordhaus (2013) uses to calibrate his dynamic
integrated climate-economy (DICE) model. However, this method does not equally weight homeowners with
heterogenous preferences. To address this, we must reverse the procedure – that is, take the mean of rating-
specific conditional averages reported in the preceding section. This yields a net discount rate of 5.6%, which
is very close to what Nordhaus (2007) proposes.
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6 Demand for energy efficiency and regulatory impact

In this section, we examine homeowner decisions to improve the energy performance of their

dwellings, and how these decisions are influenced by a regulation passed by the government

to improve the energy profile of the housing stock in the United Kingdom. Section 6.1 looks

at the cost, the likelihood, and the magnitude of energy efficiency improvements. Section 6.2

describes the regulation and documents its impact on the likelihood of upgrades, the energy

premium, and dwelling prices.

6.1 Marginal costs and the energy performance upgrades

Panel (a) of Figure 15 shows the marginal costs (y-axis) associated with improving the energy

performance of the dwelling (x-axis) by one unit, expressed as a proportion of property price.

We obtain marginal costs analogously to how marginal savings were obtained in Section 5.2.22

The graph shows that subsequent improvements in energy performance become progressively

more expensive. The cost associated with a unit improvement in the energy performance of

a dwelling rated 80 (46 bps) is 1.5 times more than that of a dwelling rated 40 (30 bps). The

horizontal line represents the unconditional value (42 bps) taken over the complete sample.

We observe that marginal costs are substantially higher than the estimated energy premium

(16.54 bps). Hence, the market does not compensate homeowners sufficiently for improving

the energy performance of their dwellings.

Increasing marginal costs and decreasing marginal savings suggest that greener dwellings

are less likely to have their energy efficiency ratings upgraded. This reasoning is corroborated

in Panel (b) of Figure 15. For the 226,829 dwellings that were transacted twice in our sample,

and had a certificate issued between the first and the second transaction, the solid black plots

the proportion of properties (y-axis) that had their energy efficiency ratings upgraded against

their initial rating (x-axis). Approximately 98% (14%) of dwellings rated 20 (80) had their

22When computing marginal costs, we obtain the median in the aggregation step because dwellings with
low upgradeability inflate the mean; computing the mean instead further strengthens our results.
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Figure 15: Marginal costs and likelihood of upgrade

(a) Marginal cost of anupgrade (b) Proportion of upgrades

Panel (a) shows the marginal costs (y-axis) associated with improving the energy efficiency of a
dwelling (x-axis) by one unit, expressed as a proportion of property price. The marginal costs
are obtained analogously to how the marginal savings were computed in Section 5.2. Panel (b)
shows the proportion of properties (y-axis) that had their ratings improved against their initial
rating (x-axis) using a solid black line. The analysis is performed for 226,829 dwellings that
were transacted twice in the compiled sample, and had a certificate issued between the first and
the second transaction. The solid grey line reproduces the analysis for 2,871,736 dwellings that
had exactly two EPCs recorded in the Energy Performance of Buildings Register.

ratings upgraded prior to the second transaction. Our sample only contains the most recent

certificate corresponding to a sale recorded in the HM Land Registry. However, a subsequent

certificate issuance may not be followed by a transaction. Therefore, we replicate our analysis

for the 2,871,736 dwellings that had exactly two EPCs recorded in the Energy Performance of

Buildings Register. The solid grey line plots the results. The initial divergence between the

two graphs signals that lower-rated dwellings are more likely to have their ratings upgraded

when the subsequent issuance is followed by a transaction.

Next, we examine the magnitude of energy efficiency improvements between subsequent

certificate issuances. The solid black line in Panel (a) of Figure 16 plots the median difference

(y-axis) in the energy efficiency rating of dwellings between subsequent issuances against their
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Figure 16: Magnitude of energy performance upgrades

(a) Magnitude of upgrade (b) Initial and subsequent ratings

Panel (a) shows the median difference (y-axis) in the energy efficiency rating of dwellings between
subsequent EPC issuances against their initial rating (x-axis). Panel (b) shows the median rating
corresponding to the second certificate (y-axis) against that of the first certificate (x-axis). The
solid black lines in the panels correspond to the analysis performed for 226,829 dwellings that
were transacted twice in the compiled sample, and had a certificate issued between the first and
the second transaction. The solid grey lines reproduce the analysis for 2,871,736 dwellings that
had exactly two EPCs recorded in the Energy Performance of Buildings Register.

initial rating (x-axis). Dwellings initially rated 20 (80) had their ratings improved by 43 (2)

points. The solid black line in Panel (b) of Figure 16 plots the median rating corresponding to

the second certificate (y-axis) against that of the first certificate (x-axis). Dwellings initially

rated 20 (80) were subsequently rated 63 (82), consistent with Panel (a). Our findings show

that lower rated dwellings undergo larger energy performance improvements. We reproduce

the analysis for the universe of certificates in the Energy Performance of Buildings Register,

and report the results using solid grey lines in Panels (a) and (b) of Figure 16, respectively.

Our conclusions remain the same. As before, the initial divergence between the black and the

grey graphs indicates that lower-rated dwellings undergo larger rating improvements when

the subsequent issuance is followed by a transaction.
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6.2 Regulatory impact

An examination of tenurial heterogeneity in Section 4.3 shows that buy-to-let landlords and

buy-to-live homeowners respond heterogeneously to dwelling energy efficiency. Reproducing

the analysis in Section 5.3.2 by tenure shows that the aggregate rate used to discount expected

utility savings used in the owner-occupied (private-rental) market segment is 4.21% (11.03%).

This spread in preferences is consistent with extant literature that notes an underinvestment

in energy performance in the private-rental market segment (Iwata and Yamaga, 2008; Davis,

2012; Gerarden, Newell, and Stavins, 2017). On March 26, 2015, the UK Government (2017)

introduced a Minimum Energy Efficiency Standard (MEES) to address this underinvestment.

The policy stated that new (existing) tenancies cannot be granted (extended) after April 1,

2018 for properties rated below 39. The policy further stated that properties rated below 39

cannot continue being leased out starting April 1, 2020.

6.2.1 Impact on energy performance improvements

This section examines regulatory impact on homeowner decisions to improve dwelling energy

efficiency. Figure 17 replicates the analysis in Panel (b) of Figure 15 for owner-occupied and

private-rental market segments before and after the regulation. For owner-occupied dwellings

that were transacted twice in our sample, and had a certificate issued between the first and

the second transaction, the solid black line in Panel (a) of Figure 17 represents the proportion

of dwellings that had their ratings improved (y-axis) against their initial rating (x-axis). The

dashed (dotted) line plots the proportion of upgrades for dwellings that had their certificate

issued before (after) the regulation was introduced. Panel (b) replicates Panel (a) for private-

rental properties. Panels (c) and (d) reproduce the analysis in Panel (a) and (b), respectively,

for the universe of dwellings in the Energy Performance of Buildings Register for which two

certificates were issued but not necessarily followed by a transaction.

We observe across all four panels that higher-rated dwellings are less likely to have their

ratings improved. The level differences between the graphs in the top and the bottom panels
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Figure 17: Cross-sectional likelihood of an improvement

(a) Owner-occupied (compiled data) (b) Private-rental (compiled data)

(c) Owner-occupied (all certificates) (d) Private-rental (all certificates)

For the owner-occupied dwellings that were transacted twice in the compiled sample, and had a
certificate issued between the first and the second transaction, the solid black line in Panel (a)
represents the proportion of dwellings that had their ratings improved (y-axis) against their
initial rating (x-axis). The dashed (dotted) line plots the proportion of upgrades for dwellings
that had their certificate issued before (after) the regulation was introduced. Panel (b) replicates
Panel (a) for private-rental properties. Panels (c) and (d) reproduce the analysis in Panel (a)
and (b), respectively, for the universe of dwellings in the Energy Performance of Buildings
Register for which two certificates were issued.
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indicate that lower-rated dwellings are more likely to have their ratings improved when the

subsequent issuance is followed by a transaction. These observations are aligned with those in

the preceding section. Consistent with Clara, Cocco, Naaraayanan, and Sharma (2024), the

initial divergence between the dashed and the dotted lines in Panel (d) shows that lower-rated

private-rental properties were more likely to have their ratings improved post-regulation. The

discontinuity in the dotted line between properties initially rated 38 and 39 emphasises the

regulatory threshold. However, we observe that private-rental properties rated 39 or above

were also more likely to have their ratings improved post-regulation. Furthermore, Panel (c)

shows that lower-rated owner-occupied dwellings were also more likely to have their ratings

improved post-regulation. An increase in the likelihood of energy efficiency improvements for

dwellings not targeted by the regulation suggests that government intervention indirectly led

to an increase in the demand for greener dwellings. Lastly, a modest divergence between the

dashed and the dotted lines in the top two panels reveals that, although the likelihood of a

rating improvement is higher when certificate issuances are followed by a sale, this likelihood

does not increase substantially post-regulation.

We further scrutinise the regulatory impact by assuming a temporal vignette. To examine

how the likelihood of energy performance improvements evolves, we cluster energy efficiency

ratings into their corresponding alphabetical labels (see Figure 6 in Section 3) from G (least

sustainable) to B (most sustainable).23 For each cluster, we then compute the proportion of

dwellings that had their ratings improved in each calendar year. The results are reported in

Figure 18. Panels (a) and (b) trace the likelihood of an improvement for the owner-occupied

and private-rental market segments, respectively, over the duration of our sample. As before,

Panels (c) and (d) reproduce the analysis for the Energy Performance of Buildings Register.

