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ABSTRACT

Cross-sectional decompositions using professional forecasts show high price-earnings
ratios are accounted for by both low expected returns and overly high expected earnings
growth. The magnitudes and timing of the comovements between prices, earnings
growth, and returns are consistent with gradual learning rather than expectations being
highly sensitive to recent realizations. Earnings growth surprises do not translate 1-
1 into one-period returns, but instead are gradually reflected in returns over time.
A structural model incorporating constant-gain learning about mean earnings growth,
coupled with risk premia linked to cash flow timing, replicates our findings and generates
realistic dispersion and persistence in price-earnings ratios.
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It has been known since Basu (1975) and Stattman (1980) that high price ratio stocks

(e.g., price-earnings ratios, price-book ratios) earn lower returns than their peers. While the

one-month difference between Growth and Value stocks has declined over time (Schwert,

2003; Fama and French, 2020), return differences at longer horizons have remained substan-

tial (De la O, Han, and Myers, 2023)1 and play a large role in accounting for the level of

prices (van Binsbergen et al., 2023; Cho and Polk, 2023). Given that a stock’s price is the

risk-adjusted value of expected future cash flows, these realized return differences imply that

high price ratio stocks have low risk exposure, overly high expected cash flows, or a mix of

both.

There is a long-standing debate between research advocating either for risk exposure

or incorrect cash flow expectations to explain cross-sectional differences in price ratios and

subsequent returns.2 In this paper, we provide evidence that not only suggests both explana-

tions have merit, but also that the interaction between them is important to generate these

cross-sectional differences. Our innovation is twofold.

First, using professional forecasts of both returns and cash flows, we estimate the fraction

of cross-sectional dispersion in price ratios that is explained by high price ratio stocks having

lower subjective expected returns and the fraction that is explained by high price ratio stocks

having overly high subjective cash flow expectations. To the best of our knowledge, we are

the first paper to quantify the relative importance of subjective return expectations and sub-

jective cash flow expectations in accounting for cross-sectional dispersion in price ratios. We

find that both components play a non-trivial role, however, incorrect cash flow expectations

are the quantitatively larger component. Evaluating a number of full-information rational

expectations (FIRE) models as well as behavioral models, we surprisingly find that the FIRE

models struggle to match the decomposition results for realized cash flows and returns, while

the behavioral models struggle to match the results for subjective expected cash flows and
1Table I also confirms that long-term return differences are large even for 1999-2020.
2See Fama and French (1995) and Daniel and Titman (1997) for early evidence and Lustig and Nieuwer-

burgh (2005) and Hou, Karolyi, and Kho (2011) for more recent explanations.
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returns.

Second, in the words of Brunnermeier et al. (2021), rather than merely rejecting models,

“we need structural models of belief dynamics that can compete with [FIRE] models in ex-

plaining asset prices and empirically observed beliefs.” Therefore, we propose and estimate

a structural model of learning about firm-specific cash flow growth. Importantly, the model

features risk premia related to cash flow timing, which means that learning about cash flow

growth naturally generates variation across firms and across time in risk premia.3 While

we do not use any cross-sectional information when estimating the model, we find that it

matches the cross-sectional decomposition results for both realized and expected cash flows

and returns. Further, the model matches a number of additional untargeted moments of

prices, cash flows, returns, and expectations. Using counterfactuals in which learning or risk

premia are removed from the model, we show that the interaction of these two components is

crucial for generating dispersion in price ratios that is as large and persistent as we observe

in the data.

For our empirical analysis, we utilize a cross-sectional version of the Campbell-Shiller

decomposition.4 Using professional forecasts, we find that 43.3% of dispersion in price-

earnings ratios is accounted for by high price ratio firms having higher expected four-year

earnings growth and 12.7% of dispersion is accounted for by high price ratio firms having

lower expected four-year returns.5 Thus, both higher expected earnings growth and lower

expected returns contribute to high valuation stocks. Interestingly, while Greenwood and

Shleifer (2014) and De la O and Myers (2021) show that expected returns are positively cor-

related with price ratios in the aggregate time series, in the cross-section investors correctly
3Throughout the paper, we use “risk premia” to refer to compensation that investors require for expected

risk. Note that average realized returns will depend on risk premia as well as deviations from FIRE in
investors’ cash flow expectations.

4Because this decomposition is derived from an identity, it holds even if expectations differ from the
objective distribution.

5For concision, we shorten “subjective expected earnings growth” and “subjective expected returns” to
simply “expected earnings growth” and “expected returns.” Any time we refer to FIRE beliefs, we clearly
specify that we are using the FIRE-implied distribution.
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expect lower returns for high price-ratio firms.6 The remaining dispersion is explained by

expectations of future price-earnings ratios, which reflect expectations of earnings growth

and returns beyond four years.

For comparison, realized four-year earnings growth and negative returns account for 9.9%

and 32.0% of price-earnings ratio dispersion, respectively. This means that, empirically, high

price ratio firms are primarily characterized by lower future returns than their peers, rather

than by higher future earnings growth. In other words, investors overestimate the earnings

growth of high price ratio firms, which leads to consistent disappointment in earnings growth

for these firms. While investors do expect lower returns for high price ratio firms, they

understate the magnitude of this relationship. Consistent with the fact that investors are

disappointed by realized earnings growth, the realized returns on high price ratios firms are

even lower than expected.

Because we are jointly studying return and earnings growth expectations, we also estab-

lish important facts on how earnings growth disappointment translates into return disap-

pointment. Comparing the decomposition results at the one-year horizon and the four-year

horizon, we find that disappointment in future earnings growth for high price ratio firms is

largely concentrated at the one-year horizon. However, this does not immediately lead to

large disappointment in one-year returns for these firms. Instead, disappointment in returns

gradually accumulates over time as prices slowly decline.

By measuring how future earnings growth expectations are revised in response to earn-

ings growth disappointment, we see why prices are slow to decline. After earnings growth

disappointment, expected next year earnings growth initially increases, implying that fore-

casters expect the decline in earnings to be temporary and largely reverse in the following

year. In other words, rather than being highly sensitive to recent realizations, expectations

of future earnings are relatively “stubborn,” in the sense that both positive and negative

surprises are largely attributed to temporary shocks.
6Dahlquist and Ibert (2023), Bastianello (2023) and Büsing and Mohrschladt (2023) also find evidence

that expected returns are negatively related to price ratios.
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How do these findings fit with FIRE and non-FIRE models? We find that standard FIRE

models struggle to match the magnitude of the empirical relationship between price-earnings

ratios and future returns. While risk premia related to growth options or adjustment costs

(Berk, Green, and Naik, 1999; Zhang, 2005) can generate return differences between high

and low price-earnings ratio stocks, we find that these models predict a relationship that

is an order of magnitude smaller than what we observe in the data. In contrast, we find

that standard behavioral and learning models struggle to match the subjective expectations

data, specifically the timing of earnings growth disappointment and return disappointment.

For example, if agents extrapolate from current earnings growth or have diagnostic expec-

tations of earnings growth, then prices should be highly sensitive to recent realized earnings

growth, and earnings growth disappointment should translate immediately into large return

disappointment.

While we mainly focus on decomposing cross-sectional dispersion in price ratios, we can

analogously frame these tests in terms of understanding anomaly returns. Focusing on 20

annual anomalies from Hou, Xue, and Zhang (2015), we show that nearly every anomaly is

associated with large return forecast errors. In other words, the realized one-year returns

on anomalies are much higher than investors expected.7 Further, we find that earnings

growth surprises are large enough to account for the entirety of these unexpected anomaly

returns. In fact, consistent with our finding on earnings growth disappointment and return

disappointment for high price ratio stocks, we find that one-year earnings growth surprises are

larger than the one-year unexpected returns, again indicating that earnings growth surprises

do not immediately translate 1-1 into large one-year returns. Instead, we consistently find

that negative (positive) earnings growth surprises increase (decrease) expected next-year

earnings growth, in line with our results for high and low price ratio stocks.

To explain these empirical findings, we propose a structural model of belief formation

and asset prices. The two key ingredients in the model are learning about firm-specific mean
7For a representative combination of the 20 anomalies, a one standard deviation increase in the anomaly

variable is associated with a 340 bps increase in unexpected annual returns.
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earnings growth and risk premia related to cash flow timing. Specifically, cross-sectional

differences in firm earnings depend on each firm’s underlying mean earnings growth as well

as transitory idiosyncratic shocks. The agent uses constant-gain learning to infer the mean

growth based on past realizations. In terms of preferences, the agent’s SDF depends on

an aggregate shock which is persistent but not permanent. As a result, short horizon cash

flows carry higher risk premia, as they are disproportionately exposed to the aggregate shock

compared to long horizon cash flows.

Qualitatively, the model aligns with our main empirical findings on subjective expecta-

tions and the response to earnings growth disappointment. In the model, firms with high

price-earnings ratios have both high subjective expected earnings growth and low subjec-

tive expected returns, as beliefs about the underlying mean earnings growth impact both

the expected cash flows and the risk premia associated with each firm. Importantly, if the

constant-gain parameter is small, then one-period earnings growth disappointment is largely

attributed to a temporary shock to the level of earnings rather than information about the

underlying mean earnings growth. As a result, one-period earnings growth disappointment

leads to an increase in expected next period earnings growth and only a small one-period re-

turn disappointment. Rather than being highly sensitive to recent realizations, prices instead

adjust gradually over time as agents update their beliefs.

We then estimate and quantitatively test our constant-gain model. We set the constant-

gain parameter to match previous studies on constant-gain learning (Milani, 2007; Mal-

mendier and Nagel, 2016; Nagel and Xu, 2022) and estimate the remaining 5 parameters

solely using realized earnings growth and average aggregate returns. Despite not using any

cross-sectional information, the model successfully replicates our decomposition results, both

in terms of magnitudes and timing, outperforming standard FIRE models in matching the

realized dynamics of price-earnings ratios, earnings growth, and returns, and outperforming

common behavioral models in matching the dynamics of subjective expectations. Further,

the model matches several untargeted aggregate and cross-sectional asset pricing moments.
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The quantified structural model allows us to extend our empirical results in two ways.

First, we can go beyond the four-year horizon to estimate that expected earnings growth and

expected returns for all horizons account for two-thirds (65.7%) and one-third (34.3%) of

price-earnings ratio dispersion, respectively. This is largely due to errors in earnings growth

expectations, which account for half (50.8%) of all price-earnings ratio dispersion.

Second, we can examine the underlying mechanisms which drive expected earnings growth

and expected returns, namely constant-gain learning and risk premia related to cash flow

timing, to show that the interaction between these two mechanisms is important for generat-

ing realistic dispersion and persistence in price-earnings ratios. For example, compared to an

economy with no learning and no risk premia, introducing only risk premia has little impact

on the dispersion in price-earnings ratios, introducing only learning increases the dispersion

by a factor of 2.1, and introducing both increases the dispersion by a factor of 4.5. This

highlights the benefit of unifying non-FIRE earnings growth expectations and risk premia

related to cash flow timing, as the interaction magnifies the sensitivity of prices to changes

in beliefs.

Broadly, this paper contributes to the growing literature using subjective expectations

to understand asset prices.8 In the cross-section, errors in firm-level professional earnings

forecasts have been strongly linked to future returns (La Porta, 1996; Frankel and Lee,

1998; Da and Warachka, 2011; So, 2013; van Binsbergen, Han, and Lopez-Lira, 2022) and

have been used to study a number of anomalies such as post-earnings announcement drift

(Abarbanell and Bernard, 1992), the duration premium (Weber, 2018), and the profitability

anomaly (Bouchaud et al., 2019). Moreover, Kozak, Nagel, and Santosh (2018) and Engel-

berg, Mclean, and Pontiff (2018) find that short legs of multiple long-short anomaly strategies

comprise stocks with more optimistic earnings forecasts, whereas Engelberg, McLean, and

Pontiff (2020) find that anomaly short legs comprise stocks with more optimistic return
8Amromin and Sharpe (2014); Greenwood and Shleifer (2014); Piazzesi, Salomao, and Schneider (2015);

Cassella and Gulen (2018); De la O and Myers (2021); Nagel and Xu (2022); and Bordalo et al. (2022) utilize
survey expectations for aggregate outcomes such as returns, cash flows and yields.
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forecasts.

We differ from these studies in two important ways. First, by utilizing expectations of

both earnings growth and returns, we quantify the relative importance of these two expecta-

tions in accounting for cross-sectional dispersion in price-earnings ratios and returns.9 This

decomposition sheds light on the relative importance of risk (discount rates) and mispricing

in stock prices. It also allows us to quantitatively link unexpected anomaly returns to errors

in earnings growth expectations. Second, we use the expectations data to test a structural

model of expectation formation, preferences, and asset prices which links our decomposition

results to underlying “deep” parameters of learning and risk sensitivity.

