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1 Introduction
The bank lending channel—the influence of bank credit supply shocks on firms’

borrowing capacity, investment, and overall real activity—stands at the center of
the macrofinance literature.1 Due to bank-firm interactions and specialization in
lending, the bank lending channel may exhibit heterogeneity across different banks
and firms. Consequently, the transmission of shocks might specifically depend on the
particular bank-firm match, making the overall impact of the bank lending channel
critically reliant on the bank-firm network structure. In this paper, we develop a
novel empirical framework capable of assessing the heterogeneous impacts of the
bank lending channel and understanding its dependence on the bank-firm network.

Identifying the effect of bank shocks is challenging because credit fluctuations
may be driven by demand or supply factors, and events that influence the supply
of credit are likely to influence the demand for credit simultaneously. State-of-the-
art methodologies exploit matched bank-firm credit data and, by observing multiple
connections between firms and banks, are able to control for firm demand factors.
The leading contribution of Khwaja and Mian (2008) (KM hereafter) relies on using
firm fixed effects to control for firm demand factors when assessing the impact of an
observed bank shock, measured as a bank differential exposure to a credit contraction
event.2 This useful methodology has been widely extended to assess the impact of
other types of bank shocks in different event studies (see Related Literature). Another
influential contribution is Amiti and Weinstein (2018) (AW hereafter) who also exploit
multiple connections in the matched bank-firm credit data, and its time series varia-
tion, to estimate a model with two-sided unobserved heterogeneity and uncover an
unobservable time-varying bank shock after controlling for unobservable firm factors
(through time-varying firm- and bank- fixed effects). This strategy has also been em-
ployed in several studies. While these methodologies offer a tractable way to study
observed or unobserved bank shocks controlling for unobserved firm heterogeneity,
they rely on the substantive assumption that the transmission of credit shocks is ho-
mogeneous, that is, that shocks to each bank (firm) are propagated equally to all
its connected firms (banks), so that the within firm comparison fully absorbs firm-
specific changes in credit demand.

1Throughout the paper we refer to bank credit supply shocks (or simply banks shocks) as shifts
(contractions/expansions) in the supply of bank credit (e.g., driven by bank-specific liquidity shocks,
monetary policy shocks affecting banks ability to attract deposits, or changes in capital regulation)
that are unrelated to firm demand for credit or creditworthiness.

2They explore the effect of a cross-bank liquidity shock using an unanticipated nuclear tests in
Pakistan as a natural experiment.
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The absence of interactions between bank and firm factors in the KM or AW frame-
work then do not allow for the possibility of a heterogeneous transmission of shocks
and restrict the specific matching patterns between banks and firms. Bank-firm inter-
actions may be expected when there exists bank specialization or relationship lend-
ing. Typically, banks constantly face a portfolio allocation task in which they have
to monitor and select their expansion or contraction of credit across borrowers. Such
portfolio decision depends on the borrowers’ characteristics and on the specific way
each bank assesses them, which could differ across banks due to differences in bank
information acquisition, lending specialization, or business models.3 In particular,
recent empirical studies provide evidence of lending specialization and an heteroge-
neous transmission depending on some observable characteristics. Using Peruvian
bank-firm credit data, Paravisini et al. (2023) show that bank specialization in export
markets is a crucial determinant for the propagation of credit shocks, and Ivashina
et al. (2022) show that bank shocks affect differentially firms depending on their type
of loan used. Blickle et al. (2023) document loan specialization of large U.S. banks
across industries. But, what if the econometrician cannot access such specific data
about bank or firm specialization? Or, what if the heterogeneity is based on an un-
observed margin or multiple margins? How can we learn about the heterogeneity in
the transmission of credit shocks and its implications when there exists interactions
between unobserved bank and firm factors?

Our first contribution is methodological; we expand upon the current state-of-the-
art framework used to evaluate the bank lending channel by allowing for the pres-
ence of bank-firm interactions in unobserved factors that may lead to a heterogeneous
response to credit shocks, and thus able to accommodate specialization in different
margins. This framework is particularly useful in situations where researchers are
uncertain about the specific dimensions of lending specialization or when specializa-
tion is determined by unobservable firm characteristics, allowing them to test and
detect the sources of heterogeneity. We propose an estimator for cases in which the
relevant interaction occurs between banks and groups (types) of firms. In addition,
we discuss interpretation of the identified interactions and potential concerns that
may arise when estimating a model with homogeneous effects. Our second contri-
bution regards the novel empirical findings. We uncover significant heterogeneity
in our Peruvian dataset: Banks transmit their credit shocks significantly different
across the identified firm groups. Importantly, we show that accounting for such
heterogeneity and the bank-firm network structure is crucial to learn about the bank

3Theories of relationship lending point towards a special treatment of banks to certain groups of
firms (e.g., Petersen and Rajan (1994), Detragiache et al. (2000), Degryse and Ongena (2005).)
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lending channel and its real effects.

In our framework, the effect of a credit shock to each specific bank is allowed
to vary across unobserved groups or types of firms, while maintaining the assump-
tion of homogeneous transmission within groups of firms. The approach relies on the
idea that from the perspective of the bank and its relationship with firms, there is a
discrete number of types in which firms are classified regarding the relevant char-
acteristics that would lead to a special treatment or an heterogeneous transmission
of a credit shock. Besides the heterogeneous transmission across groups, the model
allows for firm-specific demand shocks that affect equally all banks. The bank-firm
group specific shocks, the firm-specific shocks, and the firms’ group membership
are left unrestricted as in a “fixed-effects” (or “grouped fixed-effects”) fashion and
are estimated from the data. Our methodology decomposes credit growth dynamics
into time-varying firm effects and time-varying bank-firm group effects, minimizing a
least-squares criterion across all possible firm groupings.

If firm groups were known by the econometrician, then we could identify bank
shocks by applying the KM or AW framework for each group, that is, by measuring
the systematic differences in the lending of banks to the same set of firms belonging
to the same group. However, since groups are unobserved, we combine this idea
with machine learning techniques that help in clustering observations.4 Typically,
clustering techniques classify observations into groups depending on some dissim-
ilarity measure based on observable characteristics. Our goal instead is to cluster
firms based on an heterogenous unobserved response to an unobserved credit shock.
We follow Bonhomme and Manresa (2015) and propose a “grouped fixed-effects”
estimator to our bank lending framework by incorporating the insights from KM
and AW. Intuitively, firms whose differences in their borrowing patterns from specific
banks are most similar are grouped together in estimation.

We investigate statistical properties of our proposed bank-firm group effect (BF-
GFE) estimator as the number of firms (NF) and banks (NB) tend to infinity. We
follow the asymptotic analysis in Bonhomme and Manresa (2015), developed for
standard panel data, and accommodate it to our model with multi-year bank-firm
bipartite network data. Under well-defined groups and weak spatial dependence in
the errors of the model, we show the BF-GFE estimator converges to the least squares
estimator under known groups for large values of NF and NB. However, due to the
firms’ group classification is learned from their connections with different banks,

4E.g., Bonhomme and Manresa (2015), Ando and Bai (2016), Bonhomme et al. (2019), Almagro
and Manresa (2021).
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there exists a probability of misclassification in panels with small NB, leading to a
small sample bias in the BF-GFE estimator.5 Importantly, the rate of misclassification
decreases very rapidly as NB increases. Through simulations, we illustrate that for
moderate values of NB, including calibrations to our dataset, the estimator performs
well and is centered around the true value. This finding holds significant relevance
given that typical databases often contain a limited number of banks.

We delve into the interpretation of our identified BF-GFE. Such interaction effect
may capture heterogeneity in both supply or demand: It could stem from a credit
supply shock which banks heterogeneously transmit across firm types, or may cap-
ture a group-specific demand shock, which firms transmit heterogeneously across
banks, or a combination of both factors. The challenge of interpretation is some-
what mitigated in cases where we can rely on an exogenous credit event that leads
to credit supply shifters, as in KW. In such scenarios, we show how to utilize our
identified interaction effect to recover a double-heterogeneous (treatment) effect that
varies across banks and groups of firms. We underscore the implications of using the
standard framework and estimate a homogeneous model in the presence of hetero-
geneity. Our analysis reveals that under bank-firm endogenous matching based on
the heterogeneous effects, the KM estimator fails to provide a consistent estimate of
the average bank effect across all banks and groups of firms. Particularly, we find that
the estimate of the homogeneous bank effect is a weighted average of the heteroge-
neous bank effects for each firm group and bank, with weights that may be negative,
in a similar fashion to De Chaisemartin and d’Haultfoeuille (2020). Negative weights
are specially problematic since one could have that the estimate of the homogeneous
bank effect (associated with a negative credit event) appears positive, while all bank
effects are negative but heterogeneous. Such concern on the double heterogeneity
may be expected in cases of endogenous matching arising due to specialization. In-
tuitively, a specialized bank heavily exposed to the credit event may shield a certain
group of firms relative to a less exposed unspecialized bank. Since, due to special-
ization, the network of firms used in the estimation will be more heavily composed
of the group of firms the specialized bank shields, it could give the impression that
exposure to the (negative) credit event is positively associated with lending.

Additionally, for estimating the real effects of bank shocks, we emphasize that

5This phenomenon resembles the well-known incidental parameter problem in panel data for
small T setups, as documented by Neyman and Scott (1948) and Lancaster (2000). Bonhomme and
Manresa (2015) shows that the group fixed effect estimator in a standard panel data suffers from the
incidental parameter problem for fixed and small T as the group membership in their framework
learns from the time series dimension.
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identification may be achievable even without exogenous credit supply shifters, by
utilizing our identified groups to control for group-specific demand factors. This
identification is feasible as long as there exist idiosyncratic factors influencing the
ex-ante bank-firm network structure, ensuring that firms within the same group (af-
fected by identical demand shocks) are differentially exposed to bank shocks.

We apply our estimation framework to credit registry data from Peru from 2005
to 2017. We observe every bank-firm lending relationship for corporate firms. Ad-
ditionally, we obtain the financial statements information from the Peruvian Stock
Exchange to measure firm investment. Combining these sources of information, we
are able to study the real effects of bank shocks on firm investment across time.

Our novel framework allows us to uncover new results on the importance of the
bank lending channel that cannot be uncovered without a more flexible treatment
of unobserved heterogeneity. First, we provide novel evidence on the heterogeneous
effect of credit shocks. We show that the lending patterns of firms connected with
each bank shows considerably heterogeneity across our identified groups. Interest-
ingly, for some banks, the estimated BF-GFE may have different signs across types
of firms: For certain years, there are banks with an estimated positive effect for a
group of firms (e.g. expansion of their credit supply) while a negative effect for other
group (e.g. contraction in credit). Such heterogeneity in lending patterns between
banks and groups of firms leads to sizable statistical gains of our model relative to
the standard homogenous effects model: In-sample and out-of-sample mean square
errors improve significantly when the model allows for heterogeneous effects.

We show that certain observable characteristics help explain the estimated groups.
Interestingly, we observe that firm exports and collateral predict the group member-
ship. This type of sorting is in line with specialization on export destinations mar-
kets and lending contracts as emphasized by Paravisini et al. (2023) and Ivashina
et al. (2022), respectively. Other relevant characteristics differentiating groups are
firms’ debt size and risk score. Moreover, building on Paravisini et al. (2023) and
Blickle et al. (2023), we measure bank specialization in our firm groups by calculat-
ing the relative importance of each firm group in each bank portfolio. We find that
the groupings correlate with the specialization measure, indicating that bank shocks
lead to a stronger credit expansion for firms in which banks are more specialized in.

Second, we study the transmission of an observed bank shock across our iden-
tified firm groups by relying on the credit event studied in Paravisini et al. (2015).
The bank shock is measured as the banks’ exposure to the foreign funding short-
age experienced during the capital flow reversal in Peru in 2008. We find signifi-
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cant differences in the transmission of such credit shock across our identified firm’s
groups. For instance, the heterogeneous estimates reveal that exposed banks (with
high foreign liabilities) decreased (relative to low foreign liability banks) their credit
significantly to some group of firms but not to all, there are even some groups of
firms to which these banks expand their lending during this episode. Moreover, the
estimated average of the heterogenous effect across firm groups and banks is around
-0.3, indicating exposed banks reduced credit supply by 30% on average relative to
non-exposed banks, while the estimated effect under the homogenous model is -0.18.

Third, the presence of bank-firm interactions and heterogeneity in the impact of
credit shocks beg the question whether banks and firms create relationships and
sorting patterns that amplify or smooth out the aggregate transmission of credit
shocks. Our framework allows us to estimate the entire loan growth distribution
corresponding to a counterfactual reallocation of relationships between banks and
firms. In particular, we estimate as a counterfactual the aggregate credit growth
when bank-firm are randomly matched.6 With this exercise, our aim is to assess
the contribution of the endogenous bank-firm network for the propagation of credit
shocks, that is, a bank-firm matching channel. We find that, for most years, aggregate
credit growth is enhanced by the observed bank-firm credit network relative to a
randomly matched network, achieving up to a 20% higher credit growth rate in 2016
and 2017, an a growth rate that is 3% to 10% higher for most years, with the exception
of 2008-09 in which the observed network produces a 5% lower growth rate.7

Finally, we explore the real effects of bank shocks on firm investment. We use our
estimated BF-GFE’s to analyze whether firms’ investment is sensitive to their bank
lenders’ shocks. For this exercise, the bank effects, that vary by firm group, are aggre-
gated at the firm level by weighting each bank shock by the bank relative importance
in the firm borrowing portfolio in a similar fashion as in AW. As noted above, we
control for firm group fixed effects in order to capture group-specific demand shocks
that could correlate with our BF-GFE. We find that when bank shocks are estimated
from a model with homogeneous effects, we obtain imprecise and insignificant ef-
fects of bank shocks on investment. Instead, we find a more precise and significant
impact on firm investment when we consider the heterogeneity in the impact of bank
shocks across firm groups, highlighting the importance of considering heterogene-

6This counterfactual would for example capture credit allocation in an economy with large infor-
mation frictions preventing firms to find their optimal specialized bank, as represented in the model
with specialization described in the Online Appendix.

7Under a model with homogenous effects, the transmission of credit shocks is independent of the
network, so this exercise would lead to no change in aggregate credit growth by construction.
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ity to reveal the real effects of bank shocks. The estimation of the elasticity of bank
shocks on investment is about 4 (we get a similar result when the number of groups
is chosen to be 2 to 5).