From left to right, the vertical dashed lines demarcate policy approval (March 16, 2015)

and enforcement (April 1, 2018), respectively. Consistent with the cross-sectional vignette,

Panel (d) shows that private-rental properties labelled F and G (labels that correspond to a

rating below 39) were more likely to have their ratings improved post-regulation. However, we

23We exclude label A due to the insufficient number of dwellings required to perform a temporal analysis.
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Figure 18: Likelihood of improvements over time

(a) Owner-occupied (compiled data) (b) Private-rental (compiled data)

(c) Owner-occupied (all certificates) (d) Private-rental (all certificates)

This figure shows the proportion of properties that had their energy ratings upgraded in each
year for each initial energy efficiency label. Panel (a) and (b) show results for owner-occupied
and private-rental properties that were transacted exactly twice in our compiled sample and had
a new energy certificate issued prior to the second transaction. Panels (c) and (d) replicate the
results for the universe of dwellings in the Energy Performance of Buildings Register for which
two certificates were issued. The vertical dashed black lines denote policy approval (March 26,
2015) and enforcement (April 1, 2018), respectively.
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Table 3: Changes in the likelihood of an improvement after regulation

All B C D E F G

Compiled data Both segments 0.00 -0.01 -0.00 0.00 -0.00 0.00 0.00

Owner occupied 0.00 -0.01 -0.00 0.00 -0.00 0.00 -0.00

Private rental -0.01 -0.01 0.01 -0.01 -0.01 0.01 0.01

All certificates Both segments 0.07*** -0.04*** 0.02*** 0.11*** 0.11*** 0.14*** 0.12***

Owner occupied 0.08*** -0.03*** 0.02*** 0.10*** 0.10*** 0.12*** 0.11***

Private rental 0.09*** -0.05*** 0.02*** 0.15*** 0.16*** 0.20*** 0.16***

This table reports the change in the probability of a rating improvement for a dwelling belonging to a given mar-
ket segment and label after the regulation was introduced. The values are based on the predictions from Equa-
tion (IA4) described in Section IA.4.1 of the Internet Appendix. The top panel corresponds to the results obtained
for dwellings that were transacted twice in our compiled data and had a new certificate issued prior to the second
transaction. The bottom panel replicates the results for the universe of dwellings in the Energy Performance of
Buildings Register for which two certificates were issued but were not necessarily followed by a transaction. Lastly,
p-values less than 0.10, 0.05, and 0.01 are demarcated by one (*), two (**), and three (***) stars, respectively.

also note a similar trend for properties labelled E, D, and C (labels corresponding to ratings

39 and above). Panel (c) further shows an increase in energy performance improvements for

owner-occupied dwellings labelled G through C. Overall, we observe a steady appreciation in

graphs between the regulatory approval and implementation, followed by a plateau. Finally,

Panels (a) and (b) corroborate that the likelihood of a rating improvement is higher (nearly

100% for dwellings labelled G) when certificate issuances are followed by a transaction, but

this likelihood does not increase post-regulation.

To formalise our findings, we estimate a logistic regression to measure the change in the

probability of an improvement for a dwelling, belonging to a given market segment and label,

after the regulation was introduced. The details are deferred to Section IA.4.1 of the Internet

Appendix. For each market segment and label, Table 3 reports the changes in the probability

of an improvement after the regulation was approved, relative to the period before. Overall,

we note (i) a statistically significant increase in the likelihood of an improvement across both

owner-occupied (8%) and private-rental (9%) markets and (ii) an insignificant impact on the

likelihood of improvement corresponding to issuances followed by a transaction. In addition,

we observe that dwellings labelled B were less likely to have their ratings improved after the

regulation was introduced.
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6.2.2 Impact on energy premium

The quarter-specific estimates shown in Figure 10 in Section 4.2 suggest that the regulation

did not impact the energy premium. The spatial analysis performed in Section 4.1 indicates

that homeowners price dwelling energy efficiency based on expected utility savings. Because

the regulation does not have an impact on these savings, it follows that it should not have an

impact on the price of dwelling energy efficiency. In this section, we formalise this intuition to

underscore the economically meaningful variation in energy premium and further rationalise

the use of our valuation model.

To measure the impact of the regulation on energy premium, we augment Equations (4) in

Section 4.2 to include a regulation-specific fixed effect for the period following its introduction

on March 26, 2015. We obtain an estimate of 0.45 bps with a p-value equal to 0.88. Hence, the

impact of regulation on energy premium is both economically and statistically insignificant.

One concern with our analysis is that the time-specific fixed effects in Equations (4) absorb

the effect of the regulation. To address this concern, we estimate Equations (1) in Section 3.1

in a similar manner, and obtain a regulation-specific fixed effect of -0.17 bps with a p-value

equal to 0.85. This verifies that the regulation did not impact the energy premium.

6.2.3 Impact on prices of targeted dwellings that did not upgrade

Of the 411,869 (184,054) private-rental properties in our compiled data that transacted after

the regulation was approved (implemented), 3.85% (2.99%) properties were rated below 39.

To continue being leased out, these properties must have their ratings improved, which incurs

capital expenditure. In this section, we investigate whether these properties were transacted

at (an additional) discount post-regulation using two methodologies.

Our first methodology is difference in differences, which is a quasi-experimental technique

that mimics an experimental research design using observational study data (see Angrist and

Pischke (2008, Chapter 5.2). It assumes that, in the absence of treatment, the differences in

potential outcomes between the treatment and control groups are the same before and after
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the implementation of the regulation.24 Hence, the methodology is applicable in our context

if we assume that, in the absence of regulation, the price evolution of properties rated 39 or

higher (the control group) is parallel to those rated below 39 (the treatment group), holding

all else equal. If we further assume that the regulation and treatment effects are linear and

additive, we can extend Equation (4) in Section 4.2 into a difference in differences setup and

estimate the following model:

log (P/A)ihrt = αr + δt + ξSih + µt( t × Sih)

+ λRegulation + ρRegulationXi

+ θBh + γTi + νIMDrt + ωDDrt + εihrt,

(11)

where λRegulation denotes the regulation fixed effect on the target variable (for both treatment

and control groups) and Xi is an indicator variable for treatment; Xi = 1 when transaction i

takes place after March 26, 2015 and the energy efficiency rating of the underlying property is

below 39; Xi = 0 otherwise. The parameter ρRegulation captures the causal effect of treatment.

The model is derived from the first principles in Section IA.4.2 of the Internet Appendix.

We estimate Equation (11) on a sample of private-rental properties rated between 1 and

68 that were transacted between January 1, 2011 and December 31, 2019. Excluding owner-

occupied dwellings and private-rental properties rated 69 or above helps us homogenise our

sample and strengthen the parallel trends assumption.25 Restricting the duration helps us

avoid the potential confounding impacts of the 2008 Global Financial Crisis and the 2020

Covid-19 pandemic. We find that, contrary to our expectations, ρ̂Regulation is positive (1.45%)

and statistically significant (t-statistic = 3.54). The inclusion of higher-rated properties and

24This is known as the “counterfactual trends” or “parallel trends” assumption.
25 In particular, the UK Government announced the Clean Growth Strategy on 12 October 2017, which

was not a regulatory announcement, but outlined the government’s agenda to upgrade as many dwellings as
possible to a rating 69 or above where practical, cost-effective, and affordable. The manifesto was criticised
for being vague (see https://publications.parliament.uk/pa/cm201719/cmselect/cmbeis/1730/173005.htm).
However, its announcement may lead to short-term violations of the counterfactual trends assumption owing
to properties rated 69 or above transacting at (an additional) premium. Section IA.4 of the Internet Appendix
shows that controlling for a fixed effect for this manifesto or including higher-rated properties does not impact
our results from estimating Equation (11).
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the expansion or contraction of the sample duration do not result in a negative and significant

treatment effect. The contrary results raise concerns about potential model misspecification.

Thus, we use a regression discontinuity design to validate our findings. Lee and Lemieux

(2010) remark that regression discontinuity designs require milder assumptions compared to

those needed for difference in differences. Regression discontinuity is used to establish causal

inferences in settings where the treatment is a deterministic and discontinuous function of a

covariate and agents have an imprecise control over which side of the treatment cutoff they

will land on. In such a situation, we can think of the assignment as a randomised experiment

and draw causal inferences on the treatment effect. Furthermore, comparisons of average

outcomes in a small enough neighbourhood to the left and right of the cutoff should provide

an estimate of the treatment effect that does not depend on the correct specification of the

model (Angrist and Pischke, 2008). Hence, we can draw more credible causal inferences than

the difference in differences approach that requires all trends and interactions to be correctly

included in the model.

We now explain how regression discontinuity is applicable in our context. The numerical

ratings assigned to dwellings are produced by a government-approved software based on the

inputs provided by an accreditor accessor after a comprehensive physical inspection. While

the inspection is rigorous and substantiated by photographic documentation, human errors in

examining the property or feeding information into the software, and the relative difficulty in

accurately ascertaining dwelling characteristics such as age, can result in a property landing

on either side of the regulatory threshold. Hence, if we only consider properties with ratings

in the proximity of the threshold (that is, 39) and restrict our sample to properties for which

an EPC was issued before the regulation was introduced (that is, before, the landlords had

the incentive to distinguish between dwellings rated above or below 39) but transacted after

the announcement, we can assume a random assignment. This helps us draw causal inference

for whether dwellings affected by the policy transacted at a discount.26

26The random assignment assumption will not hold for higher-rated dwellings (say, 69 or above). This is
because homeowners who own properties with higher energy efficiency ratings may care about the rating of
their property, and therefore opt for a rating in a non-random way.
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Because the treatment is perfectly known in our context, we estimate a sharp regression

discontinuity design on a sample of properties with a rating between 33 and 44 issued before

the regulatory announcement but transacted after, as follows:

log (P/A)ihrt = αr + δt + ξ(Sih − c) + µt( t × (Sih − c)) + ρXi

+ θBh + γTi + νIMDrt + ωDDrt + εihrt,
(12)

where Sih−c denotes the energy efficiency rating of a property centred around the regulatory

threshold c = 39, and Xi is an indicator variable for treatment; Xi = 1 when Sih < c; Xi = 0

otherwise. The parameter ρ captures the causal effect of interest. Other symbols have the

same meaning as those in Equation (4) in Section 4.2. Section IA.4.3 of the Internet Appendix

derives the model from first principles.

We find that ρ̂ is negative (−1.05%), but insignificant (t-statistic = −0.51). One concern

is the small sample size (4,055 entries) when we impose the additional constraints. However,

we find that expanding the neighbourhood around the regulatory threshold does not result in

a significant treatment effect. Therefore, we conclude that the regulation did not result in a

discount for the affected dwellings that did not upgrade.

Given that a very small proportion of properties that were transacted after the regulation

had an energy efficiency rating lower than the regulatory threshold, one potential explanation

is that most of these properties qualified for an ‘exemption’ under the regulatory framework

(see Table IA.10 in Section IA.4.4 of the Internet Appendix). For instance, the expected cost

of improving the ratings of the affected properties to 39 is £7,862, which is more than two

times higher than the £3,500 mark over which landlords can claim a ‘High Cost’ exemption.27

Similarly, landlords can also claim an exemption if the required improvements are likely to be

detrimental to the property’s structural integrity.

27We replicate our analysis for the subset of properties for which the expected cost of upgrading to a rating
of 39 was less than £3,500 but do not find a negative and significant treatment effect.
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7 Conclusion

This manuscript provides definitive and large-scale evidence that homeowners value dwelling

energy efficiency in an economically meaningful manner. Our analysis is facilitated by the

compilation of a comprehensive dataset containing more than seventy percent of residential

real estate transactions recorded in the United Kingdom between 2010 and 2020. Through

a simple valuation approach, we recover the discount rates that homeowners use to appraise

dwelling sustainability, and show that the market is willing to accept lower returns for greener

dwellings. Lastly, we show how regulatory interventions indirectly contributed to an increase

in the demand for greener dwellings.