In terms of the structural model, our work is closely related to the literature on learning

about mean consumption or cash flow growth (Lewellen and Shanken, 2002; Collin-Dufresne,

Johannes, and Lochstoer, 2016; Nagel and Xu, 2022) and incorporates risk premia related to

cash flow timing, similar in spirit to Lettau and Wachter (2007). We provide new evidence

supporting these types of learning models using the cross-sectional dynamics of stocks and

show that incorporating learning about temporary shocks to the level of earnings creates

distinct qualitative predictions for the timing of earnings growth surprises and returns.10

We also highlight that learning about cash flow growth naturally complements risk premia

related to cash flow timing. Even if the objective timing of cash flows is relatively similar

across all firms (Chen, 2017), these risk premia can still play an important role in stock

prices so long as investors believe there is a large difference in the timing of cash flows. In

other words, as argued in Jensen (2023), once we depart from FIRE, the compensation for

risk that investors require should be disciplined by data on investors’ believed risks, not the

objective risks.

The rest of the paper is organized as follows. Sections I and II discuss the decomposition
9This differs from the implied cost of capital approach (Chen, Da, and Zhao, 2013; Hommel, Landier,

and Thesmar, 2023) in which discount rates are inferred using earnings expectations for observable horizons
and assumptions about long-term industry growth or GDP growth.

10In models of learning about mean cash flow growth without these temporary shocks to the level, such as
Lewellen and Shanken (2002) and Nagel and Xu (2022), disappointing one-period cash flow growth translates
more than 1-1 into disappointing realized returns and decreases expected next period cash flow growth.
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and data utilized in our empirical exercises. Section III shows the results of the decom-

position of price-earnings ratio dispersion, discusses how this relates to several FIRE and

non-FIRE models, and extends our results to anomaly returns. Section IV proposes a struc-

tural model of constant-gain learning with risk premia related to cash flow timing. Section

V quantifies and tests the structural model, calculates the infinite horizon decomposition of

price-earnings ratio dispersion, and analyzes the interaction of learning and risk premia in

generating realistic cross-sectional asset price moments.

I. Decomposing the cross-section of price ratios

While a large amount of the asset pricing literature has focused on the cross-section of short-

term returns, relatively less attention has been paid to the cross-section of prices or price

ratios.11 In particular, we want to understand what can account for the large empirical

dispersion in price ratios across stocks, e.g., why do some stocks trade at 50 times earnings

while others only trade at 10 times earnings?

To understand dispersion in stock price ratios and how this dispersion relates to subjective

cash flow growth expectations and subjective discount rates, we focus on a cross-sectional

version of the Campbell-Shiller decomposition. In terms of notation, E∗
t [·] denotes subjective

expectations. All other operators use the objective probability distribution. For example,

V ar (·) and Cov (·, ·) denote the observable variance or covariance of variables.

For any stock or portfolio of stocks i, the one-year ahead log return ri,t+1 can be approx-

imated in terms of the price-earnings ratio pxi,t, future earnings growth ∆xi,t+1, and the

future price-earnings ratio:

ri,t+1 ≈ κ+∆xi,t+1 + ρpxi,t+1 − pxi,t, (1)

where κ and ρ < 1 are constants.12 To understand cross-sectional dispersion in price-
11See Cochrane (2011) for a discussion, “When did our field stop being ’asset pricing’ and become ’asset

expected returning’?”
12Note that this approximation still holds even for non-dividend paying firms. Appendix B discusses the
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earnings ratios, let p̃xi,t be the cross-sectionally demeaned price-earnings ratio of portfolio

i and let ∆x̃i,t+1 and r̃i,t+1 be the cross-sectionally demeaned earnings growth and returns.

Rearranging equation (1) and applying subjective expectations E∗
t [·], we see that a higher

than average price-earnings ratio must be explained by higher than average expected earnings

growth, lower than average expected returns, or a higher than average expected future price-

earnings ratio,

p̃xi,t ≈
h∑

j=1

ρj−1E∗
t [∆x̃i,t+j]−

h∑
j=1

ρj−1E∗
t [r̃i,t+j] + ρhE∗

t

[
p̃xi,t+h

]
. (2)

Importantly, equation (2) does not require that expectations are rational. Because this

equation is derived from an identity, it holds under any subjective probability distribution.

To measure the relative contribution of subjective cash flow growth expectations and

subjective discount rates to the dispersion in price-earnings ratios, we decompose the variance

of p̃xi,t into three components:

1 ≈

Cov

 h∑
j=1

ρj−1E∗
t [∆x̃i,t+j ] , p̃xi,t


V ar

(
p̃xi,t

)︸ ︷︷ ︸
CFh

+

Cov

−
h∑

j=1

ρj−1E∗
t [r̃i,t+j ] , p̃xi,t


V ar

(
p̃xi,t

)︸ ︷︷ ︸
DRh

+ ρh
Cov

(
E∗

t

[
p̃xi,t+h

]
, p̃xi,t

)
V ar

(
p̃xi,t

)︸ ︷︷ ︸
FPXh

.

(3)

Note that V ar
(
p̃xi,t

)
is the average squared cross-sectionally demeaned price-earnings ratio,

which means it measures the average cross-sectional dispersion in price-earnings ratios. The

coefficients CFh and DRh give a quantitative measure of how much dispersion in price-

earnings ratios is accounted for by dispersion in earnings growth expectations and how much

is accounted for by dispersion in discount rates. Applying the decomposition to multiple

horizons h provides information about the timing of expected earnings growth and discount

rates. Additionally, the terms in equation (3) can be interpreted as the coefficients from

univariate regressions with time fixed effects, e.g., a one unit increase in pxi,t is associated

log-linearization in more detail including the role of the payout ratio.
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with a CF1 unit increase in expected one-year earnings growth.

When we estimate equation (3) using professional forecasts, we will use expectations

of price growth E∗
t [∆pi,t+j] as a proxy for expectations of returns E∗

t [rt+j]. Empirically,

realized price growth and returns are closely related with a correlation of 0.997 to 0.999 for

the j = 1, ..., 4 horizons that we study in our analysis. However, to ensure that the use of

this proxy does not impact the results, we also estimate an exact decomposition based on

price growth in Appendix C.1. Because this alternative decomposition is an exact identity,

it also addresses any concerns that cross-sectional differences in payout ratios between high

and low price-earnings ratio firms may impact the approximation error in equation (3). As

shown in Tables I and AI, the results of this exact decomposition closely match the results

from equation (3). Further, De la O, Han, and Myers (2023) show that payout ratios do not

account for cross-sectional differences in price-earnings ratios, i.e., high price-earnings ratios

are not associated with higher or lower dividend-earnings ratios.

II. Data

The firm-level realized earnings and prices are collected from Compustat and CRSP. The

firm-level expected earnings and prices are collected from I/B/E/S (Institutional Brokers’

Estimate System) and Value Line. To perform the decomposition from Section I, we sort

these firms into the classic Value and Growth portfolios. Specifically, for each month t, we

construct five value-weighted portfolios sorted by book-to-market.13 For these portfolios,

we measure the expectations at time t for earnings growth, price growth, and the future

price-earnings ratio over the next four years. We also track the realized buy-and-hold future

earnings growth, returns, and price-earnings ratios over the next four years. The main

sample, which contains expectations of both earnings growth and price growth, ranges from

1999-2020. For robustness tests, we also use a long sample which ranges from 1982-2020 and
13The book-to-market ratio is defined as the market-cap in the portfolio formation month scaled by total

book value from the most recent four quarters. To account for potential data errors, we exclude firms with
book-to-market ratios over 100 or below 0.01.
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contains earnings growth expectations. The subsections below provide more detail on the

firm-level variable measurements.

A. Realized data

The sample of stocks consists of all common stocks (share code 10 and 11) listed on NYSE,

AMEX, and NASDAQ. We obtain monthly prices, returns, and shares outstanding from

the Center for Research in Security Price (CRSP). The firm-level accounting variables are

constructed from the quarterly Compustat database. Following Davis, Fama, and French

(2000) and Cohen, Polk, and Vuolteenaho (2003), we define book value as stockholders’

book equity, plus deferred taxes and investment tax credit if available, minus the book

value of preferred stock. If stockholders’ book equity is not available at Compustat, we

define it as the book value of common equity plus the par value of preferred stock, or the

book value of assets minus total liabilities in that order. Depending on availability, we

use redemption or par value for the book value of preferred stock. To be consistent with

the I/B/E/S’s definition of earnings, we define earnings as Compustat net income (item

NIq) excluding non-I/B/E/S items, which comprise extraordinary items and discontinued

operations (item XIDOq), special items (item SPIq), and non-recurring income taxes (item

NRTXTq). This aligns with the measure of earnings proposed in Hillenbrand and McCarthy

(2022). At every month, annual earnings at the firm level are defined as the sum of quarterly

earnings from the most recent four quarters.14 The main sample includes all firms which have

observable returns ri,t+j, earnings growth ∆xi,t+j, and price-earnings ratios pxi,t+j in future

years j = 1, 2, 3, 4. We require a future observation so that we can calculate forecast errors

for the subjective expectations. However, for robustness, in Appendix C.4, we drop this

requirement and estimate a decomposition using delisting returns to reinvest any delisting

firms and find similar results.
14To account for possible data errors or extreme outliers, we winsorize annual earnings cross-sectionally

at the 1% level.
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B. Subjective expectations

The subjective earnings and short-term price expectations are extracted from the I/B/E/S

Database. The Summary Statistics of the I/B/E/S Database contains the median forecasts

for EPS (earnings per share) since 1976 for shorter horizons and 1982 for longer horizons

for U.S. publicly traded companies and the median forecasts for prices at the 12-month

horizon since 1999. I/B/E/S gathers their forecasts from hundreds of brokerage and inde-

pendent analysts who track companies as part of their investment research work. Because

the forecasts are not anonymous, analysts have a strong incentive to accurately report their

expectations.15 Furthermore, research on I/B/E/S suggests that financial firms’ trades are

consistent with their own analysts’ forecasts and recommendations, which adds to the evi-

dence that reported forecasts genuinely reflect the beliefs of the firms.16 More importantly,

market participants take seriously these analyst forecasts and trade in line with them, with

stock prices increasing (decreasing) shortly after upward (downward) revisions in analyst

earnings forecasts (Kothari, So, and Verdi 2016).

The long-term price expectations are obtained from the three-to-five-year price targets

from the Value Line Investment Survey. Value Line is an independent investment research

and financial publishing firm. The price targets cover approximately 1,700 actively traded

U.S. companies every period, approximately 90% of the US publicly listed firms market

value.17 Value Line does not have any investment banking relation with the analyzed firms,

nor any other obvious reason for providing biased forecasts. To the best of our knowledge,

this is the only widely available survey containing firm-level price forecasts at long horizons.

We construct monthly earnings expectations for every firm in I/B/E/S at different hori-

zons by using the EPS forecasts for up to three Annual Fiscal Periods (FY1-FY3) and the
15See Mikhail, Walther, and Willis (1999) and Cooper, Day, and Lewis (2001).
16Bradshaw (2004) shows that individual earnings forecasts are correlated to Buy/Sell recommendations,

while Chan, Chang, and Wang (2009) show that financial firms’ own stock holding changes are significantly
positively related to recommendation changes.

17Value Line is an industry standard to the extent that it’s been documented that a large portion of
investment newsletters herds towards Value Line recommendations (Graham, 1999).
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Long-Term Growth measure (LTG) meant to forecast earnings growth over the next “three-

to-five years.” For each month, we first interpolate across the different horizons in the annual

fiscal periods to estimate an expectation over the next twelve months. We repeat this proce-

dure to calculate two-year expectations. To estimate the three-year expectations, we use the

two-year expectations and compound them with the long-term growth forecasts. We repeat

this procedure to get four-year earnings expectations. We exclude from the main sample

the following firms: a) firms without a LTG forecast, b) firms that do not have sufficient

forecasts to calculate a 12-month interpolated forecast E∗
t [∆xi,t+1], and c) firms that do

not have sufficient forecasts in the next year to calculate a 12-month interpolated forecast,

E∗
t+1 [∆xi,t+2].18

To estimate the price expectations, we obtain the one-year price expectations from the

price target in I/B/E/S. We then calculate the four-year price expectation as the three-to-five

year price targets from Value Line. We exclude from the main sample those firms missing

either a one-year or a three-to-five year price forecast. Since analysts update earnings and

price forecasts every month, our expectation data are also in monthly frequency. The main

sample covers on average 79.7% of the total market size of firms listed for at least four years

in CRSP.