Related Literature. Our paper is mainly related to the empirical literature on the
bank lending channel. The literature is extensive with many important contribu-
tions exploiting matched bank-firm lending data to identify the effects of credit
supply shocks, relying on an homogeneous transmission assumption. Some exam-
ples include Khwaja and Mian (2008), Jiménez et al. (2012, 2017), Schnabl (2012),
Chodorow-Reich (2014), Paravisini et al. (2015), Amiti and Weinstein (2018), Jiménez
et al. (2020), Huremovic et al. (2020), Alfaro et al. (2021), Blattner et al. (2023), among
others.8 Most closely, our paper is related to the papers that emphasize bank-firm
interactions in the transmission of credit shocks. The pioneering contribution of Par-
avisini et al. (2023) highlights interactions arising due to market specialization and
provide an indicator based on export destinations to identify a relevant margin of
bank-firm heterogeneity (e.g. banks specialized in US markets treat differently firms
exporting to US relative to the treatment of not specialized banks to those types of
firms). Gopal (2021) highlights interactions arising due to specialization in collateral
choices. These papers correct the estimation by including interactions on the relevant
observable margin. Another related paper is Ivashina et al. (2022) which highlights
that the propagation of credit shocks may be loan-type specific, inducing a bank-firm
interaction when there exists banks specialized in providing certain types of loans,
which would bias standard methods assuming transmission homogeneity. They cor-
rect the estimation by separately estimating the bank lending channel across each
observed type of loan. We show that both the lending specialization model in Par-
avisini et al. (2023) and the loan-type empirical specification in Ivashina et al. (2022)
can lead to our empirical specification with bank-firm group effects. Thus, our pa-
per provides a way of identifying and estimating such types of interactions even
when the researcher lacks data access or is uncertain about the specific relevant di-
mensions, allowing them to test and detect the sources of heterogeneity. Moreover,
we extend their discussion on the potential identification concerns that arise when
using current state-of-the-art estimation methods assuming homogenous effects. In
particular, we formalize that the homogenous bank effect estimate is a weighted av-

8Some papers have documented differential transmission of bank shocks across observables (e.g.
differences by firm size as in Khwaja and Mian (2008), Chodorow-Reich (2014)). Rather than relying
on a particular observed characteristic, we make the margin of heterogeneity an empirical question.
Importantly, we emphasize bank-firm interactions that in general point to heterogeneity in the specific
bank-firm match that can happen due to two degrees of heterogeneity: The differential effect across
firm types can differ by banks, as would be expected with bank specialization.
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erage of the heterogeneous bank effects for each firm group and bank, with weights
that may be negative, highlighting the potential interpretation concerns of the stan-
dard homogenous bank shock estimates. In addition, we highlight the importance of
the endogenous creation of bank-firm networks, uncovering and quantifying a novel
bank-firm matching channel.

Our econometric approach aligns with the existing literature that estimates in-
teractions between unobserved factors. Specifically, we closely follow the approach
outlined in Bonhomme and Manresa (2015) and extend their grouped-fixed effect es-
timator to our bank lending framework. An important distinction is that our frame-
work, which utilizes network panel data, encompasses three dimensions compared
to the standard panel data model, which has two dimensions. Our framework allows
for flexibility in the group membership of firms to change over time, which can be
particularly relevant in environments with several years in which firms and banks
may alter their business models. Additionally, it enables us to incorporate time-
varying firm fixed effects alongside the time-varying bank-firm group effect, which
is crucial for controlling for time-varying demand shocks.

Our results on the consistency of standard estimators and discussion on the iden-
tification concerns arising due to endogenous bank-firm matching and heterogeneous
effects relate to the econometric literature that study panel data models with hetero-
geneous treatment effects (De Chaisemartin and d’Haultfoeuille (2020), Arkhangel-
sky et al. (2021), Sun and Abraham (2021)).

Outline. Section 2 provides an overview of the standard framework used to identify
banks shocks exploiting credit registry data, and discusses the identification assump-
tion of homogeneous transmission. Section 3 presents suggestive evidence of hetero-
geneity in the transmission. Section 4 extends the framework to allow for bank-firm
interactions, discusses identification, and describes our estimation algorithm. Section
5 discusses interpretation of the bank-firm interaction effects and concerns when es-
timating a model with homogenous effects. Section 6 describes the data. We present
the results and empirical applications in section 7 and 8. Section 9 concludes.

2 Standard framework: a model of homogeneous effects
The empirical model consists of NF firms and NB banks that interact in differ-

ent periods t = 1....T. Credit registries contain information about the loan amount
L f ,b,t of each firm with each bank at time t. If firm f has a positive outstanding
balance with bank b during period t and t − 1, we say a network D f ,b,t = 1 ex-
ists; otherwise D f ,b,t = 0. We denote with y∗f ,b,t the potential loan growth rate

8



between bank b and firm f at time t if the network ( f , b, t) exists. We observe re-
alizations of y∗f ,b,t only when D f bt = 1. Let’s define the observed loan growth rate as

y f ,b,t =
{

y∗f ,b,t : D f ,b,t = 1
}

.

The main methodology used in the literature, which follows KM, relies on a credit
event (“natural experiment”) occurring at some period τ that affects differentially
banks’ balance sheets, and exploit cross-sectional variation around the event to study
how such a bank shock is propagated to firms. Thus, the literature typically considers
the following linear specification:

y∗f ,b = α f + θxb + ϵ f ,b, (1)

where y∗f ,b = ln L f ,b,Post(τ) − ln L f ,b,Pre(τ) is the loan growth rate from a window pre-τ
to a window post-τ, α f captures unobserved firm-specific factors (potentially de-
mand factors linked to the credit event), xb is a bank-specific observable variable
measuring bank exposure to the credit event (e.g., the exposure to a liquidity shock
during a natural experiment) and θ is the constant marginal (treatment) effect of such
a bank shock over the loan’s growth rate. As KM emphasizes, it is key to consider
firm-fixed effects α f in the regression due to potential correlation with xb. For ex-
ample, banks more exposed to the credit event may be lending to firms that are also
more affected directly by the event.

In another contribution, AW proposes to exploit the time series variation in the
data and consider a similar linear specification with two-sided heterogeneity for y∗f ,b,t:

y∗f ,b,t = α f ,t + βb,t + ϵ f ,b,t, (2)

where α f ,t is time-varying firm-specific unobserved heterogeneity (typically inter-
preted as credit demand factors), βb,t is time-varying bank-specific unobserved het-
erogeneity (interpreted as credit supply factors), and ϵ f ,b,t is an idiosyncratic un-
observed factor that varies across firms, banks and time (capturing any interaction
between bank and firm factors).

Crucially, the interpretation of the firm-specific α f ,t and bank-specific βb,t effects
as credit demand and supply factors (or θ as a credit supply effect), respectively,
relies on an assumption of homogeneous transmission of credit shocks which is embed-
ded in the linear specification. That is, credit demand shocks to firms—e.g. lending
changes due to firm-level productivity shocks, changes in factor costs, firm credit
constraints—are transmitted equally to all banks, so captured by α f ,t, and credit sup-
ply shocks to banks are transmitted equally to all firms. Any bank-firm interactions
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ϵ f ,b,t, for example, generated due to either firms with bank-specific demand or banks
with firm-specific supply cannot be systematic, so they must be uncorrelated with
α f ,t or βb,t; moreover, they should be orthogonal to the network structure captured
by D f ,b,t. We state the identification conditions in the following assumption.

Assumption 1. Exogenous network. Let Dt, αt, βt denote the entire vector (at time
t) of D f ,b,t, α f ,t and βb,t for all f , b, respectively. Then, E[ϵ f ,b,t|Dt, αt, βt] = 0 in (2) (or
E[ϵ f ,b,t|Dt, αt, xt] = 0 in (1) where xt is the entire vector of xb,t).

The exogenous network assumption 1 implies the formation of bank-firm net-
works is exogenous once we condition on the firm-specific unobserved heterogeneity
αt and the bank-specific unobserved heterogeneity βt or observed factor xt. That is,
bank-firm interactions ϵ f ,b,t do not affect the formation of relationships. So, there are
no systematic differences in ϵ f ,b,t’s for different partitions of the network Dt.

Assumption 1 allows the network to be endogenous to the factors that we are
controlling for in the regression, so it allows for sorting that depends on α f ,t, βb,t (or
xb,t). For instance, it allows firms with high α f ,t to match more likely with banks
with high βb,t. However, assumption 1 does not allow the network to depends on
characteristics that affect loan growth rates that vary at the bank-firm level like spe-
cialization or relationship lending. For instance, assumption 1 might fail if matching
depends on the specific relation of a bank with a type of firms as highlighted by
Paravisini et al. (2023) where firms that export to a particular market are more likely
to start a relationship with a bank that specializes in that market.9

Identification. Given the exogenous network assumption 1, we can estimate model
(2) (or (1)) conditioning on the observed network D without the need of jointly mod-
eling the distribution of {y∗f ,b,t, D f ,b,t}.

9KM and AW raise the identification concerns in the presence of bank-firm interactions. KM em-
phasize “... perhaps a firm’s loan demand is bank-specific and is correlated with shocks to the bank’s
liquidity. This can happen if, (a) nuclear shocks disproportionately affect export/import demand, (b)
firms get “export/import related” loans from banks that specialize in the tradeable sector, or (c) these
export/import intensive banks had more dollar deposits and thus suffered a larger liquidity crunch as
well”; they proceed to provide some evidence that these are not too relevant for the event they study.
AW provide conditions under which bank-firm interactions do not affect the estimation of firm and
bank shocks, as their Proposition 1 specifies this happens “as long as the components of the interac-
tion term that vary only at the bank or firm level are defined to be part of the bank and firm shocks.”
The condition would be violated, for instance, if a group of firms had a bank-specific demand since
such demand factor correlating with the bank-fixed effect should not be defined to be part of a bank
shock. Also, note that when we exploit the time series, it is easy to include in (2) firm-bank interaction
η f ,b that is constant over time as in Di Giovanni et al. (2022); but this cannot account for interactions
or heterogenous effects of time-varying shocks as in the examples explained above.
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Multiple bank-firm connections for every t allow to estimate α f ,t, βb,t as time-
varying firm and bank fixed effects. By taking differences of equation (2) for the
same firm in two banks b0, b we eliminate the firm-specific factor and get

y f ,b,t − y f ,b0,t =
(

βb,t − βb0,t
)
+
(
ϵ f ,b,t − ϵ f ,b0,t

)
. (3)

Assumption 1 plays a key role to separate
(

βb,t − βb0,t
)

and
(
ϵ f ,b,t − ϵ f ,b0,t

)
from

equation 3: It implies that E f∈I(b,b0)

[
ε f ,b,t

]
= E f∈I(b,b0)

[
ε f ,b0,t

]
, where I(b, b0) is the set

of firms that borrow from both banks b and b0. Therefore, by comparing the average
differential borrowing from the same set of firms connected with two different banks
we can identify the bank-specific shocks using the following moment condition:

E f∈I(b,b0)

[
y f ,b,t − y f ,b0,t

]
= βb,t − βb0,t. (4)

Such moment condition thus identifies the specific credit supply shock to bank b rel-
ative to b0: βb,t − βb0,t (or analogously θ

[
xb,t − xb0,t

]
). Intuitively, under this frame-

work of homogeneous transmission of credit shocks, any systematic difference in the
lending of two banks to the same set of firms cannot be driven by firm demand, so
it is attributed to a bank shock. Similarly, the homogeneity assumption implies that
the fixed effect α f ,t can be interpreted as a firm demand specific shock.

3 Evidence of heterogeneity
If the transmission of credit shocks is homogenous, then all systematic differences

in the lending to the same firms across two banks is explained by the (relative) bank
shock βb,t − βb0,t. In particular, this average lending to firms from two banks b, b0

should be the same across different sets/groups of firms, that is, the left hand side in
equation (4) should be the same for any grouping of firms I(b, b0) that borrow from
both banks. Figure 1 presents the sample analog of the left hand side of (4) in our
data set for different grouping of firms. We consider only firms that borrow from the
four main banks in our data set in the year 2017. We show the results for the entire
set of common firms and when we split firms in two groups depending on: i) firm
age, ii) their posted collateral size, iii) total debt size in previous years.

Panel 1a shows the average loan growth rate (relative to bank 1) across all firms.
According to equation (4), such differential borrowing would capture each specific
(homogeneous) bank shock βb,t − βb=1,t, so we would conclude that bank 2 experi-
enced a negative bank shock of about -12% (relative to bank 1), while banks 3 and 4
experienced very small banks shocks. However, the next panels show that such differ-

11



ential borrowing across banks changes considerably across the different firm group-
ings. Panel 1b shows the differential average growth rates for firms above/below the
median firm age. We can see that on average firms in both groups borrow less from
bank 2 than from bank 1, but the magnitude is considerably different (around -9%
vs -16%). More strikingly are the results for bank 3 and 4: firms in the blue (below-
median) group experienced an increase in their borrowing from these banks, while
firms in the red (above-median) group experienced decrease in their borrowing. Pan-
els 1c and 1b show also differential patterns when splitting firms by their collateral
or debt size. Interestingly, 1d shows that bank 3 reduces lending to the blue group
and increases it to the red group; while the opposite pattern is shown by bank 4.

All panels indicate there exists heterogeneity in the responses by groups, suggest-
ing that the additive effects of bank and firm shocks implied by the linear specifica-
tion in section 2 is not satisfied in the data. Moreover, they suggest that heterogeneity
may depend on the specific match between banks and firm groups.

4 A model with interactions and heterogeneous effects
A general framework that accounts for interactions can be written as:

y∗f ,b,t = α f ,t + βb,t + ψ f ,b,t + ϵ f ,b,t, (5)

where ψ f ,b,t accounts for any interactive factors that can affect credit growth and, as
opposed to the idiosyncratic ϵ f ,b,t, can be systematically correlated with α f ,t, βb,t or
the probability of creating a relationship D f ,b,t. For example, ψ f ,b,t could capture a
credit supply shock to bank b that propagates heterogeneously to firms, in a context
where firms for which the propagation is stronger (higher ψ f ,b,t) are also firms that
are experiencing a larger shock α f ,t or that are most likely to be connected to a
particular bank, so that E[ψ f ,b,t|D f ,b,t] ̸= E[ψ f ,b,t]. Another example is that ψ f ,b,t could
capture a credit demand shock to firm f that propagates heterogeneously to banks, in
which the affected firm expands borrowing more from specific banks (higher ψ f ,b,t)
that are also experiencing a larger shock βb,t or are more likely to form a connection.
Interactions affecting credit growth y∗f ,b,t that are not systematically correlated either
with α, β or the network D are instead accounted by ϵ f ,b,t.