We contribute to extant literature in three ways. First, by developing a custom algorithm

that uniquely matches dwellings across different sources of data, we overcome a hiatus which

has precluded a detailed examination of how dwelling energy efficiency is priced in residential

real estate markets. Second, we show that homeowners “care” about the environment more

broadly, and not only when their dwellings are subject to disaster-related risks. Finally, our

analysis provides more direct measures for rates used to discount investments in sustainable

development and climate change mitigation. A key distinguishing feature of this manuscript

is the measurement of the cross-sectional heterogeneity in preferences.
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Internet Appendix
to “Green Expectations: Climate Change and

Homeowner Valuation of Dwelling Sustainability”



IA.1 Supplement to data

This appendix supplements Section 2 in the main body of the manuscript.

IA.1.1 Problems with Levenshtein distance

As discussed in Section 2.1.2, in order to investigate the relationship between property values

and energy profiles, we must link each transaction recorded in the HM Land Registry with a

valid EPC through address matching. Unfortunately, addresses are not entered consistently

within and between datasets. For example, the address FLAT 42, 16A BROADWAY STREET,

413 may also be recorded as 42 BROADWAY STREET, 16A 413. One method to link addresses

is to use fuzzy matching techniques such as the Levenshtein distance, which computes the

minimum number of single-character edits (insertions, deletions, or substitutions) required

to change one word into the other.

Although programming packages are readily available for implementing such inexact tech-

niques, it is unclear what the correct threshold to set is in order to maximise the ratio of

correct to incorrect matches in our use case. For example, consider housing units within the

same building: ‘FLAT 42A, BROADWAY STREET’, ‘FLAT 42B, BROADWAY STREET, ‘FLAT 42C,

BROADWAY STREET’, and so on. The addresses of the housing units only differ by a single

letter. The minimum threshold that can be set for an algorithm implementing Levenshtein

distance to allow for inexact matches is also one. Therefore, all housing units in this building

will be identified as the same across and within datasets, as it takes a single substitution to

convert one of these addresses to the other.

In addition to being computationally intensive, these techniques are also sensitive to the

manner in which addresses are formatted. For instance, 42 BROADWAY STREET, 16B 413

would be considered closer to 42 BROADWAY STREET, 16A 413 than FLAT 42, 16A BROADWAY

STREET, 413, as deleting FLAT requires more operations than replacing B with A. Further-

more, we find that in several instances, parts of addresses are repeated across fields. For ex-

ample, 42 BROADWAY STREET, 413 may also be stored as 42 BROADWAY, BROADWAY STREET
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413. Deleting the word BROADWAY will take eight operations, and therefore, the two addresses

will be treated as different by the an algorithm with a threshold less than eight. On the

other hand, any algorithm with such high threshold will yield a large number of inexact

matches. Given the heterogenous nature of real estate data, inexact matches may distort

results substantially.

IA.1.2 Exact address matching algorithm

We develop a custom algorithm that produces exact matches, but results in a smaller dataset

post-compilation. The procedure is relatively straightforward, but requires careful investi-

gation of how the data is stored and the potential errors that can arise when attempting to

match entries. We provide a step-by-step outline here.

Addresses in both Price Paid Data and the Energy Performance of Buildings Register are

split across multiple subfields. For instance, the Price Paid Data records PAON (building num-

ber), SOAN (apartment number if a property contains multiple housing units), and STREET.

The Energy Performance of Buildings Register splits addresses into ADDRESS1, ADDRESS2,

and ADDRESS3. Upon manual inspection, we find that the manner in which addresses are

recorded in the Energy Performance of Buildings Register presents two challenges. First, for

certain local authorities, locational identifiers (such as building names) present in ADDRESS2

are repeated in ADDRESS1. We correct for these duplications. Second, ADDRESS2 often con-

tains the name of the post-town of the property, which is supposed to be in a separate

subfield and is not required for matching addresses, as we have information on postcodes,

which are exact and more granular than post-towns. We further find that the post-towns

mentioned in ADDRESS2 are often incorrect. This we purge ADDRESS2 of all post-town names

available in the dataset.

In addition, we find that the addresses in the Energy Performance of Buildings Register

may not always uniquely identify a property. This typically occurs when two housing units

within the same building omit the Secondary Addressable Object Name (SAON) from their

respective addresses. For instance, both FLAT 12, 20 BROADWAY STREET and FLAT 14, 20
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BROADWAY STREET may be recorded as 20 BROADWAY STREET. To ensure that each property

in the mapped (or linked) dataset is uniquely identified, we remove entries with address keys

that map to more than one Building Reference Number (BRN) in the Energy Performance

of Buildings Register, as BRNs are uniquely assigned to each property even if the address

recorded in the database is not. Out of 17,827,487 EPCs issued between January 1, 2010

and December 31, 2020, there are 14,807,313 unique address keys but 14,960,081 BRNs.

Then, we start by concatenating the address subfields in each dataset in descending order

of granularity. Thus, apartment numbers come before property numbers, which in turn

come before the street address. We convert the concatenated address to uppercase letters

and remove keywords that are commonly omitted between one address and another. These

are FLAT, APARTMENT, and BUILDING.28 Therefore FLAT 42, 16A BROADWAY STREET, 413

becomes 42, 16A BROADWAY STREET, 413. We then filter out non-alphanumeric characters

(i.e., spaces, punctuations, and special characters are removed) and reorganise the address

so that numbers (both with and without an alphabetical qualifier such as 16 or 16A) are

moved in front of words. These operations convert 42, 16A BROADWAY STREET, 413 to

4216A413BROADWAYSTREET. Lastly, we add the formatted text to the postcode of the building

producing a unique address key, e.g., NW14SA4216A413BROADWAYSTREET where NW1 4SA is the

building’s postcode. The main limitation of our algorithm is that we are unable to account

for spelling mistakes in addresses.

The HM Land Registry records 9,808,400 transactions between January 1, 2010 and De-

cember 31, 2020. Of these, 9,692,971 transactions take place in postcodes for which we have

entries in the Energy Performance of Buildings Register. Of these, we are able to uniquely

map 7,239,549 transactions (73.8% of 9,808,400) using our exact-matching technique.

We could potentially consider using Levenshtein distance on the alphanumeric characters

after the non-alphanumeric characters are moved to the front. This would make the algorithm

computationally (and memory) intensive, as within each postcode, we will have to compare

28The algorithm can be potentially improved even further by identifying more such keywords.
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all addresses with one another. However the main deterrent is that once we process the data

and drop records with missing values for the variables used in our analysis, we are only left

with 5,451,054 out of 7,239,549 entries. Thus, attempting to increase the number of records

matched may only result in a marginal increase in the final regression sample, and therefore,

may not justify the increased computational complexity and a potential for inexact matches.

IA.1.3 Detailed notes of feature selection and formatting

We are able to uniquely map 7,239,549 transaction entries using our exact matching algo-

rithm. We can classify the set of features in the mapped sample into two types: (i) those

required to construct dependent variables (i.e., price and total floor area) and independent

variables whose coefficients we are primarily interested in (i.e., energy efficiency scores), and

(ii) those that act as hedonic controls (e.g., built form, transaction type, age) or facilitate

investigative analysis (e.g., utility costs and environmental impact). Since, entries in the

mapped dataset are incomplete and contain null values, we must trade-off the number of

type (ii) features with the total number of entries in the dataset. Note that entries for which

a type (i) has a null value must be removed for analysis, and therefore do not present a

trade-off. There is no fixed rule on how to accomplish this. Nonetheless we are able to retain

all features that are of first order importance; and are enumerated in Table IA.1.

Thereafter we format (or clean) the mapped dataset feature-by-feature. This section

walks the reader through feature-by-feature implementation details. The compiled dataset

post-processing contains 7,022,645 entries, that is, we loose roughly 1% of 7,239,549 entries

from wrangling, formatting, and cleaning. Table IA.2 provides a quick summary of the key

operations in the order in which they are carried out.

Energy Ratings. We filter out entries for which the Potential Energy Score is less than

that of the Current Energy Score. This results in a loss of 890 entries. We cap the Potential
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Table IA.1: Selected features from PPD and EPBR

Category Feature Measurement

General Price1

Transaction Year1
GBP, e.g., 102500, 45000
Year, e.g., 2008, 2019

Energy
Ratings

Current Energy Label2

Potential Energy Label2

Current Energy Score2

Potential Energy Score2

Alphabetical label from G to A

Numerical score from 1 to 100

Building
Properties

Total Floor Area
Property Type
Built Form
Habitable Rooms
Newly Built1

Construction Age Band
Glazed Area
Multi-Glaze Proportion

Squared meters, e.g., 60, 85
Categorical, e.g., House, Flat
Categorical, e.g., Detached, Mid-Terrace
Integer, e.g., 2, 3, 4
Categorical, either Yes or No
Categorical, e.g., 1900-1929, 1930-1949
Categorical, e.g., Normal, More than Typ.
Percentage value from 0 to 100

Transaction
Characteristics

Tenure
Transaction Type
Ownership1

Categorical, e.g., Owner-occupied, Rental
Categorical, e.g., Marketed Sale
Categorical, either Freehold or Leasehold

Environmental
Metrics

Current Environmental Impact
Potential Environmental Impact
Current Energy Consumption
Potential Energy Consumption
Current Carbon Emissions
Potential Carbon Emissions

Numerical score from 0-100 based on
carbon emissions (higher is better)
Annual energy consumption measured in
kWh per squared meter
Tonnes per year

Utility Costs Current Lighting Cost
Potential Lighting Cost
Current Heating Cost
Potential Heating Cost
Current Hot Water Cost
Potential Hot Water Cost

Annual cost in GBP

Locational
Identifiers

Postcode
Local Authority
Local Authority Code
Constituency Code

Alphanumeric, e.g., NW1 4SA, HA9 0QE
Alphabetical, e.g., Camden, Oxford
Alphanumeric, e.g., E06000042
Alphanumeric, e.g., E14000822

1. Features that belong to the Price Paid Data.
2. Current (Potential) Energy Rating (Efficiency) has been renamed to Current (Potential) Energy
Label (Score) to make it clearer to the reader whether the energy rating being referred to is a numerical
“score” or an alphabetical “label”.
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Table IA.2: Formatting features

Category Operation Entries

Mapped Data 7,239,549

Energy Ratings Ensure that current energy ratings are less than potential.

Cap current and potential energy scores to 100.

(890)

—

Building
Characteristics

Total floor area is between 20 and 400 square meters.

Property type is not Park Home.

Property has 1 to 12 habitable rooms.

Collapse construction age bands post-2007 into one class.

Subsume Much More (Less) Than Typical glazed area into
More (Less) Than Typical categories.

Collapse multi-glaze area into a categorical variables with three
classes: High (≥ 66.6), Low(≤ 33.3), and Medium.