III. Empirical Results

Table I shows the results of decomposition (3) applied both in a FIRE (Full Information

Rational Expectations) benchmark and using the subjective expectations. The results show

the fraction of price-earnings ratio dispersion that is explained by one-year earnings growth

expectations and discount rates, as well as the fraction that is explained by four-year earnings

growth expectations
4∑

j=1

ρj−1E∗
t [∆x̃i,t+j] and discount rates

4∑
j=1

ρj−1E∗
t [r̃i,t+j].

18This last point ensures that for every firm in the main sample we can calculate revisions E∗
t+1 [∆xi,t+2]−

E∗
t [∆xi,t+2]. This allows us to study how expectations of future earnings growth are revised after earnings

growth surprises.
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We first apply the decomposition under the FIRE benchmark using realized values and

compare the results with several FIRE models of risk premia. Then, we apply the decom-

position using subjective expectations and compare the results with several behavioral and

learning models. Overall, we find that the FIRE models struggle to match the decomposition

results for realized earnings growth and returns, while the behavioral and learning models

struggle to match the decomposition results for subjective earnings growth expectations and

return expectations. Finally, in Sections III.C-III.D, we discuss multiple robustness checks

and extend our results to study anomaly returns and the timing of forecast errors.

A. FIRE Benchmark

Let EFIRE
t [·] denote expectations under FIRE. Because forecast errors ∆x̃i,t+j−EFIRE

t [∆x̃i,t+j]

are uncorrelated with time t variables under FIRE, we know that Cov
(
EFIRE

t [∆x̃i,t+j] , p̃xi,t

)
=

Cov
(
∆x̃i,t+j, p̃xi,t

)
. The same logic also applies to FIRE expectations of future returns and

future price-earnings ratios. Thus, to evaluate the FIRE benchmark, the first and fourth

columns of Table I show the estimates of CF1, DR1, FPX1 and CF4, DR4, FPX4 using the

covariance of p̃xi,t with realized future earnings growth, returns, and price-earnings ratios.

For every coefficient, we report the Driscoll-Kraay standard errors, which account for very

general forms of spatial and serial correlation, as well as the block-bootstrap standard errors,

following the Martin and Wagner (2019) procedure.

Empirically, high price-earnings ratios are associated with lower future returns and slightly

higher future earnings growth. The first column of Table I shows that 10.3% of dispersion

in price-earnings ratios is accounted for by differences in one-year future earnings growth

and 14.3% is accounted for by differences in one-year future returns. The remaining 74.6%

is accounted for by the future price-earnings ratio.19 At the fourth year horizon, the differ-

ence between CFh and DRh widens. As shown in the fourth column of Table I, differences
19Note that the three coefficients CFh, DRh and FPXh are not mechanically set to equal one. However,

the sum of these coefficients is very close to unity, summing 0.992 for the one-year decomposition and 0.969 for
the four-year decomposition, which shows that equation (3) holds very tightly, and any potential deviations
from the approximation (2) are not correlated with firm’s price-earnings ratios.
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Table I

Decomposition of dispersion in price-earnings ratios
This table decomposes the variance of price-earnings ratios using equation (3). The FIRE column report the elements CFh, DRh

and FPXh of the decomposition using future earnings growth, future negative returns and future price-earning ratios. The
Expected column report the elements of the decomposition using expected earnings growth, expected returns and expected
price-earning ratios. The Forecast Errors column reports the contribution of the forecast errors of each element. For instance,
CF1 = Cov

(
∆x̃i,t+1, p̃xi,t

)
/V ar

(
p̃xi,t

)
is shown in the FIRE column. This component can be split into its expected component

Cov
(
E∗

t [∆x̃i,t+1] , p̃xi,t

)
/V ar

(
p̃xi,t

)
and its error component Cov

(
∆x̃i,t+1 − E∗

t [∆x̃i,t+1] , p̃xi,t

)
/V ar

(
p̃xi,t

)
. The main

sample period is 1999 to 2020. The fourth row shows the element CFh of the decompositions estimated over the longer sample
period of 1982-2020. Driscoll-Kraay standard errors and block-bootstrap standard errors are calculated for each coefficient.
In both cases, we use a lag equal to the maximum lag with any significant residual autocorrelation. Superscripts indicate
Driscoll-Kraay significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level.

One-year horizon (h = 1) One-to-four year horizon (h = 4)

FIRE Expected Forecast FIRE Expected Forecast
errors errors

1999-2020 CFh 0.103∗∗∗ 0.331∗∗∗ −0.228∗∗∗ 0.099∗ 0.433∗∗∗ −0.335∗∗∗

[0.037] [0.024] [0.032] [0.054] [0.020] [0.053]
[0.050] [0.027] [0.047] [0.082] [0.023] [0.071]

1999-2020 DRh 0.143∗∗∗ 0.033∗∗∗ 0.110∗∗ 0.320∗∗∗ 0.127∗∗∗ 0.192∗∗

[0.050] [0.013] [0.053] [0.080] [0.043] [0.082]
[0.051] [0.013] [0.053] [0.099] [0.045] [0.099]

1999-2020 FPXh 0.746∗∗∗ 0.620∗∗∗ 0.126∗∗ 0.550∗∗∗ 0.385∗∗∗ 0.165∗∗∗

[0.05] [0.019] [0.056] [0.057] [0.027] [0.062]
[0.042] [0.023] [0.051] [0.067] [0.028] [0.070]

1982-2020 CFh 0.137∗∗∗ 0.312∗∗∗ −0.175∗∗∗ 0.147∗∗∗ 0.462∗∗∗ −0.316∗∗∗

[0.026] [0.021] [0.027] [0.040] [0.027] [0.034]
[0.026] [0.021] [0.028] [0.043] [0.027] [0.033]

in future earnings growth over the next four years only accounts for 9.9% of dispersion in

price-earnings ratios, while differences in future returns account for three times as much of

the dispersion (32.0%).20

The large role of returns in explaining price dispersion poses a quantitative challenge for

traditional FIRE asset pricing models. Even models designed to generate a value premium

(i.e., low expected returns for high price ratio stocks) struggle to generate enough dispersion
20These results are consistent with De la O, Han, and Myers (2023), who use a longer sample (1963-2020)

to show that at least 43.6% of dispersion in price-earnings ratio are reflected in differences in returns after
ten years.
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in expected returns to match our findings. In Table II, we simulate three FIRE models

for the value premium (Berk et al., 1999; Zhang, 2005; Lettau and Wachter, 2007) using

their benchmark specifications and calculate the model-implied CFh and DRh. As shown by

the value of DRh, in these models, differences in expected returns only account for a small

fraction of the dispersion in price-earnings ratios.

Specifically, the three models imply that future returns over the next four years should

account for less than 6% of dispersion in price-earnings ratios while, empirically, we find

that they account for 32%. In the data and (to some extent) in the models, DRh increases

as we include more horizons. Thus, we also calculate in the model the maximum amount

of dispersion that can be explained by returns DR∞ and find that it is still an order of

magnitude smaller than what we observe in the data using just the first four years of realized

returns. These results highlight the importance of a quantitative framework. While there

are certainly FIRE models in which high price ratio stocks have lower exposure to systematic

risk, it is difficult to generate a risk premium that is quantitatively large enough to match

the observed relationship between price-earnings ratios and future returns.

Why do these models struggle to generate large DRh? Broadly, these models cover three

distinct mechanisms for generating a value premium. However, all three can be thought

of as settings in which agents exhibit preferences for the timing of cash flows. In Berk

et al. (1999) and Zhang (2005), existing projects (or capital) cannot be adjusted easily in

response to aggregate shocks. Instead, firms primarily adjust their choices about initiating

new projects or installing new capital when aggregate shocks occur. Thus, firms whose

value primarily comes from future potential projects (capital) rather than existing projects

(capital) carry a lower risk premium, as they can more easily respond to aggregate shocks.

In Lettau and Wachter (2007), aggregate shocks are partly reversed over time, reducing the

exposure of longer-horizon cash flows to aggregate risk. Firms whose value mostly comes

from future cash flows rather than current cash flows therefore carry a lower risk premium.

Because agents have rational expectations and know the objective parameters in these
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Table II

Decompositions in FIRE Asset Pricing Models
This table calculates the variance decomposition for the price-earnings ratio in different asset pricing models and reports the
implied cash flow and discount rate components for one year (CF1, DR1) and four years (CF4, DR4), as well as the infinite-
horizon DR∞. The first, second, and third rows show the results for models of risk premia. These three models are the model
of growth options in Berk et al. (1999), the model of costly reversibility of capital in Zhang (2005), and the model of duration
risk in Lettau and Wachter (2007). The last row shows the values measured in the data. All models are solved and estimated
using the original author calibrations and simulated over a 20-year sample.

Models CF1 CF4 DR1 DR4 DR∞

Berk, Green, & Naik 1999 (Growth Options) 0.61 0.85 0.01 0.03 0.04
Zhang 2005 (Costly Reversibility of Capital) −0.31 0.69 −0.01 −0.03 −0.03
Lettau & Wachter 2007 (Duration Premium) 0.03 0.24 0.02 0.06 −0.04

Observed Data (Main Sample) 0.10 0.10 0.14 0.32 n.a.

models, each firm’s risk premium is tied to the objective timing of its cash flows. High

price ratio stocks can only carry a low risk premium if they objectively have much more

backloaded cash flows (i.e., much higher cash flow growth) than their peers. Thus, these

models inherently struggle to match the empirical results, in which firms only differ slightly

in their objective future cash flow growth but differ substantially in their objective future

returns.21 Appendix E discusses the three models and the simulations in more detail. In

Section IV, we propose a model that incorporates this type of preference for the timing of

cash flows but, importantly, we do not impose FIRE. In the quantified model, we find that

these preferences play an important role in generating cross-sectional dispersion in price

ratios because agents believe that firms differ substantially in their future cash flow growth,

even though the objective differences in future cash flow growth are minimal.

B. Subjective Expectations

The second and fifth columns of Table I show the results of the decomposition when we use

subjective expectations of earnings growth, returns, and future price-earnings ratios rather
21In general, these models would require extremely large risk aversion in order for the primary effect of

differences in future cash flow growth (i.e., CFh) to be dominated by the the secondary effect that differences
in cash flow growth generate differences in discount rates (i.e., DRh). These levels of risk aversion would
imply that these models would no longer match the aggregate equity premium.
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than assuming FIRE. Comparing the subjective results to the FIRE results, there are three

important findings.

First, investors substantially overestimate the extent to which high price-earnings ratio

stocks will have high future earnings growth. Differences in expected one-year earnings

growth account for nearly a third (33.1%) of all dispersion in price-earnings ratios and

differences in expected four-year earnings growth account for 43.3% of all price-earnings

ratio dispersion. Given that realized one-year and four-year earnings growth only account

for 10.3% and 9.9% of the dispersion, respectively, this means that high price-earnings ratios

are consistently associated with disappointment in future earnings growth. Rephrased, more

than a third of all dispersion in price-earnings ratios is accounted for by the fact that current

price-earnings ratios significantly negatively predict future forecast errors (as shown in the

“Forecast errors” columns). The final row of Table I shows that our earnings growth results

are qualitatively and quantitatively similar over the longer 1982-2020 sample.

Second, investors understand that expensive stocks will have lower returns (i.e., a high

price-earnings ratio is associated with lower expected returns), but they underestimate the

magnitude of the relationship. As shown in the second row of Table I, differences in expected

one-year returns account for 3.3% of dispersion in price-earnings ratios and differences in ex-

pected four-year returns account for 12.7%. This contrasts sharply with previous findings for

aggregate return expectations, which positively comove with aggregate price ratios (Amromin

and Sharpe, 2014; Greenwood and Shleifer, 2014; De la O and Myers, 2021). Consistent with

the fact that investors overestimate future earnings growth for high p̃xi,t, we find that they

consistently overestimate the returns for high p̃xi,t. In other words, while investors expect

lower returns for high p̃xi,t stocks, the realized returns are even worse than expected.

Combined, these first two findings emphasize that the mistakes in investors’ expectations

are about magnitudes, not directions. Investors understand that high price-earnings ratios

are associated with higher future earnings growth and lower future returns, but they overes-

timate the magnitude of the earnings growth relationship and underestimate the magnitude
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of the return relationship. This highlights the benefit of using a quantitative decomposition

which captures magnitudes as well as correlations to study these expectations.

The third finding, shown in the third column of Table I, is that the unexpected returns are

smaller than the disappointment in earnings growth. While almost one quarter (22.8%) of

p̃xi,t dispersion is reflected in one-year earnings growth forecast errors, only 11.0% is reflected

in one-year unexpected returns. In other words, the disappointment in earnings growth does

not lead to an equally large disappointment in returns. This difference of 11.8% is statistically

significant and economically meaningful, as it implies that price-earnings ratio dispersion is

more persistent than forecasters expect, as shown in the forecast errors for FPX.

Why is disappointing earnings growth not immediately reflected in unexpected returns?