Of course, without imposing some structure we cannot identify or estimate spec-
ification (5). There are different methods that help uncovering interactions across
unobserved factors. We explore two types of specifications. In our preferred ap-
proach, we model interactions occurring across a discrete number of firm types or
groups, in which heterogeneity is left unrestricted across groups. In a second spec-
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Figure 1: Mean differential loan growth rate for t = 2017 (relative to bank 1), by firm
classification
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(b) Splitting by firm age
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(c) Splitting by collateral size
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(d) Splitting by past firm debt size
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Note. Average credit growth by the four largest banks to the sample of firms connected to all four banks. Panel (a) displays the

average credit growth for all firms in the sample across banks. The next panels split the sample in two groups depending on:

total firm debt size from all banks in previous years (panel 1d), the firm posted collateral (panel 1c), and firm age (1b).

ification, described in Online Appendix B, we use an interactive fixed effects model
that allows for heterogeneity to be continuous but restricted to a factor structure.

Group interactions. Let G be the number of groups (which is unknown and fixed),
and let G = {gt(1), ..., gt(NF)} be any grouping of firms into the G groups in year
t. Then, for each f , we have gt( f ) ∈ {1, ..., G} which maps firms into groups. Let
y∗f ,b,t be the potential growth rate of a loan between bank b and firm f that belongs
to a group gt( f ) at time t if the link ( f , b, t) exists. Let’s consider the following
specification with bank-firm group specific effects as an extension of KM and AW10:

y∗f ,b,t = α f ,t + βb,gt( f ),t + ϵ f ,b,t, (6)

10In Section 5, using our framework, we estimate a model with interactions when we observe an
exogenous credit shifter a la Khwaja and Mian (2008).
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where α f ,t is an unobserved time-varying firm effect (fixed across banks), βb,g( f ),t is
an unobserved time-varying bank-firm group effect (fixed across firms within groups),
and ϵ f ,b,t is the unit specific error term. The firm effect α f ,t and bank-firm group
effect βb,gt( f ),t are allowed to be arbitrarily correlated: The specification in (6) allows
for unrestricted interactions between banks’ and firm-types’ (groups) characteristics.

Examples. Specification (6) can capture heterogeneity in the transmission of credit
shocks that arises due to “market-specific” specialization as highlighted in Paravisini
et al. (2023) and Blickle et al. (2023) or “loan-type” specialization as emphasized by
Ivashina et al. (2022). Paravisini et al. (2023), using data from Peru, show that there
is lending specialization based on the firms’ export destination market and that the
transmission of credit shocks depend on such margin. Blickle et al. (2023), using data
from US, show that bank lending specialization occurs at the industry level. Ivashina
et al. (2022), using data from Peru, show that bank shocks affect differentially firms
depending on their type of loan contract used (e.g. asset based loans vs cash-flow
based loans). Thus, firms would be grouped according to their export destination
market, their industry, or the type of loans they use, respectively. In Online Ap-
pendix A, we describe a model of bank specialization in activities/markets as the
one proposed by Paravisini et al. (2023), and show that, in such a model, our em-
pirical specification with bank-firm group effects in (6) arises if firms’ type/group is
defined by their relative importance of activities.

Importantly, in our framework, the grouping is left unrestricted and treated as
an additional unobserved function. This is useful in contexts in which the econo-
metrician cannot access the specific data about bank or firm specialization (lack of
data about export destination markets, industries, or loan-type used), or, when the
heterogeneity is based on an unobserved margin or multiple margins. As shown
below, as long as interactions happen at some (discrete) group level, we will be able
to consistently identify the effects in models (6).

We replace assumption 1 for the following one:

Assumption 2. Exogenous network within groups. Let βG
t denote the entire vectors of

βb,g( f ),t for all f , b for given t. Then, E[ϵ f ,b,t|Dt, αt, βG
t ] = 0 in (6).

This assumption states that the formation of networks is exogenous once we con-
ditioned on the firm-specific unobserved heterogeneity and the bank-firm group un-
observed heterogeneity. That is, within-group bank-firm interactions do not affect
the formation of relationships between firms and banks. Importantly, as opposed to
assumption 1, assumption 2 allows for endogenous matching of firms that depends
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on interactions or specialization occurring across groups. For example, it allows that
firms exporting to particular market (thus belonging to a specific group g) have a
higher/lower probability to form links with different banks (specialized in different
markets), as Paravisini et al. (2023) shows it happens in Peruvian data.

4.1 Identification and estimation

Known groups. If groups were known, a comparison between the loan growth rate of
firms in the same group g borrowing from two banks b and b0, allows us to identify
the differential βb,g,t from the following moment condition (analogous to (4)):

E f∈gt, f∈I(b,b0)

[
y f ,b,t − y f ,b0,t

]
= βb,gt,t − βb0,gt,t, ∀gt ∈ {1, ..., G}. (7)

Under a normalization (e.g. βb0,gt,t = 0), we can recover each of the βb,g,t from the
moment condition in (7). Finally, we can calculate for each firm its loan growth rate
relative to the βb,g,t and average over all its connected banks, denoted I( f ), which
from (6) allows to identify the firm-specific factor α f ,t as:

Eb∈I( f )
[
y f ,b,t − βb,g,t

]
= α f ,t. (8)

If groups were known, then a standard estimation of time-varying bank and firm
fixed effects for each group would provide consistent estimates of these objects.

Unknown groups. We build on Bonhomme and Manresa (2015) and the economet-
rics literature that develop techniques to group observations (Bai (2009), Ando and
Bai (2016), Bonhomme et al. (2019)). Typically, clustering techniques cluster the data
into groups depending on some dissimilarity measure based on some observable
characteristics. Instead, in our setup, firms are grouped according to their dissimi-
larities on their unobserved response to unobserved shocks, since the heterogenous
credit shocks are unobserved. To implement our framework, we extend the method
in Bonhomme and Manresa (2015) that allow for time-varying grouped effects in a
standard panel data by combining it with the two-sided heterogeneity framework
that exploits bank-firm network data (as in KM or AW).

Lets define the parameter spaces A and B which are subsets of R, and α f ,t ∈ A
and βb,gt( f ),t ∈ B. Also G ∈ ΓG where ΓG is the set of all groupings of {1, ..., NF} into at
most G groups. Following Bonhomme and Manresa (2015), for a pre-defined number
of groups G we define our estimator, which we refer to as “bank-firm grouped fixed-
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effects” (BF-GFE), as the solution of the following problem. For each t = 1, ..., T,

(
α̂t, β̂t, γ̂t

)
= arg min

(α,β,γ)∈ANF×BNBG×ΓG

NF

∑
f=1

NB

∑
b=1

(
y f ,b,t − α f ,t − βb,gt( f ),t

)2
, (9)

where the minimum is taken over all possible groupings γ = {gt(1), ..., gt(NF)} of
the NF firms into G groups, firm-time effects, and bank-group-time effects.

For given α f ,t and βb,gt( f ),t, the optimal group assignment for each firm is:

ĝ ( f |αt, βt) = arg min
g

NB

∑
b=1

(
yi,t − α f ,t − βb,gt( f ),t

)2
, (10)

where we take the minimum g in case of a non-unique solution. The estimator of α f ,t
and βb,g( f ),t in (9) can be written as:

(
α̂t, β̂t

)
= arg min

(α,β)∈RNF×RNBG

NF

∑
f=1

NB

∑
b=1

(
y f ,b,t − α f ,t − βb,ĝt( f |αt,βt),t

)2
, (11)

where ĝt ( f |αt, βt) is given by (10), and the BF-GFE estimate of gt( f ) is ĝt

(
f |α̂t, β̂t

)
.

A couple of key differences with the empirical model in Bonhomme and Man-
resa (2015). First, in their model, the individual effects must be fixed in time, our
framework allows for both individual and the bank-firm group effects to vary across
time by using the multi-year bipartite network. The time-varying individual firm ef-
fects are crucial in this framework to account for credit demand shocks. Second, our
framework allows for the grouping γt to change every period, while it must be fixed
in time in theirs. We are able to estimate time-varying firm effects and time-varying
grouping because we have a panel model with three dimension and we can exploit
the multiple connections variation in our data.11

The estimation approach in (9) jointly estimates the unobserved grouping struc-
ture of the data g( f ) and the unobserved time-varying effects α f ,t and βb,gt( f ),t. The

11We also estimate the model fixing the grouping in certain time windows, in which case the
estimator in (9) is replaced by the following. Let T ≡ {t1, ..., tm} be the time window, then for each
t ∈ T: ({

α̂t, β̂t

}
t∈T

, γ̂
)
= arg min

(α,β,γ)∈AmNF×BmNBG×ΓG
∑
t∈T

NF

∑
f=1

NB

∑
b=1

(
y f ,b,t − α f ,t − βb,gt( f ),t

)2
.
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problem in (9) can be split into two unfeasible estimation problems. The problem in
(10) is a classification problem as in the unsupervised learning literature. However,
the classification here depends on two unobserved components α f ,t and βb,g( f ),t as
opposed to the standard classification problem in unsupervised learning where the
classification is based on a dissimilarity measure that is observable. The problem
in (11) is a two-way fixed-effects regression for the group classification given by (10).
In fact, the estimator in (11) is the sample analogue of the moment conditions in
equations (7) and (8) for gt( f ) = ĝt ( f |αt, βt) when NB = 2.

The following proposition indicates that the BF-GFE estimator under unknown
groups is consistent and asymptotically equivalent to the unfeasible estimator (under
known groups). It also implies that NB can increase polynomially more slowly than
NF which is a crucial condition for empirical applications since standard bank-firm
loan-level data contains many more firms than banks. In particular, Online Appendix
C discusses the problem of group misclassification for fixed NB, and it shows that
the probability of misclassifying tends to zero at an exponential rate which implies
that the bias generated by the incidental parameter problem goes to zero very fast
as NB increases, similarly to the group fixed effect estimator of the standard panel
model when T increases (see Bonhomme and Manresa (2015)). Moreover, we show
in simulations that the performance of our estimator increases very rapidly with NB

and it is centered at the true value for moderate NB.

Proposition 1. (Consistency) Assume a fully connected network with a fixed number of
groups G and a grouping function gt( f ) for which assumption 2 holds. Then, under weak
cross-sectional dependence in the errors of the model in (6) and well-separated groups, the
estimator

(
α̂t, β̂t

)
in (9) provide consistent estimates of (α f ,t, βb,gt( f ),t) as NF and NB tend

to infinity, and for all δ > 0:

β̂b,ĝt( f ),t = β̂u
b,gt( f ),t + op

(
N−δ

B

)
for all b, f , t.

where the unfeasible estimator β̂u
b,gt( f ),t is the solution of (11) when the grouping is fixed to

its population counterpart rather than being estimated.

4.2 Computation

Following the discussion in subsection 4.1, our proposed algorithm involves de-
composing the estimator presented in Equation (9) into two distinct problems. Specif-
ically, we suggest an iterative approach that alternates between addressing the clas-
sification problem outlined in Equation (10) and solving the two-way fixed effect
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estimation problem as described in Equation (11):

Algorithm For each t = 1, ..., T,

1. Set the number of groups: G.

2. Set s = 0. Guess initially some group assignment g(s=0)( f ) ∈ {1, ..., G}.12

3. For given g(s)( f ), estimate firm and bank-firm-group fixed effects α̂
(s)
f ,t , β̂

(s)
b,g( f ),t:

(
α̂(s), β̂(s)

)
= arg min

α f ,t,βb,g(s)( f ),t

NF

∑
f=1

NB

∑
b=1

(
y f ,b − α f ,t − βb,g(s)( f ),t

)2
. (12)

4. For given α̂(s), β̂(s), select optimal group assignment: For all f = 1, ..., NF

g(s+1)( f ) = arg min
g∈{1,...,G}

NB

∑
b=1

(
y f ,b − α̂

(s)
f ,t − β̂

(s)
b,g,t

)2
(13)

5. Set s = s + 1 and go to Step 3 until numerical convergence.

Properties of our estimator. To illustrate the performance of our proposed algorithm,
we simulate a model based on (6). In an initial simulation, we assume an exogenous
network with full connections. The primary objective of this exercise is to emphasize
our algorithm’s performance across various values of NB. We fixed G = 4 and
NF = 5000 and conducted 100 replications of y f ,b based on (6). For each replication,
we estimated βb,g( f ) using our algorithm. Figure 2 illustrates the estimator accuracy
for different values of NB: 4, 10, and 25. Since there are many (G × NB) credit supply
shocks βb,g( f ) that are simulated, the figure presents a k-density over these G × NB

generated parameters and the k-density of the estimated ones. Panels (a)-(c) display
the density of each of the true parameter βb,g( f ) (the black solid line) and the density
of each of the estimates β̂b,g( f ) across replications for different values of NB. Panel
(d) displays the probability of misclassification for different values of NB. As our
asymptotic analysis predicts, increasing the number of banks reduces the probability
of misclassifying firms into groups and decreases the bias in the estimator. For a
small number of banks (NB = 4), the probability of misclassification is 16% due to
the incidental parameter problem inherent in small samples. The latter translate in a

12For our initial guess, we estimate homogeneous firm and bank fixed-effects, and then group firms
using “k-means” over the estimated α̂ f ,t’s. We also start with different initial guesses and select the
estimator with lowest mean square error.

18



small sample bias in β̂b,g( f ). However, the probability of misclassification decreases
rapidly as we increase the number of banks. It reduces to 6.89% for NB = 10 and
reaches 0 for NB = 15. That is, the bias generated by the incidental parameter
problem disappears.

Additional simulation results are presented in section 5 and Online Appendix D.
Section 5 presents a simulation with an endogenous network depending on interac-
tions, in which groups are determined by observable characteristics in our dataset. D
presents the simulation results for an example specifically calibrated to our dataset.
In both cases, our estimator closely tracks the true parameters.

Figure 2: Asymptotic properties of the estimator
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Note. Illustration of estimator’s properties using Monte Carlo simulations. We assume G = 4, NF = 5000, and different

values of NB. We first draw parameters from the following distributions α f ∼ N (5, 1) , βbg ∼ N (3, 1.5). For every panel, these

parameters are held constant across S = 100 replications, for which we simulate ϵ f ,b,(s) ∼ N (0, 0.35). Panels (a) - (c) show the

simulated and estimated parameters for NB = 4, 10, 25. Since there are many (Nb × G) simulated βbg’s, we display the k-density

across all βbg’s. Panel (d) displays the probability of misclassification.