Floor (Cap) low energy lighting proportion at 0 (100).

(23,637)

(22)

(3,023)

—

—

—

—

Transaction
Characteristics

Remove entries for which tenure is unknown.

Cluster categories with few or related entries.

(10,669)

—

Price Restrict entries with price per unit area within the 0.25% and
99.75% quantiles.

(35,975)

Environmental
Metrics

For current (potential) environmental impact, restrict entries
within the 0.01% and 99.99% quantiles. Divide current (poten-
tial) carbon emission and energy consumption metrics by the
total floor area and restrict the sample to 99.98% quantile range.
Floor (or cap) aforementioned metrics between 0 and 100.

Remove entries for which potential environmental impact is
greater than current, and for which current carbon emissions
and energy consumption are greater than potential.

(2,249)

(41,179)

Utility Costs Restrict current (potential) heating, lighting and hot water costs
to the 99.98% quantile range.

Remove entries for which current utility costs are less than po-
tential costs with a 2.5% tolerance. Format entries inside the
tolerance range so that current equals potential.

(3,480)

(95,780)

Formatted Data 7,022,645

Operations are listed in the order in which they are carried out. Because formatting Price, Environmental
Metrics, and Utility Costs involve operations that eliminate entries outside a given quantile range, they
are carried out at the end to minimise the loss of entries.
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Figure IA.1: Distribution of EPC labels

This figure shows the distribution (y-axis) of the Current and
Potential energy efficiency labels (x-axis) in the compiled data
using white and black bars, respectively.

Energy Scores to 100. Figure IA.1 shows the distribution of Current and Potential Energy

Labels.29

Building Characteristics. We restrict ourselves to properties with a Total Floor Area

between the 0.01 (34m2) and 0.99 (243m2) percentiles, which eliminates 23,637 observations.

We remove 22 properties with Property Type as “Park Home”. We remove 3,023 entries

with 0 or more than 12 habitable rooms. In instances where two or more Construction

Age Bands are not mutually exclusive, we club them together. For example, we combine

“2007 onwards”, “2007-2011”, and “2012 onwards” into a single category, “2007 onwards”.

We also rename categories for various categorical variables to make them more readable.

For example, “Y”(“N”) values in feature New were changed to “Yes”(“No”) and the prefix

from Construction Age Bands was removed, rendering “England and Wales: 1900-1929” to

“1900-1929”.

For Glazed Area, we subsume the 88 “Much Less Than Typical” and 1731 “Much More

Than Typical” values into “Less Than Typical” and “More Than Typical” respectively.

29The figures shown throughout Section 2 are based on the final dataset produced post-processing, and
therefore, provide an accurate description of the final dataset used for analysis.
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Given that the Multi-Glaze Proportion for more than 75% of properties is 100%, we con-

vert the feature into a categorical variable, with “High” (≥66.5%), “Low” (≤33.3%), and

“Medium” categories. Finally, we cap Low-Energy Lighting Proportion to 100.

Transaction Characteristics. The same category in Tenure is stored in different for-

mats; we clean these category names to obtain three classifications, “Owner Occupied”,

“Rental (Social)”, and “Rental (Private)”. We drop 10,669 entries for which Tenure can not

be determined. Several categories in Transaction Type have very few entries, or are closely

related to one another. We combine “Eco” and “FiT” assessments into a single category; all

categories related to “Rental” properties are subsumed into one; “Stock Condition Survey”

and other miscellaneous categories are classified as “Other”.

Note: When formatting the dataset based on price, cost and energy measures, as de-

scribed next, we divide them by the Total Floor Area to enable comparisons between prop-

erties. We also filter the dataset based on such features at the end as these filters involve

elimination of extreme values based on percentiles, which would lead to a higher loss of

entries if carried out before the formatting steps carried out in the previous sections.

Price. We remove properties with price per unit area less than 0.0001 or more than

0.9999 percentiles, resulting in a loss of 35,975 entries.

Environmental Metrics. We remove entries outside the 0.0001 and 0.9999 percentile

range for Current Environmental Impact, Carbon Emissions per unit area, and Energy Con-

sumption per unit area, resulting in a loss of 2,249 entries. We also filter out properties for

which Potential Carbon Emissions and Energy Consumption values are lower and Current

ones, and for which the Current Environmental Impact score is higher than the Potential

score, resulting in a further loss of 41,179 entries.

Utility Costs. We start by removing properties for which Current Lighting, Heating,

and Hot Water Cost is outside the 0.0001 and 0.9999 percentile range, loosing 3,480 entries.

Ideally, we would like to filter out all entries where Potential costs are higher than the

Current ones; however, doing so results in a loss of roughly 25% of the dataset. Therefore,

Page 9 of Internet Appendix



we introduce a small threshold set to 1/20th of the median of cost per unit area. Entries

for which Current costs are less than Potential costs minus the threshold are removed. For

entries that are within this threshold and have Potential costs greater than the Current ones,

we set the Potential costs equal to the Current costs.

For example, we calculate the median of Current Heating Cost per unit area and divide it

by 20 to obtain the threshold τ . If Current Heating Cost per unit area is less than Potential

Heating Cost per unit area minus τ , we remove the entry. For the remaining entries, if the

Potential Heating Cost is greater than the Current Heating Cost, we set it to the Current

value. We repeat this process for Lighting and Hot Water costs, resulting in a total loss of

95,780 entries.

IA.1.4 Compiling English indices of multiple deprivation

The English Indices of Multiple Deprivation (IMD) are available for the years 2007, 2010,

2015, and 2019. There are seven component indices – Income, Employment, Education,

Health Deprivation, Crime, Housing Barrier, and Living Environment – which are combined

to obtain a composite IMD index. There are four considerations in compiling these indices

for analysis. First, the format in which the indices are recorded is inconsistent across reports.

Therefore, we manually reorganise the indices into tabulated files in a consistent format so

that they can be processed using a script.

The second consideration is that the 2007 and 2010 IMD are reported for the 32,482

LSOA regions constructed in 2001, whereas the 2015 and 2019 IMD are reported for the

32,844 LSOA regions constructed in 2011. We use the LSOA 2001 to LSOA 2011 Lookup

table published by the Office of National Statistics to link the two. However, LSOA 2001 to

LSOA 2011 conversions are not one-to-one. There are splits (S), merges (M), exact matches

(U), and best fits (X). Therefore, we group by LSOA 2011 and take an average. If an LSOA

2001 was split into two zones in 2011, then both zones will have the same 2001 entries, and
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Figure IA.2: IMD ranks

This figure illustrates the distribution of ranks based on
the composite IMD index through a heatmap. Ranks are
normalised between 0 and 100 by dividing 2007 and 2010
ranks by 32,482, and 2015 and 2019 ranks by 32,844.

taking the average does not impact 2001 scores. If 2001 areas were merged into a 2011 area,

then this operation takes an average.30

The third consideration is to select one of two formats in which the indices are reported:

scores or ranks. We use ranks in our analysis as they involve fewer mathematical transforma-

tions in their construction, are less polarised, and in general, the recommended measure for

analysis in government documentation and reports. Figure IA.2 illustrates the distribution

of ranks based on the composite index through a heatmap. We normalise the ranks from 0

to 100 by dividing 2007 and 2010 ranks by 32,482, and 2015 and 2019 ranks by 32,844.31

30Note that taking naive averages is not completely accurate, as ideally, we should weight the average by
population, number of houses, or the area of the region.

31We find that using scores instead of ranks, using non-normalised ranks, or sorting ranks into 100 quantiles
does not impact our regression estimates for energy premium in Section 3.
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Finally, we must interpolate indices for those years between 2010 and 2020 for which we do

not have an IMD report. Two natural candidates are linear interpolation (and extrapolation)

and stepwise assignment. The former would be a good approach if the direction of change

in ranks from one report to another was somewhat predictable. However, we find that this

is not the case: ranks for 22.9% of LSOAs continued to increase from 2010 to 2015 and

from 2015 to 2019; 21.36% of LSOAs continued to decrease; whereas ranks for 27.04% of

LSOAs increased from 2010 to 2015, but decreased from 2015 to 2019; and those for 23.16%

of LSOA decreased from 2010 to 2015 but increased from 2015 to 2019. We therefore opt

for a stepwise approach, and for each year, assign the rank corresponding to the most recent

IMD report. For example, the ranks for 2018 are taken from the 2015 IMD report, and those

for 2020 are taken from the 2019 IMD report.

IA.1.5 Constructing degree days measure

For each of one the 10,432 5×5km grids represented by coordinates, we work with average

monthly temperature values recorded by the Meteorological Office from January 2007 to

December 2020. We calculate degree days (DDo) for month m in year t for grid g as:

DDo
gmt = max(0, B − Tgmt)×Nm,

where B is a pre-specified baseline temperature value, typically set to 15.5 ◦C, Tgmt is the

average temperature recorded for month m in year t for grid g, and Nm is the number of

days in the month. For each year, we then sum over the monthly degree days to obtain the

annual degree day measure DDo
gt =

"
m DDo

gmt.
32 The higher the degree days, the colder

the climate, and the more the heating requirements for a given building at a specific location.

It is also useful to think about how degree days would factor into a property transaction.

The buyer and seller cannot know the aggregate degree days for the year in which the

32Typically, these calculations are done on a daily basis, or even an intraday basis, and then aggregated to
monthly or annual measures. By using monthly average temperature values instead, we will underestimate
degree days, since if the mean temperature of the month is greater than 15.5 ◦C, the HDD for the month
will be 0, but if we used daily data, this might not be the case. Because downloading and processing daily
data is significantly more computationally intensive, we opt for the less granular approach.
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Figure IA.3: Average degree days

This figure illustrates the average of degree days measure
over the analysis period (2008 to 2021) for each LSOA 2011
in the United Kingdom.

transaction occurs. Additionally, an unusually hot or cold year is unlikely to factor into

property valuation. Therefore, for each year from 2010 to 2020, we use the average of degree

days value taken over the preceding three years, denoted by DDo
gt = (1/3)

"t−1
k=t−3 DDo

gk.

For example, we use the average of degree days from years 2017 to 2019 for 2020, and from

2007 to 2009 for 2010.

Because we have degree days for grids represented by a unique set of coordinates, we

use the LSOA 2011 Boundaries dataset published by the Office of National Statistics to

extract the representative coordinate for each of the 32,844 LSOA 2011 and assign to them

the degree days values for years 2008 through 2021 for the grid that is closest in (Euclidean)

distance to each LSOA.33 Figure IA.3 illustrates the average of degree days over the analysis

period (2008 to 2021) for each LSOA 2011 in the United Kingdom.