From equation (1), we have that

r̃i,t+1 − E∗
t [r̃i,t+1] ≈ (∆x̃i,t+1 − E∗

t [∆x̃i,t+1]) + ρ
(
p̃xi,t+1 − E∗

t

[
p̃xi,t+1

])
. (4)

If there is no unexpected change to the price-earnings ratio p̃xi,t+1, then disappointment in

one-year earnings growth should translate 1-1 into disappointment in one-year returns. If

disappointing earnings growth lowers expected future earnings growth, then disappointment

in earnings growth will also lower p̃xi,t+1 − E∗
t

[
p̃xi,t+1

]
, as the change in expected future

earnings growth lowers the price-earnings ratio. In this case, we would see that the disap-

pointment in returns is larger in magnitude than the disappointment in earnings growth,

as returns capture the disappointment in t + 1 earnings growth and the downward revi-

sion to earnings growth for t + 2 and beyond. Conversely, if disappointment in earnings

growth raises expected future earnings growth (e.g., investors expect the disappointment

in earnings growth to be partly reversed), then disappointment in earnings growth will be

associated with a positive p̃xi,t+1 − E∗
t

[
p̃xi,t+1

]
and the disappointment in returns will be

smaller than the disappointment in earnings growth. Regressing earnings growth revisions

E∗
t [∆xi,t+1]−E∗

t−1 [∆xi,t+1] on earnings growth surprises ∆xi,t −E∗
t−1 [∆xi,t], we indeed find

that earnings growth disappointment is expected to be partly reversed (see Table III Panel
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B).

How do these findings compare to common behavioral models? Focusing first on return

expectations, a well-studied model is return extrapolation (e.g., Barberis et al. 2015 and

Jin and Sui 2022). Under these models, a high price ratio is caused by agents having high

return expectations and bidding up the stock’s price, which subsequently leads to low future

realized returns. This is inconsistent with our empirical finding that investors expect lower

returns for high price ratio stocks.

Focusing on cash flow growth expectations, agents may overstate the persistence of growth

(e.g., Hirshleifer, Li, and Yu 2015), or have diagnostic expectations of growth (e.g., Bordalo

et al. 2022). We also consider models in which agents are learning about the mean of an i.i.d.

growth process (e.g., Lewellen and Shanken 2002 and Nagel and Xu 2022). These mechanisms

can all potentially explain our first empirical finding, which is that investors’ cash flow growth

expectations overstate the objective relationship between current price-earnings ratios and

future earnings growth.22 However, as detailed in Appendix F, these mechanisms all imply

that one-year earnings growth disappointment should lower expected next-year earnings

growth and should translate more than 1-1 into one-year return disappointment.

If investors believe that earnings growth is highly persistent, then a disappointing earn-

ings growth realization causes investors to negatively revise their future earnings growth

expectations. Similarly, if investors are learning the mean of an i.i.d. earnings growth pro-

cess or have diagnostic expectations that magnify recent shocks, then disappointing earnings

growth should induce negative revisions to expected future growth. As mentioned above, this

implies that the disappointment in returns is larger in magnitude than the disappointment

in earnings growth, as returns reflect both the disappointment in current earnings growth

and the revisions to future earnings growth.

In short, our empirical finding that one-year return disappointment is smaller in mag-
22In Appendix F, we also discuss the diagnostic expectations model of Bordalo et al. (2019). Because this

model features diagnostic expectations about earnings levels, rather than earnings growth, it predicts that
high price-earnings ratio stocks have low one-year earning growth expectations, which is not consistent with
our first finding.
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nitude than the one-year earnings growth disappointment is inconsistent with mechanisms

that make prices highly sensitive to the most recent earnings growth realizations. Rather

than revising down their expectations of next year growth after a disappointing earnings

growth realization, we find that investors expect the disappointment will largely be reversed

and that there is only a muted immediate change in prices. It is only after several years

that the disappointment in earning growth translates into large negative realized returns.

We show in Sections IV and V that having investors use constant-gain learning to infer both

mean earnings growth and a temporary shock to the level of earnings successfully matches

our empirical findings. This is similar in spirit to learning about the mean of an i.i.d. pro-

cess, but the inclusion of the temporary shocks qualitatively changes the timing of earnings

growth surprises and return surprises.

C. Robustness checks

Given the importance of these decomposition results, we perform a number of robustness

checks. First, in addition to the Driscoll-Kraay and block-bootstrap standard errors reported

in Table I, we also calculate the significance of our results under a worst-case scenario for

overlapping observations. Specifically, in Appendix C.2, we perform Bauer and Hamilton

(2018) simulations, which account for trends and potential small-sample bias, and assume a

worst-case scenario for overlapping observations in which residuals are MA(47). Note that

this substantially overstates the measured persistence of our residuals. With the exception

of the coefficient for four-year realized earnings growth, we find that the earnings growth and

return coefficients in Table I are all signficant at the 5% level, even under this worst-case

scenario.

Second, we estimate an exact decomposition to remove the approximation in equation

(3). As shown in Table AI, this exact decomposition gives nearly identical results to Table

I.

Third, in Table AIV, we address the concern that dispersion in price-earnings ratios may
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potentially be driven by fluctations in one-year earnings rather than cross-sectional differ-

ences in prices. We find that the dispersion in price-earnings ratios is nearly identical to the

dispersion price-to-smoothed-three-year-earnings ratios.23 Further, we show that the decom-

position results are not changed in any noticable way when we repeat the decomposition for

price-to-smoothed-three-year-earnings ratios.

Finally, we address potential survivorship bias. For our main estimation, we require that

stocks have an observed future price and future earnings, as this allows us to study forecast

errors in subjective expectations. However, in Table AV, we remove this requirement and

calculate future portfolio outcomes by reinvesting delisted stocks based on the delisting

return. We find almost no change in our results.

D. Extending to anomaly returns

The presence of both return and earnings growth expectations can also be used to study cross-

sectional anomaly returns using the logic in equation (4). Consider an anomaly variable ãi,t,

such as profitability or investment, which predicts next-period returns. To make comparison

across anomalies simple, we normalize ãi,t so that it has variance 1 and positively comoves

with future returns. From equation (4), we have the identity

Cov (r̃i,t+1 − E∗
t [r̃i,t+1] , ãi,t)︸ ︷︷ ︸

σa,r

≈ Cov (∆x̃i,t+1 − E∗
t [∆x̃i,t+1] , ãi,t)︸ ︷︷ ︸

σa,x

+ ρCov
(
p̃xi,t+1 − E∗

t

[
p̃xi,t+1

]
, ãi,t

)︸ ︷︷ ︸
σa,px

. (5)

For robustness, Appendix C.1 shows an exact decomposition based on price growth, which

gives very similar results.

Under full-information rational expectations, we would have σa,r, σa,x, σa,px = 0, i.e., any

predictable anomaly returns would be fully anticipated and ãi,t would not predict forecast

errors. For example, a higher ãi,t might be related to higher risk exposure and investors
23The standard deviation of cross-sectionally demeaned price-earnings ratios is 30.1% and the standard

deviation of cross-sectionally demeaned price-to-three-year-earnings ratios is 32.6%. This demonstrates that
smoothing the denominator does not reduce the cross-sectional dispersion in price ratios.
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Table III

Unexpected anomaly returns
This table measures and decomposes unexpected anomaly returns. The Representative Anomaly is the average ranking of each
stock across 20 different anomalies, and p̃xi,t is the demeaned price-earnings ratio. For each anomaly variable, we sort stocks
into five equal-value portfolios based on the anomaly variable. Panel A shows the coefficients of regressing each of the dependent
variables on a specific anomaly variable. Both anomaly variables are scaled to have unit variance and to positively comove with
future returns. The three dependent variables are the unexpected return r̃i,t+1−E∗

t [r̃i,t+1], the earnings growth forecast errors
∆x̃i,t+1 − E∗

t [∆x̃i,t+1], and the price-earnings ratio forecast errors ρ
(
p̃xi,t+1 − E∗

t

[
p̃xi,t+1

])
. The sample period is 1999 to

2020. Panel B shows the effect of earnings growth surprises on revisions. Each column shows the cofficient from regressing
the revision in earnings growth E∗

t+1 [∆x̃i,t+2] − E∗
t [∆x̃i,t+2] on the earnings growth surprise ∆xi,t+1 − E∗

t [∆xi,t+1] . The
first row shows the result of the regressions using the main sample period of 1999 to 2020. The second row shows the result
of the regressions using the long sample period of 1982 to 2020. Driscoll-Kraay standard errors and block-bootstrap standard
errors are calculated for each coefficient. In both cases, we use a lag equal to the maximum lag with any significant residual
autocorrelation. Superscripts indicate Driscoll-Kraay significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level.

Panel A: Anomaly Return Decomposition

Representative Anomaly p̃xi,t

r̃i,t+1 − E∗
t [r̃i,t+1]

0.0340∗∗∗ 0.0331∗∗

[0.013] [0.016]
[0.013] [0.016]

∆x̃i,t+1 − E∗
t [∆x̃i,t+1]

0.0635∗∗∗ 0.0687∗∗∗

[0.020] [0.010]
[0.020] [0.014]

ρ
(
p̃xi,t+1 − E∗

t

[
p̃xi,t+1

]) −0.0317∗∗∗ −0.0380∗∗

[0.09] [0.017]
[0.09] [0.015]

Panel B: Revisions after Surprises

Main Sample 1999-2020 −0.811∗∗∗ −0.863∗∗∗

[0.49] [0.075]
[0.49] [0.074]

Long Sample 1982-2020 −0.818∗∗∗ −0.786∗∗∗

[0.060] [0.091]
[0.062] [0.088]
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would require higher returns on these stocks as compensation. More broadly, positive values

of σa,r indicate that investors understate the relationship between ãi,t and future returns. In

other words, the high returns on high ãi,t stocks are not fully anticipated. Negative values

for σa,r indicate that investors not only understand that high ãi,t stocks have higher returns,

but they exaggerate the magnitude of the relationship.

In comparison, the values for σa,x and σa,px indicate how much the predictable return

forecast errors are explained by predictable errors in next-year earnings growth expectations

and expectations of the future price-earnings ratio. When high ãi,t stocks generate unan-

ticipated high next-period returns, these returns can be explained by unexpectedly high

next-period earnings growth. Alternatively, ãi,t could positively predict forecast errors for

the future price-earnings, which would mean that the unanticipated high returns of high ãi,t

stocks are due to errors in return expectations and earnings growth expectations at longer

horizons beyond one period, not because of next-period earnings growth.

We estimate the decomposition in equation (5) using our high and low price-earnings

ratio portfolios from the previous section, as well as 20 other annual anomalies from Hou,

Xue, and Zhang (2015).24 For each anomaly, we sort stocks into five equal-value portfolios

based on the anomaly variable.25 We then measure forecast errors for one-year returns,

earnings growth, and price-earnings ratios and regress each of the three variables on the

anomaly variable. We also calculate a representative anomaly that sorts stocks based on the

20 different variables and uses the average ranking across these variables in the sorting and

in the regressions.

Table III shows that the results for the representative anomaly are qualitatively and

quantitatively similar to our findings from Section III.B. Note that both the representative

anomaly and p̃xi,t have been scaled to have unit variance and to positively comove with future

24Beyond the price-earnings ratio, we find 21 anomalies documented in Hou, Xue, and Zhang (2015) which
are applicable to annual returns. We then drop the size anomaly because the forecasts are provided primarily
for large firms, and are thus, not suited to cover portfolios over this anomaly.

25To perform these tests, stocks are required to have one-year expected and realized earnings growth,
returns, and price-earnings ratios. We also require that stocks have a future one-year earnings growth
expectation E∗

t+1 [∆x̃i,t+2] for our test of revisions.
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Figure 1. Unexpected anomaly returns. This figure shows the decomposition results (σa,r, σa,x)

for each anomaly ãi,t. The x-axis shows σa,r = Cov (r̃i,t+1 − E∗
t [r̃i,t+1] , ãi,t), which measures how much the

anomaly variable predicts unexpected returns. The y-axis shows σa,x = Cov (∆x̃i,t+1 − E∗
t [∆x̃i,t+1] , ãi,t),

which measures how much the anomaly variable predicts one-year earnings growth forecast errors. The
anomalies are shown in blue. In red, we show the FIRE benchmark, which is that σa,r and σa,x should
equal 0 for all anomalies. In green, we show a Representative Anomaly (RA) that sorts stocked based on
their average ranking across all of the individual anomalies, as well as the results for the portfolios used to
study cross-sectional variation in price-earnings ratios (P/X). Each anomaly variable ãi,t is scaled to have
unit variance and to positively comove with future returns.

returns. Panel A shows that a one standard deviation increase in either of the anomaly

variables is associated with a roughly 3p.p. increase in unexpected returns (0.0340 and

0.0331, respectively). This increase in unexpected returns is more than accounted for by

the roughly 6p.p. increase in unexpected earnings growth (0.0635 and 0.0687, respectively).