Number of groups. For most exercises, we provide results for different number of
groups G going from 1 to 5. However, in Online Appendix E, we build on Alma-
gro and Manresa (2021) and propose an N-fold cross-validation procedure for our
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algorithm that helps determining the optimal number of groups based on an out-of-
sample forecasting performance.

4.3 Opening the black box

The following section uses an example to provide intuition behind the group
identification from our algorithm.

Figure 3 presents a simulated example of a model according to specification (6)
with five firms (NF = 5). Each circle in the middle denotes each firm, the line
between each bank and the firm denotes the credit growth y f ,b, with the color and
width representing the value of y f ,b. In the example, panel 3a shows the average
credit growth from bank B to the five firms is around −3%, while for bank A is close
to 0. The standard framework suggests that such difference in average credit growth
from the two banks represents the effect of a bank shock βB − βA. However, we can
visually detect that the difference in credit growth for the top two firms is around 5%,
while for the three bottom firms is around −8%, suggesting they belong to different
groups. But, by looking at (6) such differential credit could be explained either by a
different βb,g( f ) or by the ϵ f ,b. How can we disentangle between these two factors?
This is achieved by the algorithm by looking at how other banks treat these firms.
For instance, Panel 3b shows the credit growth from an additional bank C. If the
differences in credit were generated by the idiosyncratic factor ϵ f ,b, then the group
of firms treated differently by bank B should not predict the group of firms treated
differently by bank C. However, Panel 3b shows that bank C also treats differently
the top two firms relative to the bottom three, suggesting that the two top firms
belong to one group, while the three bottom firms belong to another group. In this
particular example, bank C lowers credit more to the top firms while bank B expands
their credit, which could indicate bank 1 has an special relationship with them.

The example illustrates that the algorithm learns the group classification by con-
sidering how banks treat systematically different some firms relative to others. This
is further discussed in Online Appendix C where we show that the probability of
misclassifying tends to zero at an exponential rate as NB increases.

5 Discussion: Interpretation of heterogenous bank-firm
group effects and homogenous estimates

Our framework will capture any variation in credit that depend on bank-firm in-
teractions that happens at the bank-firm group level. Any type of bank specialization
(e.g. by industry, export destination, type of loan contract) that leads to a differential
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Figure 3: Group Identification Illustration: Example with NF = 5
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transmission of credit shocks across firm groups can be identified by our method.
However, these estimated parameters require careful interpretation.

Interpretation of bank-firm group effect. The coefficients βb,gt( f ),t will capture any
factors that vary at the bank-firm group level, but different stories may lead to such
bank-firm group variation. A first interpretation is that at t bank b experiences a
credit supply shock which is then transmitted differently across each group of firms
gt( f ). A second interpretation is that firms in group gt( f ) experience a common credit
demand shock which leads to a differential borrowing across banks (and therefore
not captured by the firm-fixed factor α f ,t). Third, a combination of both forces. For
instance, this can be seen in the model in Online Appendix A, specifically in (A.3).

Even when the true data-generating process includes interactions as in specifica-
tion (6), the decomposition of credit growth into (homogeneous) firm-specific and
bank-specific factors as in equation (2) is indeed possible, but the estimated param-
eters require careful interpretation. Let us denote the estimate of the homogeneous
effect βb,t in (2) as β̂Homo

b,t . Proposition 2 states that if there were no endogenous match-
ing on the creation of relationships that depends on such interactions (i.e. D f ,b,t is
independent of βb,g,t), then β̂Homo

b,t would identify an average of the heterogeneous
bank-firm group effects. Under the first interpretation in which βb,gt( f ),t captures
(heterogeneous) credit supply shocks, the estimate β̂Homo

b,t will capture an average
credit supply shock to bank b, but it will miss the heterogeneity in the transmission
of the shock. Under the second interpretation, then the estimate β̂Homo

b,t will capture
an (average) group demand shock to firms that leads to an heterogeneous borrowing
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across banks, so in this case a credit supply interpretation would be misleading.

Proposition 2. If bank-firm network D f ,b,t is independent of βb,g,t, then the homogenous
estimate β̂Homo

b,t identifies an average of the heterogeneous bank-firm group effects: β̂Homo
b,t

a
=

∑ f=1:NF
βb,g( f ),t/NF.

Instead, in the case in which there exists endogenous matching based on inter-
actions, so that the probability of creating a relationship D f ,b,t depends on the inter-
action βb,g,t, then the estimate β̂Homo

b,t may not even converge to the average of the
heterogeneous effects. For instance, consider the case of two banks b, b0, and let Ib,b0

be the joint network; we have that the standard fixed effect estimator (normalizing
the bank effect of b0 to zero):

β̂Homo
b,t

a
=E

[
y f ,b,t − y f ,b0,t | f ∈ Ib,b0

]
= E

[
βb,g( f ) | f ∈ Ib,b0

]
̸= E

[
βb,g( f )

]
, (14)

where the first equality follows from (4), the second equality uses (6) and assumption
(2), and the third inequality arises because of the conditioning on the joint network.
For instance, bank b and b0 may each be specialized in lending to different types of
firms, affecting the composition of their joint network.

Simulation with endogenous matching and groups defined by observables. To il-
lustrate the bias of β̂Homo

b when the network of connections depends on the interac-
tion effect βb,g, we conduct a Monte Carlo simulation with a matching probability
between banks and firms as a function of βb,g. Following the evidence in section 3,
we model the firm group’s heterogeneous response as a function of a linear combi-
nation of two observable characteristics in the data: firm age (Z1) and collateral (Z2).
We simulate 5000 firms distributed into G = 4 groups based on the variable Group f

as the quartile of 1
2 Z1 +

1
2 Z2.13 We choose NB = 10 and define βb,g,t = Group f × ψb

with ψb ∼ N(0, 1), and set α f ∼ N(0, 1), ε f ,b ∼ N(0, 0.05). The endogenous matching

probability follows Prob
(

D f ,b = 1 | α f , βb,g( f )

)
= π

(
α f + βb,gt( f )

)
where π(.) is an

increasing function. We generate 100 replications of y f ,b,t according to (6). Panel
(a) of Figure 4 displays the k-density of the G × NB interaction effects βb,g,t and our
estimates β̂b,g( f ). Similar to the simulations in Figure 2, our BF-GFE estimator closely
tracks the true parameters. In Panel (b) of Figure 4, we present estimators of bank-
specific average effects: βb = ∑G

g=1
Nb,g
Nb

βb,g( f ) for b = {1 . . . 10}, where Nb,g is the

number of firms in group g connected to b and Nb = ∑G
g=1 Nb,g. We compare the

13Note that Group f has four values, and all firms belonging to the same group (the same quartile

of 1
2 Z1 +

1
2 Z2) possess the same value of Group f .
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Figure 4: Average estimators using different methods
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Note. Illustration of the properties of estimators of βb,g( f ) and βb using Monte Carlo simulations with endogenous bank-firm

matching. Panel (a) displays the individual estimates of βb,g( f ). Panel (b) shows the estimates of βb under different methods.

distribution across simulations of: β̂BF-GFE
b = ∑G

g=1
Nb,g
Nb

β̂b,g( f ), where β̂b,g( f ) is the BF-
GFE estimator with unknown groups, and β̂Homo

b,t the two-way fixed effect estimator
(assuming homogeneity). The BF-GFE estimator tracks closely the true average βb for
all banks, while the homogeneous estimator is a biased estimator of the bank-specific
average effect. Additionally, we show the results for a group estimator defined by us-

ing only one of the observable characteristics: β̂
Zj
b = ∑G

g=1
Nb,g
Nb

β̂
Zj
b,g( f ), where β̂

Zj
b,g( f ) is a

within-group estimator (a two-way fixed effect for each group) with groups defined
by the observable variable Zj, for j = {1, 2}. The example shows that controlling
heterogeneity using only one observable variable helps but it is insufficient.

5.1 Interpretation with credit supply shifter xb.

Typically, the bank lending channel literature rely on a bank-specific variable xb,t
associated with a credit supply shock as in the seminal paper by KM. The issue of
interpretation is less stringent when we can rely on such credit supply shifters.

In case we observe a variable with bank-specific variation capturing a credit sup-
ply shock, consider the following extension to KM model that allows for interactions:

y∗f ,b,t = α f ,t + θb,g( f ),txb,t + ϵ f ,b,t, (15)

where θb,gt( f ),t captures an heterogeneous response of firms to the specific bank
shock. In this model, we leave the relationship between α f ,t, xb,t and θb,g( f ),t totally
unrestricted allowing for correlation between the bank “treatment” shock (xb,t) and
the bank “treatment” effect (θb,gt( f ),t), as in the “potential outcome framework” with
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heterogeneous treatment effects used in the micro-econometric literature. Allowing
for unrestricted dependence between θb,gt( f ),t and xb,t is important under endogenous
matching between banks and firms.

The coefficient θb,gt( f ),t can be interpreted as the heterogeneous elasticity to the
credit supply shock xb,t as long as any credit demand factor that happens to be
correlated with the bank-specific shock xb,t is accounted by the firm-specific factor
α f ,t (fixed across banks). Thus, any heterogeneous demand factor captured by ϵ f ,b,t
must be exogenous as the following assumption specifies.

Assumption 3. Exogenous network within groups conditional on xb. Let θG
t denote

the entire vector θb,g( f ),t for all f , b for given t. Then, E[ϵ f ,b,t|Dt, αt, xt, θG
t ] = 0 in (15).

Similar to assumption 2, assumption 3 allows for endogenous matching based
on the specific bank-group response θb,gt( f ),t. Some identification concerns arise in
this framework. How can we identify the heterogenous bank (treatment) effects
θb,gt( f ),t? Can we use our estimated interactions βb,gt( f ),t to consistently estimate
θb,gt( f ),t? Would the homogeneous bank estimate θ̂Homo in (1) identify any interesting
average bank effect?

Let us start this discussion emphasizing that there are two degrees of heterogene-
ity in the bank treatment effect of θb,gt( f ),t. First, the bank effect may differ across firm
groups. Second, the effect for each group may be different by banks. This double
heterogeneity is what we would expect under bank specialization, since a bank spe-
cialized in firms in a particular activity g will treat firms in such a group differently
relative to a not specialized bank.

For notational convenience, we eliminate the subindex t. Let xb0 = 0 denote the
case for a bank not exposed to the shock (e.g. a bank with low foreign liabilities in
the credit event studied in section 8.1). In the presence of double heterogeneity in
effects and varying bank exposures, we define the average bank-specific response of
a bank b with bank shock xb as follows:

∆xb = E

[
G

∑
g=1

∑ f∈Ib,b0,g

[
y f ,b − y f ,b0

]
Nb,b0

[
xb − xb0

] | xb, D

]
, (16)

where Ib,b0,g = { f : g( f ) = g} ∩ Ib,b0 , is the set of firms in group g that belongs to
Ib,b0 , Nb,b0,g = ∑ f∈Ib,b0,g

1 is the number of firms in this set, and Nb,b0 = ∑G
g=1 Nb,b0,g is
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the total number of firms in Ib,b0 . Then, given assumption 3

∆xb = E

[
G

∑
g=1

Nb,b0,g

Nb,b0

θb,g( f ) | xb, D

]
. (17)

The ∆xb represents the average response in credit growth for all groups of firms con-
nected to a bank with exposure xb, relative to the non-exposed bank, in the specific
b, b0 joint network, that is, weighted by the number of firms in each group connected
to banks b and b0. (17) shows this bank-specific effect is a function of the heteroge-
neous parameter θb,g( f ).

Some researchers may be interested in the overall response to the credit event
(associated with x). For instance, we define the Average Bank Effect (θABE) across
banks (relative to the non-exposed) as:

θABE ≡
NB

∑
b ̸=b0

Nb,b0

N
∆xb =

NB

∑
b ̸=b0

G

∑
g=1

Nb,b0,g

N
E
[
θb,g( f ) | xb, D

]
,

where N = ∑NB
b ̸=b0

Nb,b0 = ∑NB
b ̸=b0

∑G
g=1 Nb,b0,g. The second equality follows from (17)

and shows θABE is a weighted average across banks and groups of the expected
treatment effects θb,g( f ), where weights capture the importance of each group across
the joint networks between exposed and unexposed banks, reflected by Nb,b0,g.

Having defined the objects of interest, we discuss how to estimate them consis-
tently. We propose using our BF-GFE estimates β̂b,g to construct a consistent estima-
tors of the θABE. We first define estimates of the heterogeneous bank effect as:

θ̂b,g ≡
β̂b,g − β̂b0,g

xb
, ∀g ∈ {1, ..., G}. (18)

and for the bank average effects:

θ̂ABE =
NB

∑
b ̸=b0

G

∑
g=1

Nb,b0,g

N
θ̂b,g. (19)

Using (7), proposition 1 and that xb0 = 0, we have that β̂b,g − β̂b0,g is a consistent
estimator of E

[
y f ,b − y f ,b0

]
= θb,g( f ),txb,t, implying that θ̂ABE is consistent.

A critical question arises regarding the consistency of the estimator of the homo-
geneous effect in specification (1), where a common parameter is estimated using
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a firm fixed-effect regression. We refer to such estimate as θ̂Homo. Proposition 3
demonstrates that the expectation of the fixed effect estimator in (1) is also a weighted
average of the heterogeneous effects θb,g( f ), but with different weights than θABE.

Proposition 3. Assume a bank-firm bipartite network data generated from (15). If assump-
tion 2 holds, then:

E
[
θ̂Homo | x, D

]
=

NB

∑
b ̸=b0

G

∑
g=1

ωg( f ),b
Nb,b0,g

N
E[θb,g( f )|xb, D], (20)

where ωg( f ),b =
∑

Nb,b0,g
f∈Ib,b0,g

v f ,bxb

Nb,b0,g
N ∑

NB
b=1 xb ∑G

g=1 ∑
Nb,b0,g
f∈Ib,b0,g

v f ,b

are weights that add up to one and v f ,b term

represents the residual of a firm fixed effect regression of xb on firm-specific fixed effects,
utilizing the network data for firms with connections to at least two banks.14

As opposed to xb, v f ,b varies at the firm level since the network is unbalanced
so each firm f are connected with different number of banks. Proposition 3 implies
that in general the KM estimator θ̂Homo is a biased estimator of the θABE. This result
is similar to the bias that appears in a typical panel model with random coefficients
when the random coefficient is not independent of the regressors of the model (see
Chamberlain (1992) and Arellano and Bonhomme (2012)), and the bias that appears
in the two-way fixed effect estimator in a dif-dif model with heterogenous treatment
effects (see De Chaisemartin and d’Haultfoeuille (2020), Sun and Abraham (2021)).