33Typically, Euclidean distance must be avoided in geospatial distance measurements as it does not take
into account the curvature of Earth, but since we are interested in the closest match (which is less than 5km
here), using Euclidean distance will produce reasonably accurate matches.
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Figure IA.4: Proportion of new dwellings sampled

This figure shows the proportion of new dwellings (y-axis) sampled from the PPD in each
quarter (x-axis). The thick grey line represents the proportion of properties that are marked
new in the PPD, and the dashed black line represents the proportion of properties that are
marked new in the regression sample.

Lastly, because degree days computed in this manner depend on the frequency at which

temperature observations are recorded, the unit of measurement is not a “day” and the values

should be interpreted relative to each other. Therefore, we use min-max normalisation to

rescale the values between 0 and 100 as follows:

DDrt = 100× DDo
rt −minrt DDo

rt

maxrt DDo
rt −minrt DDo

rt

,

where DDrt is the final degree days measure for region r in year t that we use in our analysis.

IA.1.6 Sample properties

This section provides supplementary figures and tables related to the discussion on sample

properties in Section 2.2.

Figure IA.4 reports the number of new dwellings sampled from the PPD in each quarter.

This figure shows the proportion of new dwellings (y-axis) sampled from the PPD in each

quarter (x-axis). The thick grey line represents the proportion of properties that are marked

new in the PPD, and the dashed black line represents the proportion of properties that are

marked new in the regression sample. The grey and the black lines overlap, indicating that

new dwellings are sampled proportionately from the PPD.
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Figure IA.5: Transactions relative to population

The figure shows the total number of transactions sampled from each local authority against
its population. Each circular marker corresponds to one of the 341 local authorities in the
Energy Performance of Buildings Register. The x-axis corresponds to the population in each
local authority, obtained from the 2011 Rural Urban Classification data published by the
Department for Environment, Food & Rural Affairs. The y-axis corresponds to the number
of transactions sampled from each local authority. The axes are scaled so that they differ
only by an order of magnitude.

Figure IA.5 shows the total number of transactions sampled from each local authority

against its population. Each circular marker corresponds to one of the 341 local authorities

in the Energy Performance of Buildings Register. The x-axis corresponds to the population

in each local authority, obtained from the 2011 Rural Urban Classification data published

by the Department for Environment, Food & Rural Affairs. The y-axis corresponds to the

number of transactions sampled from each local authority. The axes are scaled so that

they differ only by an order of magnitude. The circular markers are approximately aligned

along a 45-degree diagonal, indicating that the number of transactions sampled for each local

authority is roughly proportional to its population.
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Figure IA.6: Entries sampled per construction period

The x-axis marks the various Construction Age Band categories in the Energy Performance
of Buildings Register. For each age band, the height of the light grey columns corresponds
to the primary (left) y-axis, and represents the number of entries present in the dataset, in
thousands. The dark grey columns represent how many entries, in thousands, were retained
in the regression sample. The black dashed line corresponds to the secondary (left) y-axis
and represents the proportion of entries sampled from the Energy Performance of Buildings
Register for each age band.

Figure IA.6 shows the composition of the properties belonging to different construction

periods. The x-axis demarcates the various Construction Age Band categories in the Energy

Performance of Buildings Register. For each Construction Age Band, the height of the light

grey columns corresponds to the primary (left) y-axis, and represents the number of entries

present in the dataset, in thousands. The dark grey columns represent how many entries,

in thousands, were retained in the regression sample. The black dashed line corresponds

to the secondary (left) y-axis and represents the proportion of entries sampled from the

Energy Performance of Buildings Register for each band. We observe that the proportions

of transactions sampled across different construction bands are comparable.

Finally, Table IA.3 reports the composition of properties with multiple transactions in

the PPD and the regression sample. The column titled “Transactions” reports the number

of transactions observed for a given Address Key (see Section IA.1.2) over the duration

of our sample. The columns titled “Address Key” and “Proportion” under the heading
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Table IA.3: Sampling dwellings with multiple transactions

Populaton Sample

Transactions Address Key Proportion(%) Address Key Proportion(%)

1 6,355,649 79.96 4,663,761 80.83

2 1,381,325 17.38 970,760 16.83

3 190,622 2.40 124,103 2.15

4 18,398 0.23 10,107 0.18

5 1,991 0.03 734 0.01

The column titled “Transactions” reports the number of transactions observed for a
given Address Key (see Section IA.1.2) over the duration of our sample. The columns
titled “Address Key” and “Proportion” under the heading “Population” represent
the number and the proportion of properties in the PPD, respectively, with the num-
ber of transactions corresponding to the column titled “Transactions”. The columns
under the heading “Sample” replicate the analysis for the regression sample.

“Population” represent the number and the proportion of properties in the PPD, respectively,

with the number of transactions corresponding to the column titled “Transactions”. The

columns under the heading “Sample” replicate the analysis for the regression sample. The

table shows that dwellings with multiple transactions are sampled proportionately from the

population data.

IA.2 Supplement to measuring energy premium

This appendix supplements Section 3 in the main body of the manuscript.

IA.2.1 Sample certificate

This section shows a sample Energy Performance Certificate (EPC) provided by the UK Gov-

ernment, accessible at https://assets.publishing.service.gov.uk/media/5a748d20ed915d0e8bf

19346/1790388.pdf. A schematic diagram of the lead page of the sample certificate is shown

in Figure 6 of Section 3.

Page 17 of Internet Appendix



Energy Performance Certificate (EPC)

17 Any Street, District, Any Town, B5 5XX

Dwelling type: Detached house Reference number: 0919-9628-8430-2785-5996
Date of assessment: 15 August 2011 Type of assessment: RdSAP, existing dwelling
Date of certificate: 13 March 2012 Total floor area: 165 m²

Use this document to:
•  Compare current ratings of properties to see which properties are more energy efficient
•  Find out how you can save energy and money by installing improvement measures

Estimated energy costs of dwelling for 3 years £5,367

Over 3 years you could save £2,865

Estimated energy costs of this home
Current costs Potential costs Potential future savings

You could
save £2,865
over 3 years

Lighting £375 over 3 years £207 over 3 years

Heating £4,443 over 3 years £2,073 over 3 years

Hot water £549 over 3 years £222 over 3 years

Totals: £5,367 £2,502

These figures show how much the average household would spend in this property for heating, lighting and hot water.
This excludes energy use for running appliances like TVs, computers and cookers, and any electricity generated by
microgeneration.

Energy Efficiency Rating

The graph shows the current energy efficiency of
your home.

The higher the rating the lower your fuel bills are
likely to be.

The potential rating shows the effect of
undertaking the recommendations on page 3.

The average energy efficiency rating for a
dwelling in England and Wales is band D (rating
60).

Current Potential
Very energy efficient - lower running costs

Not energy efficient - higher running costs
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Top actions you can take to save money and make your home more efficient

Recommended measures Indicative cost Typical savings
over 3 years

Available with
Green Deal

1  Increase loft insulation to 270 mm £100 - £350 £141

2  Cavity wall insulation £500 - £1,500 £537

3  Draught proofing £80 - £120 £78

See page 3 for a full list of recommendations for this property.

To find out more about the recommended measures and other actions you could take today to save money, visit
www.direct.gov.uk/savingenergy or call 0300 123 1234 (standard national rate). When the Green Deal launches, it
may allow you to make your home warmer and cheaper to run at no up-front cost.
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17 Any Street, District, Any Town, B5 5XX
13 March 2012  RRN: 0919-9628-8430-2785-5996 Energy Performance Certificate

Summary of this home’s energy performance related features
Element Description Energy Efficiency

Walls Cavity wall, as built, partial insulation (assumed)

Roof Pitched, 75 mm loft insulation

Floor Solid, no insulation (assumed) –

Windows Partial double glazing

Main heating Boiler and radiators, mains gas

Main heating controls Programmer, room thermostat and TRVs

Secondary heating None –

Hot water From main system

Lighting Low energy lighting in 17% of fixed outlets

Current primary energy use per square metre of floor area: 298 kWh/m² per year

The assessment does not take into consideration the physical condition of any element. ‘Assumed’ means that the
insulation could not be inspected and an assumption has been made in the methodology based on age and type of
construction.

Low and zero carbon energy sources
Low and zero carbon energy sources are sources of energy that release either very little or no carbon dioxide into the
atmosphere when they are used. Installing these sources may help reduce energy bills as well as cutting carbon.
There are none provided for this home.

Opportunity to benefit from a Green Deal on this property
When the Green Deal launches, it may enable tenants or owners to improve the property they live in to make it more
energy efficient, more comfortable and cheaper to run, without having to pay for the work upfront. To see which
measures are recommended for this property, please turn to page 3. You can choose which measures you want and
ask for a quote from an authorised Green Deal provider. They will organise installation by an authorised installer. You
pay for the improvements over time through your electricity bill, at a level no greater than the estimated savings to
energy bills. If you move home, the Green Deal charge stays with the property and the repayments pass to the new
bill payer.

For householders in receipt of income-related benefits, additional help may be available. 

To find out more, visit www.direct.gov.uk/savingenergy or call 0300 123 1234.

Authorised
home energy
assessment

Finance at
no upfront

cost

Choose from
authorised
installers

Pay from
savings in

energy bills

Repayments
stay with the

home

ABC SAP Software v1.33.25 (SAP 9.91) Page 2 of 4



17 Any Street, District, Any Town, B5 5XX
13 March 2012  RRN: 0919-9628-8430-2785-5996 Energy Performance Certificate

Recommendations
The measures below will improve the energy performance of your dwelling. The performance ratings after
improvements listed below are cumulative; that is, they assume the improvements have been installed in the order
that they appear in the table. Further information about the recommended measures and other simple actions you
could take today to save money is available at www.direct.gov.uk/savingenergy. Before installing measures, you
should make sure you have secured the appropriate permissions, where necessary. Such permissions might include
permission from your landlord (if you are a tenant) or approval under Building Regulations for certain types of work.

Measures with a green tick      are likely to be fully financed through the Green Deal, when the scheme launches,
since the cost of the measures should be covered by the energy they save. Additional support may be available for
homes where solid wall insulation is recommended. If you want to take up measures with an orange tick     , be aware
you may need to contribute some payment up-front.

Recommended measures Indicative cost Typical savings
per year

Rating after
improvement

Green Deal
finance

Increase loft insulation to 270 mm £100 - £350 £47 E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51E 51
Cavity wall insulation £500 - £1,500 £179 D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59D 59
Draught proofing £80 - £120 £26 D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60D 60
Low energy lighting for all fixed outlets £50 £43 D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61D 61
Replace boiler with new condensing boiler £2,200 - £3,000 £339 C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74C 74
Solar water heating £4,000 - £6,000 £34 C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75C 75
Replace single glazed windows
with low-E double glazing £3,300 - £6,500 £41 C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76C 76

Alternative measures
There are alternative measures below which you could also consider for your home.