Why does the large earnings growth surprise not immediately translate 1-1 into unexpected

returns? It is because the earnings growth surprise is expected to be partly reversed by next

period earnings growth, as shown in Panel B.

Figures 1 and 2 show the results for each of the 22 anomalies (the 20 individual anomalies,

our price-earnings ratio portfolios and the representative anomaly). Starting with Figure

1, we see that for almost every anomaly, we estimate a positive value of σa,r, meaning

that investors do not fully anticipate the high returns on high ãi,t stocks. Further, we find
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Figure 2. Revisions in anomaly expected earnings growth. This figure shows the effect
of earnings growth surprises on revisions for each set of anomaly portfolios. Each bar shows the coefficient
from regressing the revision in earnings growth E∗

t+1 [∆x̃i,t+2]−E∗
t [∆x̃i,t+2] on the earnings growth surprise

∆x̃i,t+1 − E∗
t [∆x̃i,t+1]. The coefficients are shown in ascending order. Individual anomalies are shown in

blue. In green, we show the Representative Anomaly (RA) that sorts stocks based on their average ranking
across all of the individual anomalies, as well as the results for the portfolios used to study cross-sectional
variation in price-earnings ratios (P/X).

that most anomalies (17 out of 22) are associated with large positive one-year earnings

growth forecast errors, as shown by the estimates of σa,x. Appendix Table AVI show the full

decomposition for each anomaly.

Comparing σa,r and σa,x across anomalies, we see that anomalies with higher σa,r generally

have higher σa,x, i.e., larger unanticipated returns are associated with larger one-year earnings

growth forecast errors, and σa,x is generally larger than σa,r, i.e., earnings growth surprises

translate less than 1-1 into unexpected returns. This means that our findings on the dynamics

of earnings growth surprises and unexpected returns from Section III.B also extends to most

anomaly portfolios. As shown in Figure 2, we once again find that this pattern is explained by

the fact that positive earnings growth surprises ∆x̃i,t+1−E∗
t [∆x̃i,t+1] decrease expected next

period growth E∗
t+1 [∆x̃i,t+2]. For all anomalies in the sample, this coefficient is negative and

significant. As this revision test does not necessitate return expectations, we also conduct it

over the long sample for robustness and find similar results in Appendix Table AVII.
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To summarize, consistent with the results from Section III.B, we find quantitatively

large deviations from FIRE in expectations of both returns and earnings growth for anomaly

portfolios. The magnitudes of these deviations highlight that not only are unexpected returns

positively associated with earnings growth surprises, but also that the relationship is less

than 1-1. This evidence, once again, points against models in which unexpected realized

returns are highly sensitive to recent earnings growth surprises and highlights the benefit of

quantitative decompositions which allow for these types of comparisons. In the next section,

we propose a model that can replicate these dynamics of earnings growth surprises and

unexpected returns.

IV. Model of cash flow expectations and discount rates

In this section, we introduce a model with slow-moving learning about cash flow growth and

risk premia related to cash flow timing. We show in Section V that this model quantitatively

replicates our empirical findings. Throughout this section, we use lowercase letters to denote

log values, z ≡ log (Z).

A. Cash flows and the stochastic discount factor

For each firm i, the log cash flow xi,t has an aggregate and a firm-level component,

xi,t = xagg
t + x̃i,t (6)

xagg
t = ϕxagg

t−1 + ut (7)

x̃i,t = git+ vi,t. (8)

The aggregate component is an AR(1) process, which can be thought of as business-cycle

fluctuations. The firm-level component is a firm-specific trend git plus noise to capture

potential cross-sectional differences in growth rates. The shocks ut, vi,t are uncorrelated and

have variances σ2
u, σ

2
v .
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The agent has a log stochastic discount factor

mt+1 = −rf − 1

2
γ2σ2

u − γut+1 (9)

which depends on the aggregate shock ut+1.

B. Subjective cash flow expectations

Objectively, the value of gi is identical across firms, gi = ḡ.26 However, the agent does not

know each firm’s gi and forms her subjective expectation E∗
t [gi] using constant-gain learning,

E∗
t [gi] = E∗

t−1 [gi] + β
(
∆x̃i,t − E∗

t−1 [∆x̃i,t]
)

(10)

E∗
t [vi,t] = (1− β)

(
∆x̃i,t − E∗

t−1 [∆x̃i,t]
)

(11)

where β is the constant-gain parameter. Specifically, after observing the surprise ∆x̃i,t −

E∗
t−1 [∆x̃i,t], she attributes portion β to firm-specific growth and portion (1− β) to the noisy

shock vi,t. Her expectation for the future growth of the firm-level component is then

E∗
t [∆x̃i,t+1] = E∗

t [gi]− E∗
t [vi,t] . (12)

Her expectation for the future level of the firm-level component is

E∗
t [x̃i,t+n] = x̃i,t + nE∗

t [gi]− E∗
t [vi,t] . (13)

C. Prices and subjective risk premia

Sections IV.A and IV.B lay out all of the elements and assumptions of the model. In

this subsection, we simply combine the agent’s beliefs and the stochastic discount factor to

calculate the price for various claims. Appendix A gives the details for all of the equations.

To start, let P (n)
t be the price of an n-period aggregate strip, i.e., a claim that pays Xagg

t+n

26Given that our empirical analysis focuses on price-earnings ratios, we normalize ḡ to 0 without loss of
generality.
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in n periods. The aggregate strip price is

P
(n)
t = E∗

t

[(
n∏

j=1

Mt+j

)
Xagg

t+n

]

= exp

{
−nrf − γσ2

u

1− ϕn

1− ϕ
+

1

2
σ2
u

1− ϕ2n

1− ϕ2
+ ϕnxagg

t

}
. (14)

The realized return on the strip is

R
(n)
t+1 =

P
(n−1)
t+1

P
(n)
t

= exp

{
rf + γσ2

uϕ
n−1 − 1

2
σ2
uϕ

2(n−1) + ϕn−1ut+1

}
(15)

and the subjective expected return on the strip is

E∗
t

[
R

(n)
t+1

]
= exp

{
rf + γσ2

uϕ
n−1
}
. (16)

The first term (rf ) reflects the risk-free rate and the second term (γσ2
uϕ

n−1) reflects the

subjective risk premium, i.e., the compensation agents require for exposure to risk.

Equation (16) shows an important characteristic of this model: longer horizon strips carry

a lower annual subjective risk premium γσ2
uϕ

n−1. Equation (7) shows that aggregate shocks

are persistent but not permanent. This means that short horizon cash flows are dispropor-

tionately sensitive to the aggregate shock.27 Because of this, the annual risk premium is

higher for short horizon cash flows. This is similar to the mechanism in Lettau and Wachter

(2007).

Each firm i can be viewed as a collection of strips. Specifically, since shocks to the firm-

level component vi,t are uncorrelated with the aggregate shock, we can express the firm’s

27Specifically, the covariance of the log cumulative stochastic discount factor log
(∏n

j=1 Mt+j

)
with the

aggregate cash flows xagg
t+n is 1−ϕn

1−ϕ γσ2
u, which increases with horizons but not proportionally.
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price as

Pi,t =
∞∑
n=1

E∗
t

[(
n∏

j=1

Mt+j

)
Xagg

t+nX̃i,t+n

]

=
∞∑
n=1

P
(n)
t E∗

t

[
X̃i,t+n

]
=

∞∑
n=1

P
(n)
t exp

{
1

2
σ2
v + E∗

t [x̃i,t+n]

}
. (17)

In other words, idiosyncratic firm risk is not priced, so firm prices simply depend on the

expected firm-level component E∗
t [x̃i,t+n] and the aggregate strip prices P

(n)
t .

The subjective expected return on firm i is then simply a weighted average of the sub-

jective expected return on the individual strips,

E∗
t [Ri,t+1] = E∗

t

[
Xagg

t+1X̃i,t+1 + Pi,t+1

Pi,t

]

=
∞∑
n=1

wi,t,nE
∗
t

[
R

(n)
t+1

]
=

∞∑
n=1

wi,t,n exp
{
rf + γσ2

uϕ
n−1
}

(18)

where the weight wi,t,n =
exp{nE∗

t [gi]}P
(n)
t∑∞

n=1 exp{nE∗
t [gi]}P

(n)
t

captures how much of the firm’s value in equa-

tion (17) comes from its horizon n cash flows.

The realized return for firm i is

Ri,t+1 =
Xagg

t+1X̃i,t+1 + Pi,t+1

Pi,t

=
∞∑
n=1

wi,t,nR
(n)
t+1

E∗
t+1

[
X̃i,t+n

]
E∗

t

[
X̃i,t+n

] . (19)

In addition to depending on a weighted average of realized strip returns R
(n)
t+1, the realized

firm return also depends on the change in the expected future firm-level component. From

equations (10), (11), and (13), this change in expectations can all be expressed entirely in

terms of the surprise about one-period growth ∆x̃i,t+1 − E∗
t [∆x̃i,t+1], as for n ≥ 2 we have
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that

E∗
t+1

[
X̃i,t+n

]
E∗

t

[
X̃i,t+n

] = exp {nβ (∆x̃i,t+1 − E∗
t [∆x̃i,t+1])} . (20)

D. Model implications

Below, we discuss several qualitative implications from the model that are relevant to our

empirical findings.

First, increases in E∗
t [gi] raise the firm’s price in two ways: increasing the expected future

cash flows and decreasing the subjective risk premium. From equation (17), a higher expected

gi naturally increases the value of the firm by increasing the value of future expected cash

flows. What is less straightforward is that raising E∗
t [gi] lowers the subjective risk premium.

As shown in equation (16), longer horizon cash flow strips carry a lower risk premium in

this model, as their annualized return is less sensitive to the aggregate shock ut+1. A higher

value for E∗
t [gi] means that more of the firm’s value comes from its longer horizon cash

flows and therefore the weights wi,t,n in equation (18) are more concentrated on the longer

horizon exp
{
rf + γσ2

uϕ
n−1
}
. In line with the findings in Table I , this means that both higher

expected earnings growth and lower expected returns will help to explain high price-earnings

ratios.

Second, if the constant-gain parameter β is small, then a positive surprise ∆x̃i,t −

E∗
t−1 [∆x̃i,t] will decrease expected next period growth E∗

t [∆x̃i,t+1]. After observing a pos-

itive surprise ∆x̃i,t − E∗
t−1 [∆x̃i,t], the agent slightly raises her beliefs about gi but largely

attributes the surprise to the noisy shock vi,t. Following equations (10)-(12), this lowers her

expectations about the following year’s earnings growth, as she expects the noisy shock will

disappear. This result is in line with the findings in Table III Panel B and highlights how

the inclusion of temporary shocks substantially changes the model’s predictions relative to

the models discussed in Section III.B.

Third, if the constant-gain parameter β is small, then the impact of cash flow surprises
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∆x̃i,t+1−E∗
t−1 [∆x̃i,t+1] on one-period returns will be small. As shown in equations (19)-(20),

a positive surprise ∆x̃i,t+1 −E∗
t [∆x̃i,t+1] will cause the realized return to be higher than the

agent’s expected return (E∗
t [Ri,t+1]). However, if β is fairly small, then expectations of gi will

only respond slightly in response to surprises, which means we will not observe a large one-

period return. Rephrased, the mapping between cash flow surprises ∆x̃i,t+1 − E∗
t [∆x̃i,t+1]

and realized returns Ri,t+1 depends on how “stubborn” beliefs are (i.e., how much agents

attribute surprises to temporary shocks that do not impact future cash flows). This allows

the model to match our empirical finding that one-year earnings growth disappointment does

not immediately translate 1-1 into one-year return disappointment. Instead, earnings growth

disappointment will be gradually reflected in returns over time, as agents slowly update their

beliefs about gi.

It’s important to note that these model implications are the result of two mechanisms:

slow updating of future cash flow expectations in response to surprises and a preference for

the timing of cash flows. While the model represents these two mechanisms by parame-

ter learning and non-permanent aggregate shocks, there are other mechanisms that could

potentially deliver similar implications.

In our model, constant-gain learning about gi delivers slow updating of future cash flow

expectations if the parameter β is small. This choice is motivated by our evidence in Table

III Panel B and by previous literature estimating small gain parameters of 0.018 to 0.02

from survey expectations and realized macroeconomic variables (Orphanides and Williams,

2005 and Milani, 2007). Instead of constant-gain learning, one could also consider learning

from experience, which Malmendier and Nagel (2016) show can be closely approximated as

constant-gain learning with a small gain parameter. Further, one could consider learning

about a latent time-varying component of earnings growth rather than a fixed parameter gi.