Corollary 1. If E[θb,g( f ) | xb, D] = E[θb,g( f )], then θ̂Homo is a consistent estimator of θABE.

Corollary 1, which its proof is a direct direct consequence of (20), states that only
under the absence of endogenous matching in the heterogeneous treatment effect
(i.e., when E[θb,g( f ) | x, D] = E[θb,g( f )] = θ) or in absence of heterogeneous effects (i.e.,
when θb,g( f ) = θ), θ̂Homo is a consistent estimator of θABE. This result is analogous
to Arkhangelsky et al. (2021) in which a random network in our framework plays a
similar role than the random assignment in their dif-in-dif model.

Proposition 3 states that the weights wg,b add up to 1 but they may be negative, in
a similar fashion to the result in De Chaisemartin and d’Haultfoeuille (2020). Nega-
tive weights make the interpretation of θ̂Homo problematic. For instance, one could
have that θ̂Homo is positive even when all θb,g( f ) are negative. Endogenous matching

14The KM fixed effect estimator uses the sample of firms for which Ib,b0 is not null for all b.
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on the treatment effect and the issue of negative weights may be expected in a context
of bank specialization, as the following example illustrates.

To illustrate this result, we present a simulated example with NB = 7 banks,
NF = 10000 firms and G = 2 groups. We assume three banks (b = 1, 2, 3) are
specialized in lending to firms in group g = 1, other three banks (b = 4, 5, 6) are
not specialized, while bank 7 is specialized in group g = 2. Banks experience a
(negative) credit event with the following exposures of xb=1:3 = 1, xb=4:6 = 0.8,
and xb=7 = 0. We assume the shock is propagated to firms in group 1 accord-
ing to θb=1:3,g=1 = −0.05, θb=4:6,g=1 = −0.7, so that banks 1 : 3 which are special-
ized protect firms in this group relative to the others. For group 2, we assume
θb=1:3,g=2 = −0.5, θb=4:6,g=2 = −0.3. The likelihood of connecting with firms in each
group increases with specialization: we assume Prob

(
D f ,b = 1|g( f ) = 1, b

)
equals

0.8 for b = 1 : 3 due to their specialization in this group, while equals 0.5 for b = 4 : 6
and 0.1 for b = 7, and Prob

(
D f ,b = 1|g( f ) = 2, b

)
equals 0.1 for b = 1 : 3, equals 0.5

for b = 4 : 6, and 0.8 for b = 7.

We conduct 100 simulations for this example, estimating θ̂Homo as the KM fixed-
effect regression of (1), and using our algorithm to calculate θ̂b,g and θ̂ABE according
to (18) and (19). Figure 5 shows the results of the simulation. Panel A shows the his-
togram from the estimates of θ̂b,g using our algorithm (light blue) and θ̂Homo (black).
Panel B shows the histogram for θ̂ABE (blue) and θ̂Homo (black). We can see that θ̂ABE

is negative as it is a weighted average of the estimated θ̂b,g’s, which are all negative.
Finally, we can see that the whole distribution of θ̂Homo is positive. The intuition is as
follows. The homogenous estimate compares the credit growth of banks across the
common firms to calculate the average effect.15 In this case, bank 1 protects a certain
group of firms, which leads to have the most exposed bank (bank 1) to lend more
to them relative to a less exposed bank (bank 2) which is not specialized. Moreover,
since bank 1 is specialized, the joint network will be weighted towards firms in this
specialized group, aggravating the problem. The homogenous estimate then finds
that being more exposed (bank 1) is associated to more credit growth on average.

6 Data
Credit Registry Data: The source of information is named Registro de Crédito de Deu-
dores (RCD) and belongs to the administrative registries of the Peruvian financial
regulator, Superintendencia de Banca, Seguros y AFPs (SBS). We observe the loan bal-

15Note that the fixed-effect estimator θ̂Homo is indeed a linear combination of all the Wald estima-
tors of the first difference (across banks) equations implied by the model.
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Figure 5: Comparison of heterogeneous and homogeneous estimates
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Note. Subfigure (a) plots the distribution of the heterogeneous θ̂b,g (light blue) and homogeneous θ̂Homo (black) estimates.

Subfigure (b) plots the histogram of θ̂ABE (blue) and θ̂Homo (black).

ance of every corporate firm at a given bank from 2005 to 2018. We consider that a
firm is corporate if according to SBS is classified as “Corporativo” or “Gran Empresa”.
Considering the definitions of such classifications, our sample of firms correspond
to those that obtained at least 5 million dollars in annual sales. Corporate firms rep-
resent approximately 55% of the total amount of commercial loans. Additionally to
the information of loan balance, we can observe the total amount of loan guarantees,
the credit rating, a measure of the size, the type of loan, and loan currency.

Financial Statements: We collect information of the financial statements from the
Peruvian Stock Exchange, Superintendencia del Mercado de Valores. We observe the
balance sheet for all the firms that list on the Peruvian Stock Exchange and also
a group of firms that does not list, but report voluntarily to such institution. Our
main variable of interest from the balance sheet is the value of fixed capital. The
information corresponds from 2007-2017.

Export Value: We obtained export information from the Peruvian Tax Bureau, Super-
intendencia Nacional de Aduanas y de Administración Tributaria. We observe the total
value of exports at the firm level for the period 2004-2012.

7 Estimation Results

7.1 Evidence of interactions (estimated group heterogeneity)

We start our analysis by examining how credit growth varies across banks for the
different grouping estimated by our algorithm. Figure 6a displays a similar plot as

28



Figure 1, but splitting firms depending on the estimated grouping instead on an ar-
bitrary group choice. The figure thus displays the average credit growth E

[
y f ,b,t|b, t

]
of the four main banks splitting firms across the estimated grouping, for year 2017.
We can see that there exists significant heterogeneity in the patterns of credit growth
across groups. For example, for bank 3 we can see that the average credit growth for
group 1 (g = 1) is around 20%, while for group 2 (g = 2) is close to -25%. For the
remaining banks, the differences are also significant. These differences are reflected
in the BF-GFE estimator that we describe next.

Figure 6b displays the estimated bank effect for the homogeneous case (G =

1, displayed as a confidence interval in black) and the BF-GFE estimator for the
heterogeneous case (G = 2, displayed as blue and red intervals for each of the two
groups). Our visual representations are normalized with respect to bank 1. Similar to
the findings in Panel 6a, the estimates vary significantly across groups. For example,
for bank 3, we can see that, under the homogeneous case, we find a tiny negative
estimated bank shock, while when we allow for heterogeneity, we find the bank shock
is positive for group 1 and negative for group 2. Thus, the homogeneity assumption
can hide a lot of variation in the transmission of credit shocks, overestimating the
bank shocks for some firms and underestimating them for other firms.

Figure 6: Estimated group heterogeneity for G = 2 (for t = 2017)
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Note. Panel A. Average credit growth, E
[
y f ,b,t|b, t

]
, among the four largest banks splitting the sample based on our estimated

groups for G = 2. Panel B. Estimated bank shocks for the four largest banks in our sample (normalizing bank 1 to 0). The black

confidence interval shows the estimated bank shock under the homogeneous model, while the red and light blue intervals

displays the estimated bank shock by our algorithm for case G = 2. The information corresponds to 2017. Standard errors are

calculated through a non-parametric bootstrap with 1000 repetitions.
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7.2 Group characteristics

This section explores observable characteristics behind the identified grouping by
our algorithm. We present the results for the case with G = 2.

First, we present in Panel A of Table 1 the average values of some firm observ-
able characteristics available in our dataset. The table shows that firms in group 2
(relative to group 1) have lower debt and risk score, and pose less collateral to their
loans. Second, we evaluate the ability of a linear combination of these observable
characteristics to predict the group selection. In particular, columns (1) and (2) in
Panel B of Table 1 present a linear probability model which includes as regressors
the observable characteristics in our dataset including firm age, size, and industry
as fixed-effects. We can see that the R-square above 0.4, which indicate that observ-
ables explain a big part of the firm classification. Third, we allow firms to change
groups across time, we estimate a grouping for every year t in the sample. To connect
the groupings from two different years, we calculate a transition matrix across the
grouping and label as the same group the groupings with higher intersection. Then,
we analyze the ability of observables in predicting a firm group change. Columns (3)
and (4) in Panel B of Table 1 show that firms that start in group 1 and experienced
a decrease in their collateral, debt size, and risk score are more likely to change to
group 2 (the group with lower collateral, debt size and risk score).

Bank specialization. Paravisini et al. (2023) and Blickle et al. (2023) emphasize that
banks specialize in certain markets (based on export destination and industry, re-
spectively) and concentrate their lending disproportionately in those. They further
show that their specialization measure is relevant for the transmission of shocks.

Building on these intuitions, we use a measure of specialization similar to theirs
to calculate how much banks are specialized in each of our firm groupings. We
calculate specialization in a group as the share of bank b’s portfolio invested in group
g compared to the relative share lent to that group by all banks for a given period.
Letting Lb.g.t = ∑ f :g( f )=g L f ,b,t be the total lending of bank b to group g, we define:

Group Specializationb,g,t =

Lb.g.t
∑g′ Lb.g′ .t
∑b Lb.g.t

∑b ∑g′ Lb.g′ .t

.

We then compare this measure of specialization with our estimated bank-firm group
effect βb,g,t. Figure 7 indicates a significant positive relationship between βb,g,t and the
specialization measure. This indicates that banks have a more positive and stronger
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Table 1: Observable characteristics and group assignment

Panel A: Summary Statistics
Mean (g = 1) Mean (g = 2) △Mean (g1 − g2)

Collateral 23.49 12.40 11.09***
Debt Size 0.24 0.18 0.06***
Risk Score 16.71 10.28 6.43***

Exports 28.73 26.60 2.13

Panel B: Regression Analysis
Dep. Prob(g = 2) Switching Probability

Full Sample Sample with Exports Pr(gt = 2|gt−1 = 1) Pr(gt = 1|gt−1 = 2)

(1) (2) (3) (4)
ln (Collateral) -0.00300*** -0.00434***

(-2.77) (-2.71)
ln (Debt Size) -0.0288*** -0.0197***

(-11.78) (-4.97)
Risk Score -0.0606** -0.0872**

(-2.45) (-2.33)
ln (Exports) -0.00205

(-1.12)
△ ln (Collateralt−1) -0.000833 -0.00121

(-0.13) (-0.57)
△ ln (Debt Sizet−1) -0.0708*** 0.0292***

(-2.98) (4.37)
△Risk Scoret−1 -0.0442* 0.00633

(-1.78) (0.47)
△ ln

(
Exportst−1

)
0.00765* 0.00125

(1.70) (0.53)
Fixed Effects Yes Yes Yes Yes

R-squared 0.43 0.48 0.70 0.67
N 28,698 15,671 4,034 8,033

Note. Relationship between observables and group membership (case G = 2). Panel A: Descriptive statistics across identified

firm groups g. Panel B: Regression analysis between observables and group membership. Columns (1)-(2) show a firm-level

linear probability model with dependent variable equal to 1 if firm belongs to group 2, 0 otherwise. Columns (3)-(4) display

linear probability model of group transition with dependent variable Pr(gt = i|gt−1 = j) equals one if the firm switches from

group j to i. Collateral denotes one plus the total value of the collateral across all firm loans. Debt size denotes the total value

of firm debt across all its loans. Risk score is the average firm credit score, where credit score takes the value from 0 (low risk)

to 4 (high risk). Exports is one plus the total value of firm exports. We also include as regressors other observables as fixed

effects: firm, sector-year, financial age-year, firm size-year, firm age-year. Firm size is a dummy equal to one if the firm belongs

to the group of large corporate firms, 0 otherwise. Financial age are the years of the firm in the banking system. Firm age are

the years of the firm since its constitution. Sample with exports goes from 2006 to 2012, while full sample from 2006 to 2017.
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propagation of credit shocks specifically for the firms in which they specialize (banks
lend relatively more to firms in which they are relatively more invested). Table 3 in
Online Appendix F shows the specialization measure significantly predicts the bank-
firm interaction effects.

Figure 7: Bank shocks estimates and specialization
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Note. Figure illustrates relationship between an average of our estimated bank-firm group interaction estimates and measures

of bank specialization in each estimated group. The sample corresponds to a balance panel from 2006 to 2017.

7.3 Statistical gain of model with interactions

This subsection compares the statistical gain from the model that accounts for
interactions in our dataset relative to the standard homogenous model.

In-sample Fit. Table 2 compares the R-squared from our model with interactions
(with G = 2) relative to other specifications including: the homogenous effects
model, and models in which interactions depend on observable characteristics (the
ones relevant in section 7.2). For the case with observable interactions, we construct
three groups (since, for the observable cases, G = 3 (terciles) provides a better fit
than two groups). Our model with interactions considerable improves the goodness
of fit relative to the homogenous case or using interactions based on observables.

Out-of-sample performance. We conduct an out-of-sample analysis following the
cross-validation procedure described in Online Appendix E, which builds in Alma-
gro and Manresa (2021). The model is estimated in training samples and used to do
forecasts on testing samples. Online Appendix E shows that the model with inter-
actions significantly outperforms the model with homogenous effects in the testing
sample (not used in the estimation).
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Table 2: In-sample performance across specifications

Group Specification R2 Adjusted-R2

Interaction with our estimated groups (G = 2) 0.548 0.318
Interaction with terciles of collateral 0.413 0.113
Interaction with terciles of risk score 0.412 0.112
Model without interactions 0.410 0.111

Note. Performance of our estimated grouping versus alternative groups constructed by using observables. We report the R2

and adjusted-R2 of the following specification: y f bt = α f t + βQt( f )bt + ϵ f bt, where Qt ( f ) denotes a given group specification at

time t. The model without interactions consider one homogenous group. The information spans from 2005 to 2017.

8 Applications
Having identified the relevant bank-firm group interaction and the firms’ group-

ing G, we proceed to conduct some exercises that help uncovering the importance of
heterogeneity in the bank lending channel. First, we exploit a credit supply shifter
following Paravisini et al. (2015): we compare banks with differential exposure to the
Global Financial Crisis (GFC) and estimate how this credit supply shock is transmit-
ted across the different identified firm groups. Second, we argue that in the presence
of interactions, the network of bank-firm connections becomes crucial for the overall
transmission of credit shocks: we quantify a bank-firm matching channel by estimat-
ing how the overall credit would change under a counterfactual in which banks and
firms are randomly matched. Third, we move onto the real effects of the bank lending
channel, and estimate how important are bank shocks for firm investment.