•  External insulation with cavity wall insulation
•  Biomass boiler (Exempted Appliance if in Smoke Control Area)
•  Air or ground source heat pump
•  Micro CHP

Choosing the right package
Visit www.epcadviser.direct.gov.uk, our online tool which uses information from this
EPC to show you how to save money on your fuel bills. You can use this tool to
personalise your Green Deal package. Public services all in one place

Green Deal package Typical annual savings

Loft insulation

Cavity wall insulation

Draught proofing

Condensing boiler

Total savings of £587

Electricity/gas/other fuel savings £0 / £587 / £0

You could finance this package of
measures under the Green Deal. It could
save you £587 a year in energy costs,
based on typical energy use. Some or all
of this saving would be recouped
through the charge on your bill.
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17 Any Street, District, Any Town, B5 5XX
13 March 2012  RRN: 0919-9628-8430-2785-5996 Energy Performance Certificate

About this document
The Energy Performance Certificate for this dwelling was produced following an energy assessment undertaken by a
qualified assessor, accredited by AAA Energy Assessors Ltd. You can get contact details of the accreditation scheme
at www.aaa.co.uk, together with details of their procedures for confirming authenticity of a certificate and for making a
complaint. A copy of this EPC has been lodged on a national register. It will be publicly available and some of the
underlying data may be shared with others for the purposes of research, compliance and direct mailing of relevant
energy efficiency information. The current property owner and/or tenant may opt out of having this information
disclosed.

Assessor’s accreditation number: AAA_123456
Assessor’s name: John Smith 
Phone number: 030 5555 1234
E-mail address: john.smith@isp.net
Related party disclosure: No related party

Further information about Energy Performance Certificates can be found under Frequently Asked Questions at
www.epcregister.com.

About the impact of buildings on the environment
One of the biggest contributors to global warming is carbon dioxide. The energy we use for heating, lighting and power
in homes produces over a quarter of the UK’s carbon dioxide emissions.

The average household causes about 6 tonnes of carbon dioxide every year. Based on this assessment, your home
currently produces approximately 9.5 tonnes of carbon dioxide every year. Adopting the recommendations in this
report can reduce emissions and protect the environment. If you were to install these recommendations you could
reduce this amount by 5.5 tonnes per year. You could reduce emissions even more by switching to renewable energy
sources.

The environmental impact rating is a measure of a home’s impact on the environment in terms of carbon dioxide
(CO2) emissions. The higher the rating the less impact it has on the environment.
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Potential rating

Your home’s heat demand
For most homes, the vast majority of energy costs derive from heating the home. Where applicable, this table shows
the energy that could be saved in this property by insulating the loft and walls, based on typical energy use (shown
within brackets as it is a reduction in energy use).

Heat demand Existing dwelling Impact of loft
insulation

Impact of cavity
wall insulation

Impact of solid
wall insulation

Space heating (kWh per year) 22,154 (1179) (4535) N/A

Water heating (kWh per year) 2,792

Addendum
This dwelling may have narrow cavities and so requires further investigation to determine which type of cavity wall
insulation is best suited.
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IA.2.2 Estimating the baseline model

Figure IA.7 shows the distribution of the logarithm of the price per unit area in the complied

data. The figure shows that the distribution of the price per unit area is approximately log-

normal. Therefore, using the logarithm of the price per unit area as the dependent variable

in Equation (1) in Section 3.1 helps us assume that the residual follows a conditional normal

distribution, in addition to being zero-mean and homoskedastic.

Figure IA.7: Dependent variable

This figure shows the distribution of the logarithm of the
price per unit area in the complied data. The x-axis
represents the value of the dependent variable and the
y-axis shows the density.

Figure IA.8 plots the conditional mean of the residual E[εihrt|Sih] (y-axis) obtained from

Equation (1) for each numerical energy efficiency rating Sih (x-axis). We obtain the condi-

tional expectations as follows. First, we obtain the residual for each transaction in the regres-

sion sample by subtracting the actual values of the target variable, that is, log(Price/Area),

from the fitted (or predicted) values. Then we group transactions by their current energy

efficiency scores Sih ∈ {1, 2, ...100}. For each of the hundred groups thus obtained, we take

the mean of the residuals and then plot them. The figure shows that E[εihrt|Sih] ∕= 0 for

Page 22 of Internet Appendix



Figure IA.8: Conditional expectation of residuals

This figures plots the conditional mean of the residual E[εihrt|Sih] (y-axis) obtained from
Equation (1) for each numerical energy efficiency score Sih (x-axis). We obtain the con-
ditional expectations as follows. First, we obtain the residual for each transaction in the
regression sample by subtracting the actual values of the target variable (log(Price/Area))
from the fitted (or predicted) values. Then we group transactions by their current energy
efficiency scores Sih ∈ {1, 2, ...100}. For each of the 100 groups thus obtained, we take the
mean of the residuals and then plot them in this figure.

properties with energy efficiency ratings less than 21 (label G) or greater than 91 (label A).

Indeed, when properties with all ratings are included, we find that the estimate for energy

premium reported in Column (2) of Table 1 in Section 3.2.1 is biased upwards from 16.54

bps to 19.42 bps.

IA.2.3 Premium across different levels of aggregation

This section reports the estimates for the energy premium corresponding to different levels

of aggregation of energy efficiency ratings. The main objective of this analysis is to validate

that our conclusions remain robust to the potential discontinuities around different labels

or groups into which the energy efficiency ratings are typically categorised into. Table IA.4

shows four common levels of aggregation deployed in the literature. In the main body of the
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Table IA.4: Energy rating aggregations

Energy Rating Energy Label Energy Label Group Energy Classification

92+ A Green

81-91 B BC

69-80 C

55-68 D DE Brown

39-54 E

21-38 F FG

01-20 G

This table shows the four common levels of aggregation deployed in the literature.
The first two columns represent the official ratings and labels used by the UK Depart-
ment for Levelling Up, Housing & Communities. The second two columns represent
classifications typically used in the literature. Green (Brown) labels are often referred
to as Sustainable (Unsustainable).

manuscript, we focus our discussion on numerical energy efficiency ratings, because all other

levels of aggregation are derived from them.

Equation (1) in Section 3.1 outlines the regression specification corresponding to the

numerical energy efficiency rating of dwelling h associated with transaction i as Sih. We

represent the corresponding label as Label(i, h), the corresponding group as Group(i, h), and

the corresponding classification as Class(i, h). Therefore, for a property with Sih = 73, we

have Label(i, h) = “C”, Group(i, h) = “BC”, and Class(i, h) = “Green”, as per Table IA.4.

With the dependent variable in our model as the logarithm of transaction price per unit

area of the underlying property, denoted by log (P/A)ihrt, we run three hedonic regression

specifications, one for each of the three categorical aggregation levels of energy efficiency

ratings:

log (P/A)ihrt = αr + δt + ξLabel(i,h) + θBh + γTi + νIMDrt + ωDDrt + εihrt, (IA1a)

log (P/A)ihrt = αr + δt + ξGroup(i,h) + θBh + γTi + νIMDrt + ωDDrt + εihrt, (IA1b)

log (P/A)ihrt = αr + δt + ξClass(i,h) + θBh + γTi + νIMDrt + ωDDrt + εihrt, (IA1c)

where all symbols have the same meaning as that in Equation (1) in Section 3.1. The

parameters of interest are ξLabel(i,h), ξGroup(i,h), and ξClass(i,h), which can be interpreted as the
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energy efficiency label, group, and classification specific fixed effects in Equations (IA1a),

(IA1b), and (IA1c) respectively.

Table IA.5 presents the parameter estimates obtained for different levels of aggregations

of energy eficiency ratings. Columns (1) and (2) replicate the results reported in Columns (1)

and (2) of Table 1 in Section 3.2.1. Columns (3), (4), and (5) provide estimates for ξLabel(i,h),

ξGroup(i,h), and ξClass(i,h) corresponding to Equations (IA1a), (IA1b), and (IA1c), respectively.

We obtain an adjusted R-squared greater than 78% for each specification, and all esti-

mates that are significant at a 99% confidence level. As discussed in the main body of the

manuscript, the inclusion of properties with energy efficiency ratings less than 21 (label G)

and greater than 91 (label A) biases the estimate for energy premium upwards, from 0.165%

in Column (1) to 0.194% in Column (2). Column (3) shows that properties with labels

A (+20.1%), B (+16.1%), C (+16.1%), D (+14.8%), E (+12.4%), F (+9.6%) command a

premium over those with label G, which is the omitted category. Column (4) shows that

properties grouped into BC and DE command a 7.7% and 6% premium over those grouped

into FG (omitted category), respectively. Lastly, Column (5) shows that properties classified

as ‘Green’ command a 1.9% premium over those classified as ‘Brown’ (omitted category).

We define the range of energy premium as the difference between the price of an otherwise

identical property with highest energy efficiency rating minus the that of the lowest rating.

The range implied by the numerical energy ratings (19.21% = 0.194% × 99) in Column (2)

and the alphabetical labels (20.1%) in Column (3) are very close. Notwithstanding, at a first

pass, it is quite striking to observe the substantial increase in the range of energy premium

reported in Table IA.5 as we move from aggregated to more granular energy efficiency ratings,

from 1.9% in Column (5) to 20.1% in Column (3). However, if we compare the averages of

the estimates based on how the energy ratings were aggregated in Table IA.4, we observe that

the estimates are indeed consistent across specifications. For example, if we take a weighted

average of coefficients of labels D and E (14.12%)34 and subtract it from that of labels B and

34Calculation: 14.12% = (14.81%× 2, 668, 212 + 12.43%× 1, 095, 614)/(2, 668, 212 + 1, 095, 614)
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Table IA.5: Energy premium estimates for various rating aggregations

(1) (2) (3) (4) (5)

Current Energy Score 0.165∗∗∗ 0.194∗∗∗

(0.000) (0.000)

Current Energy Label : A 20.062∗∗∗

(0.008)

Current Energy Label : B 16.054∗∗∗

(0.003)

Current Energy Label : C 16.084∗∗∗

(0.002)

Current Energy Label : D 14.810∗∗∗

(0.002)

Current Energy Label : E 12.437∗∗∗

(0.002)

Current Energy Label : F 9.576∗∗∗

(0.002)

Current Energy Label : G –

Current Energy Label Group : BC 7.727∗∗∗

(0.001)

Current Energy Label Group : DE 6.005∗∗∗

(0.001)

Current Energy Label Group : FG –

Current Energy Classification : C+ (Green) 1.901∗∗∗

(0.000)

Current Energy Classification : D- (Brown) –

N 5400384 5453475 5453475 5452576 5453475

Adj. R2 0.788 0.787 0.787 0.787 0.786

This table reports the parameter estimates obtained for different levels of aggregations of energy effi-
ciency ratings. Columns (1) and (2) replicate the results reported in Columns (1) and (2) of Table 1
in Section 3.2.1. Columns (3), (4), and (5) provide estimates for ξLabel(i,h), ξGroup(i,h), and ξClass(i,h)
corresponding to Equations (IA1a), (IA1b), and (IA1c), respectively. The dependent variable is the
logarithm of price per unit area. The estimates are multiplied by 100 and should be read as per-
centages. The coefficients of omitted categorical variables are left blank. The p-values are reported
in parentheses and are double-clustered by region and time. Lastly, p-values less than 0.10, 0.05,
and 0.01 are demarcated by one (*), two (**), and three (***) stars, respectively.
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C (16.08%)35, we obtain 1.96%, which is comparable to the difference between the coefficients

of groups BC and DE (1.72%) in Column (4). Similarly, the difference between the coefficient

of group BC in Column (4) and the weighted average of the coefficients of groups DE and

FG is 2.14%, which is comparable to the 1.9% premium commanded by properties classified

as ‘Green’ relative to those classified as ‘Brown’ in Column (5).