We consider this alternative specification in Appendix H.3 and find similar qualitative and

quantitative results.

The preference for the timing of cash flows in the model is generated by having aggregate
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shocks that are persistent but not permanent. Because of this, short-term cash flows are

disproportionately exposed to aggregate risk and are disproportionately discounted compared

to long horizon cash flows. Importantly, the qualitative implications of this model do not rely

on short horizon cash flows being objectively riskier. As long as agents believe short horizons

are disproportionately riskier than long horizons, an increase in the believed E∗
t [gi] will lower

the subjective risk premium. Using the survey measure of subjective risk constructed in

Jensen (2023), we confirm in Appendix G that our high price-earnings ratio portfolios are

indeed believed to be riskier than our low price-earnings ratio portfolios. Alternatively, one

could consider other mechanisms that generate disporportionate discounting of short-term

cash flows such as beta-delta present bias.

Ultimately, we choose to focus on constant-gain parameter learning and differences in

perceived risk, as this provides a parsimonious description of these mechanisms and allows

us to estimate the model parameters without targeting any of our empirical results from

Section III. As shown in Section V, we take the gain β from previous work on constant-gain

learning and set risk sensitivity γ to match the aggregate equity premium. As a result, we

can fully utilize the empirical decomposition results of Table I to evaluate the quantitative

realism of our model.

V. Quantitative model and full decomposition

While the implications of the model are qualitatively consistent with the results in Section

III, our findings in Table I also provide important quantitative implications. As shown

in Table II, many models qualitatively match the decomposition results but struggle to

quantitatively match the magnitudes. To make a fair comparison to the models mentioned

in Section III, we do not use any information from the decomposition results to estimate

the model parameters. Instead, we set all of the parameters based on time-series moments

and previous estimates of the learning gain β, then evaluate how well the model matches the
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cross-sectional decompositions as well as a number of other moments.

The quantified model fulfills three key purposes. First, quoting Brunnermeier et al.

(2021), “Research focus should be on motivating, building, calibrating, and estimating models

with non-RE beliefs rather than on merely rejecting RE models. To make further progress,

we need structural models of belief dynamics that can compete with RE models in explaining

asset prices and empirically observed beliefs.”28 This model intends to be a step in this

direction. It provides a quantitative model that generates realistic asset pricing moments and

outperforms the FIRE models of Table II in matching the empirical decomposition results.

Notably, despite using only time-series moments, the model matches both the magnitudes

and timing for the cross-sectional dynamics of price-earnings ratios, realized and expected

earnings growth, and realized and expected returns. Second, the quantified model allows us

to extend the decomposition in equation (3) beyond the four-year horizon to estimate the full

role of subjective expected earnings growth and subjective discount rates in accounting for

the dispersion in price-earnings ratios. Third, we can analyze the importance of learning, risk

sensitivity, and the interaction between learning and risk sensitivity using counterfactuals

where one or both of these channels are removed (β and/or γ set to 0).

A. Estimation

The model only has six parameters, which are all shown in Table IV. The parameters for cash

flows (ϕ, σu, σv) are all estimated directly from realized earnings growth for our full sample

of 1982-2020. For the aggregate process, the standard deviation and autocorrelation of S&P

500 earnings growth imply a persistence ϕ = 0.83 and a volatility σu = 0.34. The volatility

of individual shocks σv = 0.10 is obtained from the volatility over time of the portfolio-level

earnings growth. Appendix H.1 shows the exact formulas mapping these empirical moments

to the model parameters. The constant-gain parameter is obtained from Malmendier and
28Note that this paper uses RE as a shorthand for full information rational expectations and specifically

highlights learning about parameters as a promising form on non-RE models to explore: “For example, models
of Bayesian learning relax the RE assumption that agents know the model of the world and its parameter
values”.
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Table IV

Model estimation
This table shows the value of the six parameters of the model. The parameters for the aggregate cash flow process (ϕ, σu)
are derived directly from the autocorrelation and standard deviation of the S&P 500 annual earnings growth. The firm-level
volatility σv is derived directly from the standard deviation over time of the portfolio-level annual earnings growth. The risk-free
rate rf and risk sensitivity γ are set to match the average one-year Treasury yield and average aggregate equity return during
the sample period. The constant-gain learning parameter β is taken from Malmendier and Nagel (2016). All moments are
estimated over the full sample period of 1982 to 2020.

Parameter Value Moments
Cash flow process

ϕ 0.83 AC(∆xagg
t+1)

σu 0.34 σ
(
∆xagg

t+1

)
σv 0.10 σ (∆xi,t+1)

SDF
rf 4.6% Risk-free rate
γ 1.61 Average aggregate return

Learning

β 1.8%
Constant-gain learning

(Malmendier and Nagel, 2016)

Nagel, 2016 as β = 0.018. Note that this is nearly identical to the gain estimated in Milani

(2007) of 0.0183.29 For the agent’s stochastic discount factor, the risk-free rate rf = 4.6%

and the sensitivity to risk γ = 1.61 are set to match the average one-year Treasury yield and

average aggregate stock return of 10.5% for 1982-2020.30

B. Model performance

B.1. Dynamics of prices, cash flows, and returns

After quantifying the model, we now evaluate the joint dynamics of price-earnings ratios,

earnings growth, and returns. Figure 3 shows the one- and four-year price-earnings ratio

decomposition results from Table I, along with their 95% confidence intervals. For compar-

ison, the black dots show the values implied by our model. Overall, the model successfully
29These papers estimate the constant-gain parameter on a quarterly frequency. We show in Appendix H.2

that this estimation is quantitatively very similar to an estimation using an annual frequency. Conceptually,
we are simply imposing that all updating occurs at the end of the year rather than allowing for small amounts
of updating within the year.

30The model is simulated yearly over 500 periods for 300 firms. To avoid being impacted by the initial
value of the expectations E∗

0 [gi], we calculate all moments after t = 150.
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Figure 3. Empirical decomposition and model decomposition. This figure evaluates
the one- and four-year decomposition of p̃xi,t dispersion in the model. The light bars show the contribution
of realized earnings growth and realized returns to the dispersion of price-earnings ratios obtained in the
first and fourth columns of Table I. The dark bars show the contribution of expected earnings growth and
expected returns to the dispersion of price-earnings ratios obtained in the second and fifth columns of Table
I. Each bar shows Driscoll-Kraay 95% confidence intervals. The black dots show the values of both the
realized and expected decomposition implied by the model.

matches both the objective decomposition of price-earnings ratio dispersion (i.e., comove-

ments of price ratios with future earnings growth and future returns) and the subjective

decomposition (i.e., comovement of price ratios with expected earnings growth and expected

returns).

In the model, high price-earnings ratios are associated with significantly higher expected

earnings growth and moderately lower expected returns. Figure 3 shows that a one unit

increase in p̃xi,t is associated with a 0.30 (0.39) increase in expected one-year (four-year)

earnings growth and a 0.03 (0.11) decrease in expected returns. Because of the temporary

shocks to the level of earnings vi,t, realized one-year future earnings growth is partly pre-

dictable. In line with the data, a one unit increase in the model price-earnings ratio predicts

a 0.14 increase in realized one-year earnings growth and this coefficient is unchanged as

we increase the horizon to four years. The relationship between price-earnings ratios and

expected earnings growth is quantitatively much larger than the relationship between price-
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earnings ratios and realized future earnings growth, meaning that high price-earnings ratios

predict disappointment in future earnings growth. As a result, the relationship between

price-earnings ratios and realized negative returns is larger than expected, 0.10 (0.39) at the

one-year (four-year) horizon. Overall, this parsimonious model is able to closely match all 8

moments from the decomposition.

The fact that the model matches our decomposition results at multiple horizons highlights

its success both in terms of magnitudes and in terms of timing. While the difference in

expected and realized one-year earnings growth is large, this does not translate into a large

difference between expected and realized one-year negative returns. Instead, agents are slow

to adjust their beliefs and the disappointment in earnings growth leads to much lower than

expected returns at longer horizons.

Because of this slow adjustment of prices, the model is able to simultaneously match the

large one-year earnings growth disappointment shown in Figure 3 and the high empirical

persistence of p̃xi,t, which is 0.77 in the data and 0.76 in the model. In general, these

two facts are difficult to match for models in which growth expectations are sensitive to

recent realizations (e.g., overstating the persistence of growth or diagnostic expectations

of growth), as disappointing earnings growth for high p̃xi,t firms would cause their price-

earnings ratios to quickly fall. Further, our model is still consistent with previous cross-

sectional evidence of overreaction. Using the Coibion and Gorodnichenko (2015) regression,

we find that revisions in expected long-term growth E∗
t [gi] − E∗

t−1[gi] negatively predict

forecast errors gi − E∗
t [gi] with a coefficient of −0.5, which is quantitatively similar to the

empirical coefficients estimated in Bordalo et al. (2019) of −0.20 to −0.31. However, the

model predicts that these revisions in expectations do not lead to large immediate changes

in prices.
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Table V

Model evaluation
This table evaluates the model by comparing the untargeted aggregate and cross-sectional moments in the model simulations
with those observed in that data. Panel A shows the mean, standard deviation and autocorrelation of the aggregate price-
earnings ratio as well as the standard deviation of aggregate stock returns. Panel B shows the cross-sectional standard deviations
of price-earnings ratios, future earnings growth and returns, and expected earnings growth and returns. Panel C shows the
idiosyncratic volatility across time of price-earnings ratios, future earnings growth and returns, and expected earnings growth
and returns. All moments in the table are untargeted, except for idiosyncratic realized earnings growth volatility. Aggregate
moments are estimated over the full sample period of 1982 to 2020. The cross-sectional dispersion and idiosyncratic volatility
moments are estimated over the main sample of 1999 to 2020 due to data availability.

Panel A: Aggregate value
Mean pxt σ (pxt) AC (pxt) σ (rt)

Model 2.31 43.2% 0.81 11.5%
Data 2.98 42.5% 0.74 15.9%

Panel B: Cross-sectional standard deviation
p̃xi,t ∆x̃i,t+1 r̃i,t+1 E∗

t [∆x̃i,t+1] E∗
t [r̃i,t+1]

Model 20.9% 14.1% 5.6% 11.9% 0.8%
Data 22.6% 12.6% 5.7% 14.0% 2.6%

Panel C: Idiosyncratic volatility
p̃xi,t ∆x̃i,t+1 r̃i,t+1 E∗

t [∆x̃i,t+1] E∗
t [r̃i,t+1]

Model 19.7% 14.0% 5.5% 11.7% 0.7%
Data 19.0% 16.6% 6.3% 12.3% 7.4%

B.2. Aggregate and cross-sectional moments

On top of the 8 untargeted moments represented by the decomposition exercises, the model

is also able to match several relevant moments from the data. Table V shows a comparison

of the untargeted moments in the model and the data. First, despite not using any price

information in the estimation other than the average aggregate equity return, the model

generates realistic dynamics for the aggregate price-earnings ratio. The unconditional mean,

volatility and autocorrelation of the log price-earnings ratio in the model (2.31, 43.2%, and

0.81) are consistent with the observed values (2.98, 42.5%, and 0.74) and the model generates

volatile returns.

Second, while no information on cross-sectional dispersion was used in the estimation, the

model performs well in matching the empirical dispersion of nearly all of our variables.31 In
31The empirical dispersion is measured as the median cross-sectional standard deviation for each variable.
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other words, constant-gain learning with temporary shocks can successfully generate large

differences across firms in price-earnings ratios, realized earnings growth, and realized re-

turns, which have model dispersions of 20.9%, 14.1%, and 5.6% respectively. Beyond ex-

plaining the realized data, we find that the model also accurately captures the large empirical

dispersion in expected earnings growth (11.9%).

We do find that the model understates the cross-sectional dispersion in expected returns.

For the sake of parsimony, in the model, subjective discount rates are entirely driven by risk

premia related to cash flow timing, see equation (18). Expanding the model to incorporate

other risks into discount rates could help to better match this moment. However, as shown

in Figure 3, the model still succeeds in matching the covariance of price-earnings ratios

with expected returns. In other words, while the model does not capture all cross-sectional

differences in expected returns, it does capture the portion that is predictable with price-

earnings ratios, i.e., the portion that is useful for generating large differences in price-earnings

ratios.

Third, the model replicates the measured portfolio-level volatilities. Note that these

volatilities, which reflect variation in a single portfolio across time, are distinct from our

estimates of dispersion, which capture cross-sectional variation across portfolios. The only

information about portfolio-level volatility utilized in the estimation was the volatility of

realized earnings growth, which means that the model provides an accurate mapping of how

volatility in earnings growth translates into volatility in price-earnings ratios, returns, and

expected earnings growth. Similar to our results for dispersion, we find that the model

understates the volatility of expected returns.