8.1 Event study: Transmission of bank shocks during GFC

In this subsection, we use our methodology to study heterogeneous responses
of credit growth to an observed bank supply shock xb. We follow the empirical
setting in Paravisini et al. (2015), which uses a similar approach as KM, and measure
bank-specific credit supply shocks xb with bank-level heterogeneity in the exposure
of Peruvian banks to the 2008/09 financial crisis.

Consider the following specification for the log-credit as in Paravisini et al. (2015):

ln L f ,b,t = η f ,b + α̃ f ,t + θxb × Postt + ϵ f ,b,t,

where L f ,b,t is the average outstanding debt of firm i with bank b during the intervals
t = Pre, Post, where Pre and Post periods correspond to the 12 months before and
after July 2008. Post is a dichotomous variable equal one when t = Post. η f ,b is
a time-invariant firm-bank fixed effect that controls for time-invariant unobserved
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bank-firm characteristics, α̃ f ,t is a time-varying firm fixed effect, xb is an observable
variable that varies at the bank level and takes the value of one if a bank b has high
foreign liabilities in the pre period and zero otherwise. The linear specification leads
to the following model for credit growth:

y f ,b ≡ ln L f ,b,Post − ln L f ,b,Pre = α f + θxb + ν f ,b.

Using our identified groups, we allow for heterogeneous effects, and estimate:

y f ,b = α f + θb,g( f )xb + ν f ,b.

As in Paravisini et al. (2015), θ is identified by comparing the differential lending
of high foreign liabilities banks (“exposed”) and low foreign liabilities banks (“non-
exposed”) to the same set of firms. For instance, Panel 8b illustrates such differences
in the average credit growth for two non-exposed banks (banks NE1 and NE2 in
the graph) and two exposed banks (banks E1 and E2) in the data, in the solid-line
for all the joint firms and in dashed-lines when splitting firms across the groups
estimated by our algorithm (for case G = 2). The figure shows that exposed banks
are lending less than non-exposed banks to the same set of firms, but there is a
differential lending pattern when splitting the firms across the estimated groups:
exposed banks lend much less (than non-exposed) to the blue group (g = 2) while
the difference is smaller for the red group (g = 1). Such differential lending will be
reflected in the estimates of the treatment effects θb,g.

Figure 8: Differential loan growth between exposed and non-exposed banks
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Note. This figure displays the average (before and after) credit growth, ln L f ,b,Post − ln L f ,b,Pre, for banks with high foreign

liabilities banks (“exposed”) and low foreign liabilities banks (“non-exposed”). Panel 8b splits the firms by the estimated group

by our algorithm, for the case of G = 2. The information corresponds to 12 months before and after July 2008.
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Figure 9: Differential loan growth between exposed and non-exposed banks

(a) Estimates θ̂g,b̃ for exposed bank b̃
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(b) Estimates θ̂g, ˜̃b for exposed bank ˜̃b
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Note. The figure 9a displays the estimates of θg,b for each group and two (anonymous) exposed banks: b̃ and ˜̃b.

Figure 9 displays the estimated heterogeneous coefficients for two exposed banks
(which we name b̃ and ˜̃b), for cases G = 1 to G = 4.16 The results point to consider-
able heterogeneity in the transmission of this credit shock as it reveals that exposed
banks (relative to non-exposed) decreased their credit significantly to some group of
firms but not to all. Interestingly, we can see in some cases that each bank treats
differently each specific group. For instance, bank b̃ protects certain groups and even
increased their lending during this episode, while this is not the case for bank ˜̃b.

We move into calculating the average effect across all banks and groups of firms,
which will be captured by our average bank effect (θ̂ABE) defined in (19). Figure 10
illustrates the estimates θ̂ABE for G > 1, the case G = 1 replicates the homogeneous
case as obtained in Paravisini et al. (2015). The results show that, when considering
heterogeneity, the estimate of the average bank effect increases in magnitude, imply-
ing a more severe negative effect of the bank liquidity shock on firms. The estimated
average of the heterogenous effect across firm groups and banks is about -0.33, in-
dicating that on average exposed banks reduced credit supply by 33% relative to
non-exposed banks, while the estimate under the homogenous model is -0.18.

8.2 Bank-firm matching channel: the value of bank-firm networks

When the transmission of credit shocks is heterogeneous, the network of rela-
tionships may become key for the overall effect of bank shocks: we should expect a
stronger (weaker) effect of a shock, when banks create more relationships with firms
for which the transmission is stronger (weaker). In this section, we ask do banks

16Table 4 in Online Appendix F shows the number of firms in each group.
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Figure 10: Average bank effect θ̂ABE
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Note. The figure displays the average effect across all banks and groups using the θ̂ABE in (19). For the homogeneous case,

G = 1, we follow the same procedure as Paravisini et al. (2015). Data corresponds to 12 months before and after July 2008.

and firms create relationships in a way that amplify or smooth out credit shocks? In
order to answer this question, we estimate as a counterfactual the aggregate credit
growth when banks and firms are randomly matched. For instance, according to the
model in Online Appendix A, this counterfactual represents an economy in which
information frictions are so large that firms cannot predict their complementarities
with banks arising from specialization, so they end up matching with a random bank
instead of their optimal specialized bank. We find that for most of the years aggre-
gate credit growth is enhanced by the observed bank-firm credit network relative to
the counterfactual random matched network. We refer to such overall effect from
bank-firm complementarities as the bank-firm matching channel.

We conduct a random reallocation exercise for every firm-bank observation in our
data. Our procedure is the following. First, we obtain from our empirical strategy
the decomposition of the average credit growth as the sum of the firm effect α̂ f ,t

and the heterogeneous bank-firm group effects β̂b,g( f ),t. Second, keeping the same
number of connections of each firm, we randomize without replacement the banks
lending to each firm. For example, if a firm is connected with three banks in our
data, we keep the three connections but match the firm randomly with three banks.
Third, we calculate the credit growth for each of the counterfactual connections using
our model, that is, as the sum of the estimated firm effect and the bank-firm group
effect associated with the random network. Fourth, we calculate the average credit
growth across all the observations. Finally, we repeat this exercise simulating 10,000
counterfactual networks to calculate the distribution of the average credit growth
under random matching.17

17Note that in this counterfactual we are assuming the absence of general equilibrium effects, so
that the estimates of α̂ f ,t, β̂b,g,t do not change under a reallocation of connections.
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Figure 11: Percentage change in average credit growth in random network relative to
observed network
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Note. Percentage change between the average credit growth rate under random networks (simulated 10,000 times) and the

observed network. Panel 11a shows the histogram for 2017. Panel 11b shows 90% confidence intervals for all years.

Figure 11 shows the distribution across simulations of the percentage change in
average credit growth relative to the observed network. Panel 11a presents it as an
histogram for 2017. The median of the distribution suggests that aggregate credit
growth falls by 20% under random matching. This results highlight the importance
of the value of bank-firm relationships: The observed network of bank-firm relation-
ships enhances credit growth. Note that, under a model with homogeneous effects
(G = 1), this exercise would lead to no change in credit growth by construction.

Panel 11b explores the bank-firm matching channel across all years in our sample,
and present the the confidence interval for the simulated change in credit growth for
every year. For most of the years the change is negative, meaning that the endoge-
nous matching in the data enhances credit growth relative to a random network.
Only for 2007, 2009 and 2015 we find the opposite result. This could be driven by
adverse macroeconomic factors, which were in turn amplified by the network. More
specifically, 2009 is influenced by the GFC, indicating that more exposed banks were
more connected with firms belonging to the group for which the transmission of the
(negative) shock was stronger, while 2015 is also associated with adverse external
conditions (large drop in commodity prices and exchange rate depreciation).

8.3 The impact of credit supply shocks on real outcomes

In this part, we examine the real effects of credit supply shocks on firm invest-
ment. We follow the approach in AW and calculate the credit supply shock at the
firm level by weighting the BF-GFEs estimates by the share that each bank represents
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in the firm borrowing portfolio in the previous period:

Supply f ,t = ∑
b

λ f ,b,t−1β̂b,g( f ),t with λ f ,b,t−1 =
L f ,b,t−1

∑b L f ,b,t−1
, (21)

where L f ,b,t−1 denote borrowing by firm f from bank b at time t − 1, and where the
novelty is that the factor β̂b,g( f ),t varies at the group level.

We estimate the following regression for investment (measured as the growth rate
in total tangible fixed assets plus depreciation):

Investment f ,t = c + ϕF
f + ϕG

g( f ),t + β1α̂ f ,t + β2Supply f ,t + ϵ f ,t. (22)

We control the regression by a set of fixed effects including time-varying fixed ef-
fects at the group level. Following Amiti and Weinstein (2018) we also include the
estimates of the firm-specific effect.18

Remark. Including time-varying group effects ϕG
g( f ),t is crucial since, recall from

section 5, that the BF-GFE may contain information about a demand shock affect-
ing the group of firms, which leads them to borrow differently from banks. The
effects of such demand factors on investment are common across firms in the same
group, so they can be controlled by the group effect ϕG

g( f ),t. Importantly, we can

identify β2 even in the presence of ϕG
g( f ),t due to variability in λ f ,b,t−1 across firms

within the same group. Our regression compares firms within the same group, thus
exposed to the same demand shocks, yet exhibiting different exposures to credit sup-
ply shocks owing to variations in their network connections in the previous period
(established before the demand shock). Why do firms within the same group have
ex-ante different λ f ,b,t−1? Several explanations are plausible. For instance, firms may
have varying risk assessments, even within the same group, with more risk-averse
firms establishing more relationships, including those with banks not specialized in
their type. Alternatively, firms may evolve their business models. For example, some
firms within a group exporting to the U.S. at time t may have previously exported to
China and maintained relationships with banks specializing in China, thus retaining
those connections over time. Also, there could exist idiosyncratic factors influencing
the ex-ante bank-firm network structure, such as the information frictions described
in the model in Online Appendix A which prevent all firms in the same group to
matched only with their optimal specialized bank.

18While using α f ,t as a regressor could potentially help in controlling for firm specific demand
effects, the estimates of α̂ f ,t may suffer from incidental parameter bias, as this parameter is estimated
from the number of connection each firm has, which is typically small.
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Figure 12: Estimated β̂2
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Note. Estimated β̂2in regression (22) for different G = 1 to 5. Standard errors are cluster at the main leading bank.

Figure 12 plots the estimated confidence interval for the elasticity of the supply
shock on investment (β̂2), under the estimation for different number of groups (as
represented in the X-axis). Table 5 in Online Appendix F shows all the estimated coef-
ficients. The results reveal that when banks shocks are estimated under the standard
framework with homogeneous effects (G = 1), the estimated effect is very impre-
cise, the point estimate is negative and not statistically significant. Instead, when
assuming heterogeneous effects (G > 1), the estimated impact of banks shocks on
firm investment is statistically significant. The mean estimate for the heterogeneous
case is similar for the different number of groups used (G = 2 to 5), and suggest that
a 1% change in the credit supply increases investment by around 4-6%. We cluster
the standard errors at the main leading bank level as in Huremovic et al. (2020).

The results are consistent with the pronounced heterogeneity found in our data
set. For instance, in Figure 6a, we observed that, in some cases, the estimated bank
effect is positive for firms belonging to one group while it is negative for firms in
other group. If credit supply actually matters for investment, one would expect that,
investment increases for firms in the former group while decreases for the latter.
When G = 1 is assumed, the estimated bank effect is homogenous to all of these
firms so the correlation with such varying investment levels would be imprecise.
Thus, missing the heterogeneity makes hard to uncover the elasticity, even when the
average bank effect may be well estimated.

9 Conclusions
We develop an empirical framework to identify and estimate heterogeneous ef-

fects of bank shocks exploiting bank-firm credit data. Our methodology provides a
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flexible framework to study the importance of bank-firm interactions and heterogene-
ity in the bank lending channel. The heterogeneous transmission of credit shocks is
particularly relevant in the presence of relationship lending or specialization in mar-
kets as stressed by Paravisini et al. (2023) or in lending forms as stressed by Ivashina
et al. (2022). To allow for interactions and heterogeneity in a flexible yet parsimonious
way, we rely on the idea that from the perspective of the banks and their relationship
with firms, there is a discrete number of “types” of firms, and hence, the propagation
of shocks depends on the firm’s type. These interactions between banks and groups
of firms may arise when banks specialize in markets where a group of firms operate.

We combine state-of-the-art panel data techniques that allow for time-varying
group fixed effects (Bonhomme and Manresa (2015)) with the two-sided fixed effects
framework used to disentangle demand and supply shocks from bank-firm credit
data (as in Khwaja and Mian (2008) and Amiti and Weinstein (2018)). We show
theoretically and in simulations that our proposed estimator consistently estimates
the bank-firm interactions. And, we discuss potential concerns that may arise when
estimating a model with homogeneous effects.

We apply our flexible framework to credit registry data from Peru. We uncover
significant heterogeneity in the bank lending channel: The patterns of bank lending
and the estimated bank-firm group effects show significant differences across our
identified firm groups. Importantly, we show that accounting for such heterogene-
ity and the bank-firm network structure is crucial to learn about the bank lending
channel and its real effects.
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Appendix (Proof of Propositions)
Proof. Proof of Proposition 1.

Consider the following data generating process for the “bank difference” version
of model (6) for all ( f , b, t) with D f ,b,t = 1:

y f ,b,t − y f ,b0,t = β0
b,g0

t ( f ),t − β0
b0,g0

t ( f ),t + ϵ f ,b,t − ϵ f ,b0,t

where 0-superscripts refer to true parameters. We normalize βb0,g0
t ( f ),t = 0.

Consider the following additional assumptions. Assumption 4 states ϵ f ,b,t has
finite moments and limits the dependence structure of the errors ϵ f ,b,t in the cross
section. It is fulfilled when ϵ f ,b,t is independent across units, but also allows for weak
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spatial dependence in ϵ f ,b,t. The time series dependence is left unrestricted so shocks
can exhibit strong time series correlation. Assumption 5 implies that the population
groups have a large number of firms and the groups are well-separated.