Finally, we report the estimates for select building properties and transaction controls

in Table IA.6, and those for degree days and the seven multiple deprivation indices in Ta-

ble IA.7. The results for hedonic covariates act as a robustness check across specifications.

The tables show that the coefficients of hedonic controls are consistent across specifications

in Columns (1) through (5). The consistency of the coefficients across specifications lends

additional credibility to our results.

IA.2.4 Pricing potential upgradeability

In this section, we examine whether potential upgradeability of dwellings is priced. We define

the potential upgradeability of the dwelling h underlying transaction i as:

Uih =
Spotential
ih − Scurrent

ih

Cih

, (IA2)

where Spotential
ih and Scurrent

ih denote the potential and the current energy efficiency ratings,

respectively, of dwelling h underlying transaction i, and Cih denotes the cost of upgrading

the dwelling from Scurrent
ih to Spotential

ih . To determine whether potential upgradeability of

dwellings is priced, we augment Equation (1) in Section 3.1 as follows:

log (P/A)ihrt = αr + δt + ξSih +Uihπ + θBh + γTi + νIMDrt + ωDDrt + εihrt, (IA3)

where π is the parameter associated with Uih. We find that the potential upgradeability of

dwellings is not priced, that is, π̂ is insignificant. This finding is consistent with Panel (a) of

Figure 15 in Section 6.1, which shows that the marginal costs of upgrading a dwelling strictly

exceed the energy premium. Therefore, there is little pecuniary incentive for homeowners to

consider the potential upgradeability of a dwelling at the time of the transaction.

35Calculation: 16.08% = (16.05%× 100, 024 + 16.08%× 1, 301, 976)/(100, 024 + 1, 301, 976)
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Table IA.6: Estimates for selected building and transaction controls

(1) (2) (3) (4) (5)

Total Floor Area -0.277∗∗∗ -0.276∗∗∗ -0.276∗∗∗ -0.276∗∗∗ -0.277∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Habitable Rooms 1.872∗∗∗ 1.857∗∗∗ 1.851∗∗∗ 1.860∗∗∗ 1.873∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Property Type : Bungalow 24.353∗∗∗ 24.270∗∗∗ 24.014∗∗∗ 23.862∗∗∗ 23.809∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004)

Property Type : Flat 1.905∗∗∗ 1.897∗∗∗ 2.092∗∗∗ 2.085∗∗∗ 2.080∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)

Property Type : House 9.766∗∗∗ 9.703∗∗∗ 9.500∗∗∗ 9.405∗∗∗ 9.381∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004)

Property Type : Maisonette – – – – –

New : No – – – – –

New : Yes 3.460∗∗∗ 3.412∗∗∗ 3.596∗∗∗ 3.654∗∗∗ 3.640∗∗∗

(0.008) (0.008) (0.008) (0.008) (0.008)

Construction Age Band : 1900 prior 7.943∗∗∗ 8.019∗∗∗ 8.019∗∗∗ 7.965∗∗∗ 7.831∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)

Construction Age Band : 1900-1929 – – – – –

Construction Age Band : 1930-1949 3.228∗∗∗ 3.198∗∗∗ 3.345∗∗∗ 3.485∗∗∗ 3.604∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)

Construction Age Band : 1950-1966 1.601∗∗∗ 1.510∗∗∗ 1.793∗∗∗ 2.087∗∗∗ 2.316∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)

Construction Age Band : 1967-1975 1.639∗∗∗ 1.500∗∗∗ 1.818∗∗∗ 2.175∗∗∗ 2.497∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)

Construction Age Band : 1976-1982 4.263∗∗∗ 4.036∗∗∗ 4.524∗∗∗ 5.017∗∗∗ 5.454∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.003)

Construction Age Band : 1983-1990 7.927∗∗∗ 7.650∗∗∗ 8.217∗∗∗ 8.803∗∗∗ 9.294∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)

Construction Age Band : 1991-1995 10.650∗∗∗ 10.358∗∗∗ 10.925∗∗∗ 11.536∗∗∗ 12.017∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)

Construction Age Band : 1996-2002 11.624∗∗∗ 11.217∗∗∗ 12.111∗∗∗ 12.703∗∗∗ 13.152∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)

Construction Age Band : 2003-2006 10.575∗∗∗ 10.044∗∗∗ 11.532∗∗∗ 11.952∗∗∗ 12.312∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)

Construction Age Band : 2007 onwards 10.203∗∗∗ 9.613∗∗∗ 11.520∗∗∗ 11.918∗∗∗ 12.265∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004)

Tenure : Owner Occupied 13.854∗∗∗ 13.782∗∗∗ 13.728∗∗∗ 13.699∗∗∗ 13.691∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004)

Tenure : Rental (Private) 8.324∗∗∗ 8.326∗∗∗ 8.217∗∗∗ 8.143∗∗∗ 8.118∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)

Tenure : Rental (Social) – – – – –

Ownership : F 6.291∗∗∗ 6.411∗∗∗ 6.389∗∗∗ 6.377∗∗∗ 6.371∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)

Ownership : L – – – – –

N 5400384 5453475 5453475 5452576 5453475

Adj. R2 0.788 0.787 0.787 0.787 0.786

This table reports the parameter estimates obtained for different levels of aggregations of energy effi-
ciency ratings. Columns (1) through (5) correspond to Columns (1) through (5) in Table IA.5, respec-
tively. The dependent variable is the logarithm of price per unit area. The estimates are multiplied by
100 and should be read as percentages. The coefficients of omitted categorical variables are left blank.
The p-values are reported in parentheses and are double-clustered by region and time. Lastly, p-values
less than 0.10, 0.05, and 0.01 are demarcated by one (*), two (**), and three (***) stars, respectively.
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Table IA.7: Estimates for location-specific controls

(1) (2) (3) (4) (5)

Degree Days -0.084∗∗ -0.078∗∗ -0.078∗∗ -0.080∗∗ -0.087∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Income Index 17.198∗∗∗ 17.170∗∗∗ 17.137∗∗∗ 17.138∗∗∗ 17.141∗∗∗

(0.009) (0.009) (0.009) (0.009) (0.009)

Employment Index 0.891 1.010 1.005 1.013 1.040

(0.009) (0.009) (0.009) (0.009) (0.009)

Health Deprivation Index -4.840∗∗∗ -4.787∗∗∗ -4.818∗∗∗ -4.879∗∗∗ -5.010∗∗∗

(0.009) (0.009) (0.009) (0.009) (0.009)

Education Index 43.058∗∗∗ 43.181∗∗∗ 43.118∗∗∗ 43.092∗∗∗ 43.122∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006)

Crime Index 5.819∗∗∗ 5.876∗∗∗ 5.877∗∗∗ 5.871∗∗∗ 5.820∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004)

Housing Barrier Index -2.555∗∗∗ -2.709∗∗∗ -2.695∗∗∗ -2.630∗∗∗ -2.439∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)

Living Environment Index -1.633∗∗∗ -1.691∗∗∗ -1.592∗∗∗ -1.402∗∗∗ -1.137∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004)

N 5400384 5453475 5453475 5452576 5453475

Adj. R2 0.788 0.787 0.787 0.787 0.786

This table reports the estimates for the degree days and the multiple depri-
vation indices obtained for different levels of aggregations of energy efficiency
ratings. Columns (1) through (5) correspond to Columns (1) through (5) in
Table IA.5, respectively. The dependent variable is the logarithm of price per
unit area. The estimates are multiplied by 100 and should be read as per-
centages. The coefficients of omitted categorical variables are left blank. The
p-values are reported in parentheses and are double-clustered by region and
time. Lastly, p-values less than 0.10, 0.05, and 0.01 are demarcated by one
(*), two (**), and three (***) stars, respectively.

IA.2.5 Alternative dependent variable

Section 3.3 shows that environmental impact ratings of dwellings are highly correlated with

their energy efficiency ratings (95% with a t-statistic of 8.16× 103). Environmental impact

ratings are assigned between 1 and 100 based on dwelling emissions. Dwellings with higher

environmental impact ratings generate lower emissions. The high correlation between the two

measures indicates that insights obtained from examining homeowner valuation of dwelling

sustainability can be readily applied to appraise investments in climate change mitigation.
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Figure IA.9: Alternative dependent variable

This figure tracks the evolution of premium associated with environmental impact ratings
over time. The solid line plots estimates obtained from period-wise subsample regressions,
and the dashed line plots the estimates obtained from the time-interacted effects. The
horizontal dashed grey line represents the estimate obtained over the full sample.

In this section, we re-estimate Equation (1) in Section 3.1 by replacing energy efficiency

ratings of the dwellings underlying the transactions by their environmental impact ratings.36

We observe that a unit increase in the environmental impact rating of a dwelling is associated

with a premium of 17.97 bps, with a t-statistic of 75.3 and an adjusted R-squared of 78.8%.

The proximity of the premium associated with environmental impact ratings and the energy

premium (16.54 bps) is unsurprising given the high correlation between the two measures.

Next, we re-estimate Equations (3) and (4) in Section 4.2 to examine how the premium

associated with environmental impact ratings evolves over time. The results are reported in

Figure IA.9. The solid line plots estimates obtained from period-wise subsample regressions,

and the dashed line plots the estimates implied by the time-interacted effects. The horizontal

dashed grey line represents the estimate obtained over the full sample. Overall, we observe

that the premium associated with environmental impact ratings is temporally persistent.