In summary, we find that the model not only successfully matches the untargeted de-

composition moments, but also generates realistic aggregate stock market moments as well

as realistic cross-sectional dispersion and portfolio-level volatility. This demonstrates that

a relatively parsimonious structural model of belief formation can feasibly improve upon

FIRE models in terms of quantitatively matching the realized data while also matching the
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dynamics of empirically observed beliefs.

C. Full role of objective cash flows, cash flow mistakes, and discount rates

Using the quantified model, we can measure the full role of cash flow growth expectations and

subjective discount rates in accounting for price-earnings ratio dispersion and the persistence

of this dispersion. Table VI Panel C shows the decomposition in equation (3) when we

extend to the infinite horizon. Specifically, it shows the cross-sectional dispersion V ar
(
p̃xi,t

)
and the two components Cov

(
∞∑
j=1

ρj−1E∗
t [∆x̃i,t+j] , p̃xi,t

)
, Cov

(
−

∞∑
j=1

ρj−1E∗
t [r̃i,t+j] , p̃xi,t

)
.

Additionally, Panel C shows the persistence of p̃xi,t, which measures whether cross-sectional

differences in price-earnings ratios are transitory or long-lived.

To start, we focus on the final column, which is our main model parameterization. As

shown in the third row of Panel C, the model estimates that differences in expected cash flow

growth account for two-thirds (65.7%) of all dispersion in price-earnings ratios.32 Combined

with the aggregate time series findings of De la O and Myers (2021), this means that both

time series variation in aggregate price ratios and cross-sectional dispersion in price ratios are

both primarily explained by expected cash flow growth. However, unlike the aggregate time

series findings, we also estimate a non-trivial role for subjective discount rates in accounting

for price-earnings ratio dispersion. The sixth row of Panel C shows that low subjective

discount rates for high price-earnings ratio firms accounts for roughly one-third (34.3%) of

all dispersion in price-earnings ratios.

Looking at the breakdown of the 65.7% contribution from expected earnings growth, we

see that this largely comes from forecast errors. The comovement of price-earnings ratios

with realized future earnings growth only accounts for 14.9% of the dispersion, meaning that

the remaining 50.8% comes from price-earnings ratios predicting forecast errors for earnings

growth. As a result, high price-earnings ratios are largely associated with low future returns,
32This is consistent with the empirical results of Table I, where we find that expected earnings growth

over just the first four years already accounts for 43.3% of all price-earnings ratio dispersion.
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Table VI

Infinite-horizon decomposition and counterfactual analysis
Each column shows the decomposition implied by the constant-gain learning model using different key parameter choices. Panel
A shows the parameters which change for each specification. All other parameters are set to the values in the main specification
in Table IV. The first column runs a model with no learning or risk sensitivity, β = 0 and γ = 0. The second column runs a
model with no learning, β = 0. The third column runs a model with no risk sensitivity, γ = 0. The main specification is shown
in the last column. Models with γ = 0 are also run with a different risk-free rate rf = 10.5% to ensure the average level of
equity returns is consistent across all specifications. Panel B shows the magnitudes of the mean aggregate price-earnings ratio
and aggregate returns implied by each of the specifications. Panel C shows the decomposition results. The first two rows show
the implied persistence and cross-sectional variance of p̃xi,t for each specification. The third and sixth rows of Panel C show the
amount of cross-sectional variance in p̃xi,t explained by expected earnings growth

∑∞
j=1 E

∗
t [∆x̃i,t+j ] and subjective discount

rates −
∑∞

j=1 ρ
j−1E∗

t [r̃i,t+j ], estimated through the infinite-horizon version of equation (3):

V ar
(
p̃xi,t

)
= Cov

 ∞∑
j=1

ρj−1E∗
t [∆x̃i,t+j ] , p̃xi,t

+ Cov

−
∞∑
j=1

ρj−1E∗
t [r̃i,t+j ] , p̃xi,t

 .

The fourth and seventh rows of Panel C show the amount of cross-sectional variance in p̃xi,t explained by realized earnings
growth

∑∞
j=1 ρ

j−1∆x̃i,t+j and negative realized returns −
∑∞

j=1 ρ
j−1r̃i,t+j . Finally, the fifth and eighth rows show the amount

of cross-sectional variance in p̃xi,t explained by earnings growth forecast errors
∑∞

j=1 ρ
j−1(∆x̃i,t+j −E∗

t [∆x̃i,t+j ]) and return
forecast errors −

∑∞
j=1 ρ

j−1(r̃i,t+j − E∗
t [r̃i,t+j ]). The share of the cross-sectional variance of p̃xi,t is shown in parentheses.

Panel A: Parameter values

β 0 0 .018 .018
γ 0 1.61 0 1.61
rf 10.5% 4.6% 10.5% 4.6%

Panel B: Levels

Mean pxt 2.31 2.31 2.31 2.31
Mean rt+1 10.5% 10.5% 10.5% 10.5%

Panel C: Cross section

Persistence p̃xi,t 0.00 0.00 0.54 0.76

Variance p̃xi,t 0.98 0.98 2.07 4.37

Expected earnings growth 0.98 0.98 2.07 2.87
(100%) (100%) (100%) (65.7%)

Realized earnings growth 0.98 0.98 0.78 0.65
(100%) (100%) (37.6%) (14.9%)

Forecast errors 0 0 1.29 2.22
(0%) (0%) (62.4%) (50.8%)

Subjective discount rates 0 0 0 1.50
(0%) (0%) (0%) (34.3%)

Negative realized returns 0 0 1.29 3.72
(0%) (0%) (62.4%) (85.1%)

Negative forecast errors 0 0 -1.29 -2.22
(0%) (0%) (-62.4%) (-50.8%)
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with negative realized returns accounting for 85.1% of all price-earnings ratio dispersion.

Note that at the infinite horizon, forecast errors for earnings growth and forecast errors for

returns are equal (i.e., the forecast error row for earnings growth and negative returns are

exactly opposite). While gradual learning affects how quickly earnings growth surprises are

reflected in unexpected returns, eventually all unexpected earnings growth will appear as

unexpected returns.

Conveniently, we can summarize the relative importance of realized future earnings

growth, errors in earnings growth expectations, and subjective discount rates. The model

estimates that realized earnings growth accounts for roughly 1/6 (14.9%) of price-earnings

ratio dispersion, errors in earnings growth expectations account for 1/2 (50.8%), and subjec-

tive discount rates account for 1/3 (34.3%). Additionally, besides decomposing differences

in price-earnings ratios, the model also decomposes the low realized returns earned by ex-

pensive stocks. The estimation implies that 40.3% (34.3/85.1) of the difference in returns

between high and low price-earnings ratio stocks reflects subjective discount rates while

59.7% (50.8/85.1) reflects disappointment in earnings growth.

More broadly, by having a structural model, we can investigate the economic role of

learning and risk sensitivity in driving the cross-sectional dispersion in price-earnings ratios.

The different columns in Table VI Panel C show the persistence in price-earnings ratios, the

dispersion in price-earnings ratios, and the decomposition results when β and/or γ are set to

0, i.e., learning and/or risk sensitivity are turned off. In all cases, the initial expected gi is set

to 0 for all firms. Thus, the two cases where β = 0 are equivalent to saying that agents know

the objective data-generating process and no longer need to learn the parameters. Given

that we are interested in cross-sectional dispersion rather than levels, in the two cases where

γ = 0 we also raise the risk-free rate from 4.6% to 10.5%. As shown in Panel B, this ensures

that the aggregate level for price-earnings ratios and equity returns are identical across all

four cases and it is only the dispersion that changes. Thus, the two cases where γ = 0 are

equivalent to saying that all firms have the same subjective discount rate of 10.5%.
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In the first column, both β and γ are set to 0. In this case, the dispersion in price-

earnings ratios is less than 1/4 the value in our main specification (0.98 compared to 4.37).

The dispersion in price-earnings ratios comes entirely from differences in expected earnings

growth, as there are no differences in subjective discount rates. Price-earnings ratios do not

predict earnings growth forecast errors. Instead, all differences in expected earnings growth

are simply due to the noise shocks vi,t. Since these shocks are i.i.d., the autocorrelation in

expected earnings growth is zero, which explains why the persistence in p̃xi,t is also zero.

In the second column, the model includes risk sensitivity (γ > 0) but keeps β = 0. As

shown in Panel C, only including risk sensitivity has no effect on the results relative to the

first column. This highlights that, in our model, variation across firms in expected cash flow

growth and subjective discount rates are both ultimately related to variation across firms

in expected gi. While agents may be sensitive to risk related to cash flow timing, this only

matters if firms are expected to differ in the timing of their cash flows.

In comparison, the third column shows that including learning but keeping γ = 0 does

substantially change the results. The dispersion in price-earnings ratios doubles from 0.98

to 2.07. This largely comes from price-earnings ratios now comoving with future earnings

growth forecast errors. However, there is also the interesting result that the comovement

of price-earnings ratios with realized earnings growth decreases (0.98 to 0.78). The FIRE

expectation for future earnings growth is simply −vi,t. With learning, expected earnings

growth depends on E∗
t [gi], which comoves positively with vi,t, as a positive shock will tend

to increase the guess for gi. Thus, introducing learning means that the price-earnings ratio,

which depends on expected earnings growth, will now be less related to future realized

earnings growth due to the muted response to shocks vi,t. Further, while objective expected

earnings growth has 0 persistence over time, subjective expected earnings growth is persistent

when agents are learning about gi. Because of this, cross-sectional differences in price-

earnings ratios are moderately long-lived, with a persistence of 0.54.

Finally, the last column shows the interaction from including both risk sensitivity and
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learning. While risk sensitivity by itself has no effect, once we incorporate learning, increasing

γ from 0 to 1.63 more than doubles the dispersion in price-earnings ratios (2.07 to 4.37)

and makes cross-sectional differences in price-earnings ratios more persistent. Specifically,

including risk sensitive along with learning increases the persistence of p̃xi,t from 0.54 to

0.76, helping the model match the empirical persistence of 0.77. Looking at the contribution

of subjective discount rates (the sixth row of Panel C), we clearly see the interaction between

risk sensitivity and learning, as dispersion in subjective discount rates now contributes 1.50

(34.3%) to the total dispersion in price-earnings ratios.

More surprisingly, we also find an important interaction between risk sensitivity and

learning for the contribution of earnings growth expectations. Given that γ has no impact on

equations (10)-(13), changing γ has no effect on expected earnings growth. Thus, the increase

in comovement between price-earnings ratios and expected earnings growth (2.08 to 2.87) is

entirely due to changes in the price-earnings ratios. Intuitively, incorporating discount rates

that depend on expected cash flow timing increases the sensitivity of price-earnings ratios to

E∗
t [gi] and decreases their sensitivity to transitory shocks vi,t. The increased sensitivity to

E∗
t [gi] is reflected in the larger comovement of price-earnings ratios with expected earnings

growth, and the reduced sensitivity to vi,t is reflected in an even higher persistence of p̃xi,t.

This logic extends to any model with preferences for the timing of cash flows and shows that

while discount rates may not affect expected earnings growth, they can be quantitatively

important for driving the comovement of price ratios with expected earnings growth and

earnings growth forecast errors.

Overall, the fact that dispersion in price-earnings ratios for β > 0, γ > 0 is more than

twice as large as any of the other counterfactuals highlights the natural interaction between

preferences for the timing of cash flows and learning about cash flow growth. We find

that this interaction is quantitatively important for matching the large empirical dispersion

in price-earnings ratios and the persistence of cross-sectional differences in price-earnings

ratios.
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VI. Conclusion

We find that subjective expectations have substantial potential to explain the cross-

section of stock price ratios and shed light on the relative importance of expected future

cash flows and discount rates. Using a variance decomposition, we show that cross-sectional

dispersion in price-earnings ratios is primarily explained by predictable errors in subjective

expectations of earnings growth. Subjective discount rates play a secondary, but non-trivial

role. Disappointment in one-year earnings growth does not immediately lead to an equivalent

disappointment in one-year returns. Instead, earnings growth surprises are reflected grad-

ually in future returns over time. To understand these findings, we provide a quantitative

model which not only outperforms standard FIRE models in matching the dynamics of prices

and realized earnings growth and returns, but also outperforms common behavioral models

in matching the dynamics of prices and expectations. The model features constant-gain

learning about earnings growth and risk premia related to cash flow timing and emphasizes

the importance of slow-moving beliefs in order to match the empirical timing of earnings

growth expectations and realized returns.