Assumption 4. (Errors): For each t, there exist a constant Ct such that ϵ f ,b,t is a strong
mixing process in the cross sectional dimension with:

i) E
(
ϵ f ,b,t

)
= 0, E

(
ϵ4

f ,b,t

)
< Ct,

ii) 1
NF

∑NF
f=1 ∑NF

f ′=1 | 1
NB

∑NB
b=1 E

(
ϵ f ,b,tϵ f ′,b,t

)
|< Ct,

iii) | 1
N2

F NB
∑NF

f=1 ∑NF
f ′=1 ∑NB

b=1 ∑NB
b′=1 Cov

(
ϵ f ,b,tϵ f ′,b,t, ϵ f ,b′,tϵ f ′,b′,t

)
|< Ct ,

iv) | 1
NF NB

∑NF
f=1 ∑NB

b=1 ∑NB
b′=1 E

(
ϵ f ,b,tϵ f ,b′,t

)
|< Ct, and

v) the time series dependence of ϵ f ,b,t is left unrestricted.

Assumption 5. (Group effects): For each t:

i) ∀gt ∈ {1, . . . , G} : plimNF→∞
1

NF
∑NF

f=1 1
{

g0
t ( f ) = gt

}
= πg > 0,

ii) ∀ (gt, g̃t) ∈ {1, . . . , G}2 s.t. gt ̸= g̃t: plimNB→∞
1

NB
∑NB

b=1

(
β0

b,gt,t − β0
b,g̃t,t

)
= cgt,g̃t > 0,

iii) β0
b,gt,t is a strongly mixing process in the cross sectional dimension,

iv) the time series dependence of β0
b,gt,t is left unrestricted.

Assumption 2 implies that β0
b,gt( f ),t is contemporaneously uncorrelated with ϵ f ,b,t

and ϵ f ,b0,t. Then, using assumption 2, 4, 5 and full connections between bank and
firms, we can apply theorems 1 and 2 in Bonhomme and Manresa (2015) (for a model
without observable regressors) replacing the time-series dimension in the analysis of
Bonhomme and Manresa (2015) for the bank dimension in our bipartite network
data. Then, for each t separately and for all δ > 0 as NF and NB tend to infinity:

1
NF NB

NF

∑
f=1

NB

∑
b=1

(β̂b,ĝt( f ),t − β0
b,g0

t ( f ),t)
2 p→ 0,

Prob

(
sup

( f∈{1,...,NF})
| ĝt( f )− g0

t ( f ) |> 0

)
= o(1) + o(NF N−δ

B ),

and β̂b,g,t = β̂u
b,g,t + op

(
N−δ

B

)
for all b, g.19

Proof. Proof of Proposition 2
For the case of NB = 2 (and normalization βb0,gt( f ),t = 0), from (14) we have

β̂Homo
b1,t

a
= E

[
y f ,b1,t − y f ,b0,t | f ∈ Ib1,b0

]
= E

[
βgt( f ),b1,t | f ∈ Ib1,b0

]
= E

[
βgt( f ),b1,t

]
where

19Online Appendix C intuitively discusses consistency when shocks are iid normally distributed.
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the last equality follows since the network of connections Dt is independent of the
interaction effect βgt( f ),b,t. For the general NB case, we have that the within-estimator
β̂Homo

b,t is a linear combination of the Wald estimators exploiting the same moment
condition in (4) for all firms in the respective network. Since all βgt( f ),b,t’s are inde-
pendent of the whole network structure Dt, the same argument follows.

Proof. Proof of Proposition 3
From the Frisch-Waugh theorem, the KM fixed effect estimator can be express as:

θ̂Homo =
∑NB

b=1 ∑NF
f=1 D f ,bv f ,by f ,b

∑NB
b=1 ∑NF

f=1 D f ,bv f ,bx f ,b
,

where x f ,b equals xb for all the firms in Ib,b0 . For each firm f , ∑NB
b=1 v f ,b = 0 since

v f ,b = xb −
∑

NB
b=1 D f ,bxb

∑
NB
b=1 D f ,b

.20 The expected value conditional on observables is:

E
[
θ̂Homo | x, D

]
=

∑NB
b=1 ∑NF

f=1 D f ,bv f ,bE[α f + θb,g( f )xb | x, D]

∑NB
b=1 ∑NF

f=1 D f ,bv f ,bx f ,b

where this equality comes from the assumption 3. The fixed effect regression implies
that ∑NF

f=1 ∑NB
b=1 v f ,bα f = 0, thus

E
[
θ̂Homo | x, D

]
=

∑NB
b=1 xb ∑NF

f=1 D f ,bv f ,bE[θb,g( f ) | x, D]

∑NB
b=1 ∑NF

f=1 D f ,bv f ,bx f ,b
=

∑NB
b=1 ∑G

g=1 E[θb,g( f ) | x, D]∑ f :g( f )=g D f ,bv f ,bxb

∑NB
b=1 ∑NF

f=1 D f ,bv f ,bx f ,b
.

Using ∑ f :g( f )=g D f ,bv f ,bxb = ∑
Nb,b0,g
f∈Ib,b0,g

v f ,bxb and ∑NB
b=1 ∑NF

f=1 D f ,bv f ,bx f ,b = ∑NB
b=1 xb ∑

Nb,b0
f∈Ib,b0

v f ,b:

E
[
θ̂Homo | x, D

]
=

∑NB
b=1 ∑G

g=1 E[θb,g( f ) | x, D]∑
Nb,b0,g
f∈Ib,b0,g

v f ,bxb

∑NB
b=1 xb ∑

Nb,b0
f∈Ib,b0

v f ,b

=
NB

∑
b=1

G

∑
g=1

E[θb,g( f ) | x, D]∑
Nb,b0,g
f∈Ib,b0,g

v f ,bxb

∑NB
b=1 xb ∑G

g=1 ∑
Nb,b0,g
f∈Ib,b0,g

v f ,b

.

Defining ωg( f ),b =
∑

Nb,b0,g
f∈Ib,b0,g

v f ,bxb

Nb,b0,g
N ∑

NB
b=1 xb ∑G

g=1 ∑
Nb,b0,g
f∈Ib,b0,g

v f ,b

and using that ωb0 = 0, we can rewrite:

E
[
θ̂Homo | x, D

]
= ∑NB

b=1 ∑G
g=1 ωg( f ),b

Nb,b0,g
N E[θb,g( f ) | x, D] = ∑NB

b ̸=b0
∑G

g=1 ωg( f ),b
Nb,b0,g

N E[θb,g( f ) | x, D].

20The estimation is for the sample of firms connected to bank b0 and at least one exposed bank
b ̸= b0 (i.e., firms belonging to Ib,b0 for any b).
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Online Appendix

A Model with lending specialization
First, in A.1, we describe a model with bank specialization similar to the one

proposed by Paravisini et al. (2023) in which banks are heterogenous (specialized) in
their lending capabilities for specific activities (e.g. a bank may have an advantage
in lending to firms when exporting to the US). We show that, in such a model,
our empirical specification with bank-firm group effects arises if types/groups of
firms are defined by the relative importance of activities (e.g. a group of firms have
a higher presence in US markets while other group may have higher presence in
Europe). Second, in A.2, we show that the empirical specification with loan-type
specific shocks considered by Ivashina et al. (2022) leads to our empirical specification
with bank-firm group effects, when loan-type specific demand happens at a firm
group level.

A.1 Model.
Consider a two period model t = 0, 1 with NF firms belonging to G groups, and

NB banks. Each firm f is defined by a collection of activities/markets c = 1, ..., C
(e.g. export destination country), and the grouping determines how important is the
activity for each firm. Firms use credit to fund each of those activities. Each firm
chooses the bank b that minimizes the cost of credit for the corresponding activity.

Consider a monopolistic competition environment so that, for each activity c,
a firm f faces a CES demand structure with elasticity of substitution σ > 1 and
group-activity demand shifter Mc

g( f ) where g( f ) denotes the group to which firm
f belongs. Mc

g( f ) capture market-wide variables exogenous to the firm (e.g. Mc
g( f )

may characterize the market size of country c for specific products produced by
firms specialized in exports to country c or in a certain industry). That is, firm f
faces a demand function for activity c: qc

i = Mc
g( f )(pc

i )
−σ. Following Paravisini et al.

(2023), we focus on the choice of credit and assume credit is the single factor of
production. Specifically, assume a linear production function qc

f = A f Lc
f ,b, where A f

is a technology shock and Lc
f ,b is the amount of credit from a chosen bank b.

Banks lend to firms at an activity-specific rate rc
b = rb/γc

b, where γc
b > 0 repre-

sents bank specialization in activity c. For example, the bank may have an ability in
securitizing loans associated with a particular activity, so it is able to fund such loans
at a lower cost of funds, or the bank may have more information about the particular
activity and can assess better the associated risk, or it may also be interpreted as
other value added services attached to the issuance of credit than other lenders. We
also assume rb = reπb so that r captures the baseline (risk-free) rate common to all
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banks and πb is a bank-specific risk-premium (related to each bank’s balance sheet
health).

At t = 0, the firm chooses a bank for every activity to minimize the cost of credit
but facing some uncertainty about bank abilities and pricing. Specifically, each firm
chooses b to minimize

b = min
b′

{
rc

be−µνc
f
}

= min
b

{
(ln r + πb − ln γc

b)− µνc
f ,b

}
,

where νc
f ,b can be interpreted as information noise experienced by the firm about

banks’ specialization γc
b, for example, due to marketing, location, or misinforma-

tion.21

As in Paravisini et al. (2023), we assume
{

νc
f ,b

}
f

are i.i.d. Gumbel across firms,

so the probability of a firm choosing b for activity c is:

γ̃c
b ≡

(
γc

b
rb

)1/µ

∑b′
(

γc
b′

rb′

)1/µ
. (A.1)

Given a chosen bank b for activity c, each firm chooses the output level qc
i and

credit amount Lc
f ,b for every activity to maximize:

max
qc

f ,Lc
f ,b

pc
f qc

f − rc
b, f Lc

f ,b

subject to their demand qc
f = Mc

g( f )(pc
f )

−σ and production function qc
f = A f Lc

f ,b,
which leads to standard optimal choices on price and quantity:

pc
f =

σ

σ − 1
mcc

f ,

q f = Mc
g( f )

(
σ

σ − 1
mcc

f

)−σ

,

where marginal cost of production mcc
f = rc

b, f /A f . Then, the (potential) optimal

21Also, νc
f ,b could be interpreted as other advantages or value added services unrelated to firm

production costs or the credit amount, so that the firm minimizes the cost of credit net of these other
services.
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amount of credit equals:

ℓc
f ,b = Mc

g( f )

(
σ

σ − 1

)−σ (
A f
)σ−1

(
rc

b, f

)−σ
. (A.2)

The total amount of credit borrowed by the firm thus depend on the importance of
the activity for the firm (measured by Mc

g( f )), the firm technology A f , and the cost of
credit rc

b, f .

From (A.2) and (A.1), we can write the expected total borrowing of a firm f from
bank b as:

E
[
L f ,b

]
= E

[
∑

c
Lc

f ,b

]
= E

[
∑

c
Ic

f ,b × ℓc
f ,b

]

= ∑
c

γ̃c
b

(
Mc

g( f )

(
σ

σ − 1

)−σ (
A f
)σ−1

(reπb)−σ (γc
b)

σ

)
,

where the first line sums the credit from bank b across all activities and Ic
f ,b is an

indicator function equal to one if bank b is chosen for activity c and zero otherwise.

To think about credit growth and the influence of credit supply and demand
shocks, we assume that, at t = 1, firms and banks may experience different types of
shocks: Firm productivity shocks A

′
f = A f ea f , demand shocks Mc′

g( f ) = Mc
g( f )e

dc
g( f ) ,

interest rate shocks r
′
= rez, bank shocks π

′
b = πb + zb or bank shocks specific

to their lending abilities γc′
b = γc

besc
b (e.g. changes in their securitization abilities,

risk assessment of specific activities/sectors), where we use primes to denote t = 1
variables.

We assume the firm chosen bank persists for both t = 0 and t = 1. Letting
gx = x′/x − 1 be the growth rate of any variable x. We have

gE[L f ,b]
≈ ∑

c
wc

f ,b

(
dc

g( f ) + (σ − 1)a f − σ(z + zb) + σsc
b

)
,

with weights wc
f ,b =

γ̃c
b

(
ℓc

f ,b

)
∑c γ̃c

b

(
ℓc

f ,b

) . Note that the weights capture the relative (expected)

importance of the activity c in the bank-firm relationship. Since the importance of the
activity depends on the firm specific group, we have that the weights are bank-firm
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group specific; specifically, we have wc
f ,b = wc

g( f ),b with

wc
g( f ),b =

γ̃c
b

(
Mc

g( f )

(
γc

b
)σ
)

∑c γ̃c
b

(
Mc

g( f )

(
γc

b

)σ
) .

Therefore, we can write (up to a growth rate approximation):

y f ,b = c + (σ − 1)a f − σzb + σ ∑
c

wc
g( f ),bsc

b + ∑
c

wc
g( f ),bdc

g( f ) + ϵ f ,b, (A.3)

where y f ,b is the loan growth rate, c is a constant capturing common aggregate shocks
(z) and a Jensen’s inequality term, and ϵ f ,b is an idiosyncratic factor.

Comparing (A.3) with our empirical specification (6), we have that α f = c + (σ −
1)a f and βb,g( f ) = −σzb + σ ∑c sc

bwc
g( f ),b + ∑c dc

g( f )w
c
g( f ),b. As discussed in section

5, our interaction factor βb,g( f ) can be driven either by bank supply shocks zb or sc
b

heterogeneously propagated to firms (due to differences in importance of the bank
specific lending advantage across firm groups) or by a firm-group demand shock
dc

g( f ) heterogeneously propagated to banks.

A.2 Empirical model with firm loan-type specific shocks.

Ivashina et al. (2022) argues that the transmission of credit shocks could depend
on the specific type of loan contract l used. They consider the following empirical
model with firm-loan specific shocks:

∆ ln L f ,b,l,t = α f ,t + ηl
f ,t + βb,t + ϵl

f ,b,t, (A.4)

where ηl
f ,t captures a loan-type specific shock. The assumption is that conditional

on the observed loan type, credit shocks are transmitted homogeneously. So, when
loan-type information is available to the econometrician, they can estimate bank and
firm fixed effects by including firm-loan specific fixed effects or conditioning the
estimation on the specific firm-loan type.

It is common that lending by loan type is not observed by the econometrician,
instead some credit registries provide only information about the total lending from
each bank L f ,b,t = ∑l L f ,b,t,l. Estimating the standard fixed-effects specification, as in
section (2), ignoring the differential effects by loan-type could lead to bias estimates.
For example, this would happen if a firm demand shock is loan-type specific and
different banks specialize in providing different types of loans.