36We restrict the sample dwellings with energy efficiency ratings between 21 and 91.
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Table IA.8: Energy premium by tenure and urbanisation

Tenure RU Code Premium Error p-value Observations Adj R2

Owner Occupied

1 0.16 0.01 0.00 415,231 0.57

2 0.18 0.01 0.00 586,189 0.71

3 0.17 0.01 0.00 637,296 0.74

4 0.19 0.00 0.00 1,289,461 0.77

5 0.30 0.01 0.00 156,688 0.66

6 0.19 0.01 0.00 1,461,268 0.84

Rental (Private)

1 0.07 0.02 0.00 34,106 0.54

2 0.04 0.02 0.03 48,795 0.70

3 0.11 0.02 0.00 57,832 0.72

4 0.08 0.01 0.00 151,673 0.78

5 0.14 0.03 0.00 18,448 0.58

6 0.10 0.01 0.00 228,970 0.84

This table reports the estimates for energy premium on subsamples sorted by tenure
and rural-urban classifications (RUC). The rural-urban classifications are published
by the Department for Environment, Food & Rural Affairs, and categorise local au-
thority districts in the United Kingdom from most rural (1) to most urban (6). The
columns titled “Tenure” and “RU Code” identify the tenure and urbanisation-specific
subsample. The column titled “Premium” reports the subsample-specific energy pre-
mium obtained using Equation (1) in Section 3.1. The columns titled “Error” and
“p-value” report the corresponding standard errors and p-values, respectively. The
column titled “Observation” reports the sample size and the column titled “Adj R2”
reports the adjusted R-squared corresponding to the regression.

IA.3 Supplement to heterogeneity in energy premium

This appendix supplements Section 4 in the main body of the manuscript.

Table IA.8 reports the estimates for energy premium on subsamples sorted by tenure and

rural-urban classifications (RUC) published by the Department for Environment, Food &

Rural Affairs. Table IA.8 reports energy premium estimates reported for subsamples sorted

by tenure and property type. The tables show that the tenurial spread in energy premium is

persistent across regions with different levels of urbanisation and property types, respectively.

Table IA.8 further shows that marginal savings are homogenous across market segments.
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Table IA.9: Energy premium by tenure and property type

Tenure Property Type Premium Error p-value Observations Adj R2 MS MC

Owner Occupied

House 0.23 0.00 0.00 2,836,170 0.81 0.01 0.49

Flat 0.14 0.01 0.00 312,204 0.79 0.01 0.23

Bungalow 0.28 0.00 0.00 433,937 0.72 0.01 0.40

Maisonette 0.27 0.01 0.00 47,859 0.80 0.01 0.21

Rental (Private)

House 0.16 0.01 0.00 197,350 0.84 0.01 0.65

Flat 0.11 0.01 0.00 82,625 0.77 0.01 0.23

Bungalow 0.19 0.02 0.00 14,034 0.71 0.01 0.45

Maisonette 0.05 0.04 0.18 9,300 0.74 0.01 0.22

This table reports the estimates for energy premium on subsamples sorted by tenure and property type.
The columns titled “Tenure” and “Property Type” identify the subsample corresponding to a given
tenure and property type. The column titled “Premium” reports the subsample-specific energy pre-
mium obtained using Equation (1) in Section 3.1. The columns titled “Error” and “p-value” report the
corresponding standard errors and p-values, respectively. The column titled “Observation” reports the
sample size and the column titled “Adj R2” reports the adjusted R-squared corresponding to the regres-
sion. The columns titled “MS” and “MC” report the unconditional expectations of the marginal savings
and costs, respectively, computed over that subsample (see Section 5.2 for details on computation).

IA.4 Supplement to demand and regulatory impact

This appendix supplements Section 6 in the main body of the manuscript.

IA.4.1 Details on the logistic model

In Section 6.2.1, we examine the impact of the Minimum Energy Efficiency Standard (MEES)

on homeowner decisions to improve dwelling energy efficiency. To formalise our findings, we

estimate a logistic regression to measure the change in the probability of rating improvements

for a dwelling belonging to a given market segment and label post-regulation. In this section,

we describe the logistic model.

For a given market segment (owner-occupied, private-rental, or both) and label (all labels,

or labels G through B), we estimate the following model:

log

#
Pr{Upgrade = 1}
Pr{Upgrade = 0}

$
= α + β Regulation, (IA4)
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where Pr{Upgrade = 1} denotes the probability of an upgrade and Regulation is an indicator

variable for the period following the regulatory approval. The term α captures the probability

of a rating improvement in the absence of regulation. The term β captures the incremental

impact of the regulation on the probability of a rating improvement.

We measure the change in the probability of rating improvement following the regulation

as β̂− α̂, and ascertain the statistical significance of this change using the p-value associated

with β̂. Table 3 in the main body of the manuscript reports the results.

IA.4.2 Details on the difference in differences method

In Section 6.2.3, we use a difference in differences method to investigate whether the targeted

properties that did not upgrade following the Minimum Energy Efficiency Standard (MEES)

transacted at a discount. This section arrives at Equation (11) from first principles.

Consider the following conditional expectation function for the transactions that occurred

before MEES was approved:

E
%
log (P/A)untreated, pre-MEES

ihrt

&
= αr + δt + ξSih + µt( t × Sih)

+ θBh + γTi + νIMDrt + ωDDrt,
(IA5)

where the unit of observation in our model is the same as that in Equation (4) in Section 4.2

with log (P/A)ihrt as the target variable; and each symbol has the same meaning as that in

Equation (4). Let λRegulation denote the fixed effect of MEES on the target variable (for both

treatment and control groups) such that:

E
%
log (P/A)untreated, post-MEES

ihrt

&
= E

%
log (P/A)untreated, pre-MEES

ihrt

&
+ λRegulation

= αr + δt + ξSih + µt( t × Sih)

+ λRegulation

+ θBh + γTi + νIMDrt + ωDDrt.

(IA6)
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Finally, let ρRegulation denote the casual effect of treatment such that:

E
%
log (P/A)treated, post-MEES

ihrt

&
= E

%
log (P/A)untreated, post-MEES

ihrt

&
+ ρRegulation

= αr + δt + ξSih + µt( t × Sih)

+ λRegulation + ρRegulationXi

+ θBh + γTi + νIMDrt + ωDDrt + εihrt,

(IA7)

where Xi is an indicator variable for treatment; Xi = 1 when transaction i takes place after

March 26, 2015 and the energy efficiency rating of the underlying property is less than 39;

Xi = 0 otherwise. This yields Equation (11) in Section 6.2.3.

IA.4.3 Details on the regression discontinuity method

In Section 6.2.3, we use a regression discontinuity method to investigate whether the targeted

properties that did not upgrade following the Minimum Energy Efficiency Standard (MEES)

transacted at a discount. This section arrives at Equation (12) from first principles.

Regression discontinuity designs can be either sharp or fuzzy. Sharp designs are relevant

to settings where the assignment of treatment is perfectly known, whereas fuzzy designs are

a two-step IV-like approach used in settings where the assignment of treatment around the

cut-off is not perfectly known (for example, when we are trying to predict assignment instead

of knowing it). Since we have perfect information about energy ratings, the corresponding

labels, and their treatment, we deploy a sharp regression discontinuity design.

We denote the numerical cutoff at which a property is labelled E as c = 39. The unit of

observation in our model is the same as that in Equation (4) in Section 4.2 with log (P/A)ihrt

as the target variable. We distinguish between properties that receive the treatment (proper-

ties that were impacted by the policy) as log (P/A)1ihrt and those that do not as log (P/A)0ihrt.

Consider the following conditional expectation formulation:

E
'
log (P/A)0ihrt

(
= αr + δt + ξ(Sih − c) + µt( t × (Sih − c))

+ θBh + γTi + νIMDrt + ωDDrt,
(IA8)
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where Sih−c denotes the energy efficiency rating of a property centred around the regulatory

threshold c, and all other symbols have exactly the same meaning as that in Equation (4).

Let ρ denote the casual effect of treatment such that:

log (P/A)1ihrt = log (P/A)0ihrt + ρ. (IA9)

This yields the following regression model:

log (P/A)ihrt = αr + δt + ξ(Sih − c) + µt( t × (Sih − c)) + ρXi

+ θBh + γTi + νIMDrt + ωDDrt + εihrt,
(IA10)

where Xi is an indicator variable defined as:

Xi =

)
*+

*,

0 if Sih ≥ c

1 if Sih < c

(IA11)

and ρ is the causal effect of interest. This yields Equation (12) in Section 6.2.3. Note

that because Equation (12) models differences in outcomes between treatment and control

groups during the same time period, it does not require the parallel trends assumption like

Equation (11).

IA.4.4 Regulatory exemptions

The difference in differences and regression discontinuity methods in Section 6.2.3 show that

the affected dwellings which did not upgrade post-regulation were not transacted a discount.

Table IA.10 provides a partial list and description of exemptions from the Minimum Energy

Efficiency Standards (MEES) that landlords can claim, adapted from the Guidance on PRS

Exemptions published by the UK Government. We attribute an insignificant treatment effect

in Section 6.2.3 to the ability of landlords to claim exemptions outlined in Table IA.10. For

example, the typical property affected by the MEES (but which did not undergo the requisite

rating improvement) requires a significantly higher capital expenditure than the regulatory

threshold specified under the ‘High Cost’ exemption. Similarly, affected properties that can-

not be upgraded are also exempt under the ‘All Improvements Made’ clause.
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Table IA.10: Exemptions to Minimum Energy Efficiency Standards

Exemption Description

High Cost The prohibition on letting property below an EPC rating of E
does not apply if the cost of making even the cheapest recom-
mended improvement would exceed £3,500.

All Improvements Made Where all the relevant energy efficiency improvements for the
property have been made (or there are none that can be made)
and the property remains sub-standard.

Wall Insulation The landlord has obtained written expert advice indicating that
the measure is not appropriate for the property due to its poten-
tial negative impact on the fabric or structure of the property.

Consent Certain energy efficiency improvements may legally require third
party consent (e.g., local authority planning consent, consent
from mortgage lenders, etc.) before they can be installed.

Devaluation An exemption from meeting the minimum standard will apply
where the landlord has obtained a report from an independent
surveyor who is on the Royal Institution of Chartered Surveyors
(RICS) register of valuers advising that the installation of specific
energy efficiency measures would reduce the market value of the
property, or the building it forms part of, by more than 5%.

New Landlord If a person becomes a landlord in circumstances where it would
be unreasonable for them to be required to comply with the reg-
ulations immediately, a temporary 6 month exemption will apply
from the date they become the landlord.

This table provides a partial list and description of exemptions from the Minimum Energy Effi-
ciency Standards (MEES) that landlords can claim. The list has been adapted from the Guid-
ance on PRS Exemptions published by the UK Government, available at https://www.gov.uk/
government/publications/private-rented-sector-minimum-energy-efficiency-standard-
exemptions/guidance-on-prs-exemptions-and-exemptions-register-evidence-requirements.

End of the Internet Appendix
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