We show below that if the loan-type specific demand happens at a firm group
level, our empirical framework with bank-firm group interactions arises as an aggre-
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gation of the empirical model (A.4) at the bank-firm level.

If we aggregate credit growth at the firm level (dropping subscript t for conve-

nience), we get y f ,b ≡ ∆ ln L f ,b ≈ ∑ wl
f ,b∆ ln L f ,b,l, where wl

f ,b =
Ll

f ,b

∑l Ll
f ,b

denotes the

importance of loan-type l in the firm-bank relationship. To capture that banks spe-
cialize in providing a certain type of loan, we assume the relative importance of a
loan-type across all loans given by the bank wl

f ,b = h(γl
b) is a function of the bank

specialization parameter γl
b (analogous to the model above). Finally, we assume that

the firm loan-specific demand depends on the firm group, so that ηl
f = η̄l

g( f ). For
example, a group of firms experiencing a liquidity need may demand a short-term
loan, firms planning to take a fixed long-term investment may demand long-term
loans, or the group of firms wanting to finance equipment purchases may demand
asset-based loans. Each type of firm then will have a preference to borrow differently
from each bank.

Then, the aggregation of model (A.4) leads to:

y f ,b,t = α f ,t + ∑
l

h(γl
b,t)η̄

l
g( f ) + βb,t + ϵ f ,b,t, (A.5)

with ϵ f ,b,t = ∑l h(γl
b,t)ϵ

l
f ,b,t.

Comparing (A.5) with our empirical specification (6), we have that βb,g( f ) =

∑l h(γl
b,t)η̄

l
g( f ) + βb,t.

B Interactive fixed effects
In this section, we model bank-firm interactions described in (5) by imposing the

following interactive specification for the growth rate of loans:

y∗f ,b,t = βb,t + α f ,tγb,t + ϵ f ,b,t, (B.1)

where E[ϵ f ,b,t|Dt, αt, βt, γt] = 0 and Dt, αt, βt and γt denote the entire vector (at time
t) of D f ,b,t, α f ,t, βb,t and γb,t for all f , b, respectively. The observed growth rate of
loans is defined by y f ,b,t = y∗f ,b,tD f ,b,t.

The model in (B.1) is a interactive fixed effect model in the spirit of Bai (2009) and
allows for continuous heterogeneity in the transmission of shocks. In this particular
specification βb,t could capture bank shocks that affect similarly all the connected
firms whereas γb,t can capture bank shocks that affect differently different firms with
a loading equal to α f ,t.
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Identification. By comparing differences in the amount of loans issued by each bank
to different firms (i and j) we have:

yi,b,t − yj,b,t = γb,t
(
αi,t − αj,t

)
+ ϵi,b,t − ϵj,b,t,

yi,b0,t − yj,b0,t = γb0,t
(
αi,t − αj,t

)
+ ϵi,b0,t − ϵj,b0,t.

Lets define I(b, b0) as a particular group of firms that borrows from both banks (b, b0)
at time t and J(b, b0) as another (different) group of firms that also borrows from
both banks (b, b0) at time t.

Averaging the difference among a group of firms, then we can identify γb,t/γb0,t by
taking the ratio of the following equations:

E[yi,b,t | i ∈ I(b, b0)]− E[yj,b,t | j ∈ J(b, b0)] = γb,t
(
E[αi,t | i ∈ I(b, b0)]− E[αj,t | j ∈ J(b, b0)]

)
,

E[yi,b0,t | i ∈ I(b, b0)]− E[yj,b0,t | j ∈ J(b, b0)] = γb0,t
(
E[αi,t | i ∈ I(b, b0)]− E[αj,t | j ∈ J(b, b0)]

)
,

then we have:

γb,t

γb0,t
=

E[yi,b,t | i ∈ I(b, b0)]− E[yj,b,t | j ∈ J(b, b0)]

E[yi,b0,t | i ∈ I(b, b0)]− E[yj,b0,t | j ∈ J(b, b0)]
.

A crucial condition for the identification of the bank-factor γb,t
γb0,t

is that E[αi,t | i ∈
I(b, b0)] ̸= E[αj,t | j ∈ J(b, b0)]. This requires a separation between “types of firms” in
the sense that the mean of the time-varying firm-specific unobserved heterogeneity
is different across the two groups.

As in the standard factor model we require one normalization (e.g. γb0,t = 1).
Once γb,t is identified, we can transform the model as:

yi,b,t

γb,t
=

βb,t

γb,t
+ α f ,t +

ϵ f ,b,t

γb,t

Then, we can get rid of α f ,t by looking at the difference in the “normalized” growth
rate of the same firm i with banks b and b0 (similar to AW and KM):

yi,b,t

γb,t
−

yi,b0,t

γb0,t
=

βb,t

γb,t
−

βb0,t

γb0,t
+

ϵ f ,b,t

γb,t
−

ϵ f ,b0,t

γb0,t

Averaging over firms in the intersected set of firms I(b, b0) between bank b and bank
b0:

βb,t

γb,t
−

βb0,t

γb0,t
= E[

yi,b,t

γb,t
−

yi,b0,t

γb0,t
| i ∈ I(b, b0)]
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which identifies βb,t − βb0,t. Then, identifying α f ,t is straightforward.

C Discussion: Group-fixed effect estimator under un-
known groups

Lets define the unfeasible group fixed effect estimator
(

α̂u, β̂u
)

as the solution

of (11) when gt( f ) is fixed to its population counterpart g0
t ( f ) rather than be es-

timated. Under known groups the group fixed effect estimator
(

α̂u, β̂u
)

coincides

with the sample analogue of the moment conditions in (7) and (8),22 which under
the normalization βb0,g,t = 0:

β̂u
b,gt( f ),t =

∑ f∈g0
t , f∈I(b,b0)

[
y f ,b,t − y f ,b0,t

]
∑ f∈g0

t , f∈I(b,b0)
1

,

and

α̂u
f ,t =

∑b∈I( f )
[
y f ,b,t − βb,g,t

]
∑b∈I( f ) 1

.

For simplicity, assume full connections and balanced groups so that: ∑ 1 f∈g, f∈I(b,b0) =
NF/G and ∑ 1b∈I( f ) = NB. Therefore, in the case of fixed known groups, we have

β̂u
b,gt( f ),t

p→ βb,gt( f ),t as N f tend to infinity and α̂u
f ,t

p→ α f ,t as NB tend to infinity for
all t. In the case of unknown groups, the group fixed effect estimator will coincide
with the unfeasible group fixed effect estimator

(
α̂u, β̂u

)
under correct group classifi-

cation ĝt

(
f |α̂, β̂

)
= g0

t ( f ). However, in finite samples, there is a non-zero probability
that estimated and population group membership will not coincide. To illustrate the
point, we follow Bonhomme and Manresa (2015) and consider a simple version of
the model with just group effects with two groups (G = 2) and normal errors:

y f ,b,t = β0
g0

t ( f ),t + ϵ f ,b,t

where β0
gt( f ),t are the true parameters, g0

t ( f ) ∈ {1, 2} is the true grouping assignment

and ϵ f ,b,t ∼ N(0, σ2). From (10), we can see that the probability of wrongly assigning

22This is the case for NB = 2, in a similar manner to how the within-group estimator and the
first-difference estimator coincide in a standard panel data with T = 2. For NB > 2, the unfeasible
estimator under known groups will combine all the valid moment conditions across all possible bank
first-differences.
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into group 2 a firm that belongs to group 1 is:

Pr
(

ĝt ( f ) = 2 | g0
t ( f ) = 1

)
= Pr

(
NB

∑
b=1

(
β0

1,t + ϵ f ,b,t − β0
2,t
)2

<
NB

∑
b=1

(
β0

1,t + ϵ f ,b,t − β0
1,t
)2
)

= Pr

(
∑NB

b=1 ϵ f ,b,t

NB
>

β0
2,t − β0

1,t

2

)

= 1 − Φ

(√
NB

(
β0

2,t − β0
1,t

2σ

))
, for all t, (C.1)

where Φ is the standard normal CDF. For fixed (and small) NB, there is a non-
negligible probability of misclassifying firms, so ĝ( f ),t is inconsistent even if NF tend
to infinity. Intuitively, according to (10) the estimator is classifying firms based on
their similar responses to different banks, so we need to observe firms connected
to several banks to be able to separate the effect β0

g0
t ( f ),t

from the idiosyncratic error

ϵ f ,b,t. As a consequence, β̂ will suffer from an incidental parameter bias and it will
be inconsistent for fixed NB even when NF tend to infinity. The latter is in contrast to
the case when groups are known where β̂ is

√
NF-consistent. Note that the firm fixed

effects α̂ is always inconsistent for fixed NB even when groups are known or even
when the true model has homogenous effects as in Khwaja and Mian (2008) and
Amiti and Weinstein (2018). However, equation C.1 indicates that the probability
of misclassifying tends to zero at an exponential rate which implies that the bias
generated by the incidental parameter problem goes to zero very fast as NB increases,
similarly to the group fixed effect estimator of the standard panel model when T
increases (see Bonhomme and Manresa (2015)). As we show in simulations, the
performance of our estimator increase very rapidly with NB and it is centered at the
true value for moderate NB.

D Calibrated simulation
We evaluate the performance of our estimator in a simulation calibrated to our

database. We fix G = 4, NF = 5000, and NB = 10 (note that there are 17 banks
and 5000 firms in our dataset). We set the standard deviation of the error term to
σϵ = 0.35 (the one estimated with our data) and we assume partial connections with
a probability of matching of 40%. We conduct 100 replications of y f ,b,t based on (6);
for each replication, we estimate βb,g( f ) using our algorithm. Figure D.1 displays the
density of the true parameter βb,g( f ) and estimates β̂b,g( f ) across replications. The
figure shows that the estimation closely tracks the true parameters.
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Figure D.1: Estimator’s properties: calibrated Monte Carlo simulation
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Note. Illustration of estimator’s properties for a Monte Carlo simulation calibrated to our dataset. We assume G = 4, NB = 10,

NF = 5000, σϵ = 0.35, and matching probability of 40%. The results are generated after 100 replications. The dark solid line

displays the k-density across all simulated βbg’s, while the gray dashed line displays the k-density across estimated β̂bg’s.

E Out-of-sample performance and number of groups
Building on Almagro and Manresa (2021), we propose the following N-fold cross-

validation procedure for our algorithm to evaluate the out-of-sample performance of
the model with number of groups G.

1. For a given year t, set the number of groups and repetitions: G and M, respec-
tively.

2. For given G and ∀m ∈ {1, ..., M}, split the sample in N parts (folds):

Pt (G, m) ≡ {Pt,1 (G, m) , Pt,2 (G, m) , ...Pt,N (G, m)} .

3. Take Pt,k (G, m) as the testing sample, and the remaining parts of the sample,
Pt,−k (G, m), as the training sample.

4. Using the training sample, Pt,−k (G, m), estimate the group structure and the
parameters of interest. After that, compute the out-of-sample mean squared
error (MSE) for the testing sample, Pt,k (G, m), which number of observations
is denoted by J, as follows:

MSEt (G, m, Pt,k) =
1
J ∑

j∈Pk

(
y f ,b,t,j − α̂ f ,t,−j (G, m)− β̂b,g( f ),t,−j (G, m)

)2
. (E.1)

5. We measure the performance of the heterogeneous model G for each of the
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repetitions, and take the average for each of the folds and the repetitions in the
sample:

MSEt(G) =
1
N

1
M

M

∑
m=1

N

∑
k=1

MSEt (G, m, Pt,k) .

For our data, we find that the optimal number of groups is G = 2. In Figure E.1,
we display the distribution of the out-of-sample MSE for each of the folds and rep-
etitions for G = 2 (heterogenous case) relative to to G = 1 (homogenous case). A
positive value implies that the heterogeneous case model has a better out-of-sample
explanatory power than the homogeneous case. In general, we can observe how the
heterogeneous model with G = 2 is most likely to perform better than the traditional
homogeneous case with G = 1.

Figure E.1: Estimated MSEG=2 vs MSEG=1
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Note. Out-of-sample mean squared errors for G = 2 vs G = 1. A positive value of the measure
indicates that the out-of-sample MSE of G = 2 is lower than G = 1. The red dashed line indicates the
case where both measures are equal. The information covers 2005 through 2017.

F Additional tables
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Table 3: Bank specialization and bank shock

Dep. Variable ∑ f∈gt β̂b,gt( f ),t/N f
(1) (2)

Portfolio share in a groupt−1 0.673*
(1.73)

Group specialization measuret−1 0.334*
(1.73)

Fixed Effects:
Bank-Year Yes Yes
Group-Year Yes Yes
R-squared 0.23 0.33
N 142 142

Note. In this table we estimate the relationship between an average of our estimated bank-group interaction estimates and

measures of relevance of each estimated group in the bank portfolio. Portfolio share in a group represents the percentage of the

corporate portfolio of the bank assigned to the given group: ∑ f∈G LG( f )b,t−1/ ∑ f L f b,t−1. Group specialization measure denotes

a relative portfolio share measure in a given group:
∑ f∈G LG( f )b,t−1/ ∑ f L f b,t−1

∑b ∑ f∈G LG( f )b,t−1/ ∑b ∑ f L f b,t−1
. The sample corresponds to a balance panel

from 2006 to 2017.

Table 4: Event study: Number of firms in estimated groups

Group Assignment G=2 G=3 G=4
g=1 422 465 382
g=2 5,544 3,538 773
g=3 1,963 4,008
g=4 803

Note. Number of firms identified for each group g across different number of total groups,
G.
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Table 5: Firm-level investment regression

Dependent variable:
Investment f ,t
Capital f ,t−1

(1) (2) (3) (4) (5)

G = 1 G = 2 G = 3 G = 4 G = 5
Bank Shock -2.809 6.711* 3.419** 6.271* 6.539

(-0.73) (1.86) (2.31) (1.82) (1.63)
Firm FE -0.145 0.810** 0.804 1.161 1.289

(-0.42) (2.58) (1.50) (1.40) (0.99)
Ln(Asset) 5.937* 6.737 6.354 5.380 5.947

(2.18) (1.54) (1.49) (1.07) (1.50)
Fixed Effects:
Group-Time Yes Yes Yes Yes Yes
Firm Yes Yes Yes Yes Yes
R-squared 0.21 0.24 0.25 0.29 0.29
N 785 785 785 785 785

Note. Standard errors are cluster at the main leading bank. The information spans from 2005 to 2017.
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