These findings for the cross-section of stock prices are consistent with the aggregate

time-series findings of De la O and Myers (2021, 2023), who emphasize that aggregate stock

prices are largely driven by subjective earnings growth expectations and that errors in these

expectations play a particularly large role in explaining long-term returns. This harmony

between the aggregate time-series and the cross-section indicates that a single mechanism

could potentially explain both dimensions of the data and provides a strong motivation for

further research understanding how investors form cash flow expectations and discount rates.
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Appendix

A. Model prices and returns

To derive equation (14), we guess and verify a log-affine form for the strip price, P
(n)
t =

exp {A (n) + ϕnxagg
t }. The strip price is then pinned down by P

(0)
t = exp {xagg

t } (i.e., A (0) =

0) and

P
(n)
t = E∗

t

[
Mt+1P

(n−1)
t+1

]
= E∗

t

[
exp

{
−rf − 1

2
γ2σ2

u − γut+1 + A (n− 1) + ϕnxagg
t + ϕn−1ut+1

}]
= exp

{
−rf − 1

2
γ2σ2

u + A (n− 1) + ϕnxagg
t +

1

2

(
ϕn−1 − γ

)2
σ2
u

}
. (A1)

This gives that

A (n) = A (n− 1)− rf − γϕn−1σ2
u +

1

2
ϕ2(n−1)σ2

u

= −nrf − γσ2
u

1− ϕn

1− ϕ
+

1

2
σ2
u

1− ϕ2n

1− ϕ2
. (A2)

The expected and realized strip returns in equations (15)-(16) then simply utilize the for-

mula for P (n)
t . The firm price in equation (17) uses the independence of aggregate and idiosyn-

cratic shocks to simplify E∗
t

[(∏n
j=1 Mt+j

)
Xagg

t+nX̃i,t+n

]
= E∗

t

[(∏n
j=1 Mt+j

)
Xagg

t+n

]
E∗

t

[
X̃i,t+n

]
=

P
(n)
t E∗

t

[
X̃i,t+n

]
.

Given that the firm price is simply a collection of strip prices, the return for a firm is

Ri,t+1 =
X̃i,t+1X

agg
t+1 + Pi,t+1

Pi,t

=

∑∞
n=1 P

(n−1)
t+1 E∗

t+1

[
X̃i,t+n

]
∑∞

n=1 P
(n)
t E∗

t

[
X̃i,t+n

]
=

∞∑
n=1

P
(n)
t E∗

t

[
X̃i,t+n

]
∑∞

n=1 P
(n)
t E∗

t

[
X̃i,t+n

] P (n−1)
t+1

P
(n)
t

E∗
t+1

[
X̃i,t+n

]
E∗

t

[
X̃i,t+n

]
=

∞∑
n=1

wi,t,nR
(n)
t+1

E∗
t+1

[
X̃i,t+n

]
E∗

t

[
X̃i,t+n

] (A3)

where the weight is wi,t,n =
P

(n)
t E∗

t [X̃i,t+n]∑∞
n=1 P

(n)
t E∗

t [X̃i,t+n]
=

exp{nE∗
t [gi]}P

(n)
t∑∞

n=1 exp{nE∗
t [gi]}P

(n)
t

from equation (13).
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Applying expectations, we then get equation (18).

B. Connecting returns, earnings growth, and price-earnings ratios

First, we derive the equation for a firm which has zero dividends. For simplicity, we eliminate

the index i in this derivation. In this case, the return is equal to the price growth which

after log-linearization becomes an exact relationship

rt+1 = ∆xt+1 − pxt + pxt+1. (A4)

A high price-earnings ratio pxt must be followed by low future price growth ∆pt+1 (returns

rt+1), high future earnings growth ∆xt+1, or a high future price-earnings ratio pxt+1.

Now, we consider the case where dividends are non-zero. We start with the one-year

return identity of a portfolio

Rt+1 =
Pt+1 +Dt+1

Pt

=

(
Pt+1

Dt+1
+ 1
)

Dt+1

Dt

Pt

Dt

,

where Pt and Dt are the current price and dividends. Log-linearizing around p̄d, we can

represent the price-dividend ratio pdt in terms of future dividend growth, ∆dt+1, future

returns, rt+1, and the future price-dividend ratio, pdt+1, all in logs:

rt+1 ≈ κd +∆dt+1 − pdt + ρpdt+1, (A5)

where κd is a constant, ρ = ep̄d/
(
1 + ep̄d

)
< 1. We can then insert the identity pxt =

pdt + dxt, where dxt is the log payout ratio, into (A5) to obtain

rt+1 ≈ κ+∆xt+1 − pxt + ρpxt+1 (A6)

where we approximate (1− ρ) dxt+1 as 0 given that (1− ρ) is very close to 0.33 Here, p̄d

does not need to be the mean price-dividend ratio of this specific stock or portfolio. In

order to study cross-sectional variation without resorting to portfolio-specific approximation

parameters, we use the average price-dividend ratio of the market for p̄d following Cochrane
33The zero dividend relationship in equation (A4) is a special case of equation (A6) as p̄d goes to infinity.
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(2011).

While the identity relies on the approximation that (1− ρ) dxt+1 → 0, empirically equa-

tion (A6) holds tightly. For horizons of 1 to 4 years, Table I shows that a one unit increase in

pxt is associated with almost exactly a one unit increase in
∑h

j=1 ρ
j−1∆xt+j−

∑h
j=1 ρ

j−1rt+j+

ρhpxt+h.34 In other words, the approximation error from ignoring the payout ratio and using

a single value for ρ accounts for at most 3.1% of variation in price-earnings ratios in the

decomposition of equation (3). For robustness, the next section uses an exact relationship

instead of equation (3) to ensure the approximation is not driving our results.

C. Robustness Exercises

C.1. Exact decomposition results

In this section, we derive all the main results using an exact decomposition of price-earnings

ratios based on price growth, rather than the approximate decomposition based on returns.

For any stock or portfolio of stocks i, the price-earnings ratio pxi,t can be expressed in terms

of the one-year ahead log price growth ∆pi,t+1, the future earnings growth ∆xi,t+1, and the

future price-earnings ratio:

pxi,t = ∆xi,t+1 +∆pi,t+1 + pxi,t+1. (A7)

This equation is exact and does not contain a log-linearization constant ρ. Applying sub-

jective expectations E∗
t [·], we see that a higher than average price-earnings ratio must be

explained by higher than average expected earnings growth, lower than average expected

price growth, or a higher than average expected future price-earnings ratio,

p̃xi,t =
h∑

j=1

E∗
t [∆x̃i,t+j]−

h∑
j=1

E∗
t [∆p̃i,t+j] + E∗

t

[
p̃xi,t+h

]
. (A8)

Just like the main decomposition, this equation holds under any subjective probability
34For example, at the one-year horizon, a one unit increase in pxt is associated with a 0.103 increase in

∆xt+1, a 0.143 increase in −rt+1, and a 0.746 increase in ρpxt+1. At the four-year horizon, a one unit increase
in pxt is associated with a with a 0.099 increase in

∑4
j=1 ρ

j−1∆xt+j , a 0.320 increase in −
∑4

j=1 ρ
j−1rt+j ,

and a 0.550 increase in ρ4pxt+4.
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distribution and we can decompose the variance of p̃xi,t into three components:

1 =

Cov

 h∑
j=1

E∗
t [∆x̃i,t+j ] , p̃xi,t


V ar

(
p̃xi,t

)︸ ︷︷ ︸
CFh

+

Cov

−
h∑

j=1

E∗
t [∆p̃i,t+j ] , p̃xi,t


V ar

(
p̃xi,t

)︸ ︷︷ ︸
PGh

+
Cov

(
E∗

t

[
p̃xi,t+h

]
, p̃xi,t

)
V ar

(
p̃xi,t

)︸ ︷︷ ︸
FPXh

.

(A9)

The coefficients CFh and PGh give a quantitative measure of how much dispersion in price-

earnings ratios is accounted for by dispersion in expected earnings growth and how much is

accounted for by dispersion in expected price growth. We can now estimate this equation

using the exact expectations of price growth without an approximation.

Table AI shows that the results of this exact decomposition are very similar to the main

decomposition results in Table I. We find that 10.3% of dispersion in price-earnings ratios

is accounted for by differences in one-year future earnings growth and 13.2% is accounted

for by differences in one-year price growth. Just as in the main decomposition, differences

in earnings growth are overestimated, with expected earnings growth accounting for nearly

a third (33.1%) of all dispersion in price-earnings ratios. Differences in price growth are

underestimated, with expected price growth accounting for only 3.3% of all dispersion in

price-earnings ratios. A similar pattern can be observed at the four-year horizon. Overall,

all the coefficients closely align with those reported in Table I.

We can also estimate an exact version of the unexpected anomaly return decomposition

(5). Just as in the main identity, we normalize all anomalies ãi,t so that they have variance

1 and positively comove with future price growth. From equation (A7), we have the identity

Cov (∆p̃i,t+1 − E∗
t [∆p̃i,t+1] , ãi,t)︸ ︷︷ ︸

σa,p

= Cov (∆x̃i,t+1 − E∗
t [∆x̃i,t+1] , ãi,t)︸ ︷︷ ︸

σa,x

+ Cov
(
p̃xi,t+1 − E∗

t

[
p̃xi,t+1

]
, ãi,t

)︸ ︷︷ ︸
σa,px

. (A10)

Here, the values for σa,x and σa,px indicate how much the predictable price growth forecast
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Table AI

Decomposition of dispersion in price-earnings ratios (exact decomposition)
This table decomposes the variance of price-earnings ratios using the exact decomposition (A9). The FIRE column report the
elements CFh, PGh and FPXh of the decomposition using future earnings growth, future price growth and future price-earning
ratios. The Expected column report the elements of the decomposition using expected earnings growth, expected price growth
and expected price-earning ratios. The Forecast Errors column reports the contribution of the forecast errors of each element. For
instance, CF1 = Cov

(
∆x̃i,t+1, p̃xi,t

)
/V ar

(
p̃xi,t

)
is shown in the FIRE column. This component can be split into its expected

component Cov
(
E∗

t [∆x̃i,t+1] , p̃xi,t

)
/V ar

(
p̃xi,t

)
and its error component Cov

(
∆x̃i,t+1 − E∗

t [∆x̃i,t+1] , p̃xi,t

)
/V ar

(
p̃xi,t

)
.

The sample period is 1999 to 2020. Driscoll-Kraay standard errors and block-bootstrap standard errors are calculated for each
coefficient. In both cases, we use a lag equal to the maximum lag with any significant residual autocorrelation. Superscripts
indicate Driscoll-Kraay significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level.

One-year horizon (h = 1) One-to-four year horizon (h = 4)

FIRE Expected Forecast FIRE Expected Forecast
errors errors

1999-2020 CFh 0.103*** 0.331*** -0.228*** 0.100* 0.439*** -0.340***
[0.037] [0.024] [0.032] [0.057] [0.020] [0.055]
[0.051] [0.026] [0.050] [0.073] [0.023] [0.075]

1999-2020 PGh 0.132** 0.033** 0.100* 0.292*** 0.135*** 0.157*
[0.052] [0.013] [0.054] [0.088] [0.046] [0.089]
[0.051] [0.013] [0.055] [0.112] [0.050] [0.111]

1999-2020 FPXh 0.765*** 0.636*** 0.129** 0.608*** 0.426*** 0.182***
[0.051] [0.020] [0.058] [0.063] [0.029] [0.069]
[0.045] [0.024] [0.055] [0.074] [0.032] [0.083]
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Table AII

Unexpected anomaly price growth (exact decomposition)
This table measures and decomposes unexpected anomaly price growth. The Representative Anomaly is the average ranking
of each stock across 20 different anomalies, and p̃xi,t is the demeaned price-earnings ratio. For each anomaly variable, we sort
stocks into five equal-value portfolios based on the anomaly variable. The table shows the coefficients of regressing each of the
dependent variables on a specific anomaly variable. Both anomaly variables are scaled to have unit variance and to positively
comove with future price growth. The three dependent variables are the unexpected price growth ∆p̃i,t+1 − E∗

t [∆p̃i,t+1], the
earnings growth forecast errors ∆x̃i,t+1 − E∗

t [∆x̃i,t+1], and the price-earnings ratio forecast errors
(
p̃xi,t+1 − E∗

t

[
p̃xi,t+1

])
.

The sample period is 1999 to 2020. Driscoll-Kraay standard errors and block-bootstrap standard errors are calculated for each
coefficient. In both cases, we use a lag equal to the maximum lag with any significant residual autocorrelation. Superscripts
indicate Driscoll-Kraay significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level.

Panel A: Anomaly Price Growth Decomposition

Representative Anomaly p̃xi,t

∆p̃i,t+1 − E∗
t [∆p̃i,t+1] 0.031∗∗ 0.030∗

[0.013] [0.016]
[0.013] [0.015]

∆x̃i,t+1 − E∗
t [∆x̃i,t+1]

0.064∗∗∗ 0.069∗∗∗

[0.020] [0.010]
[0.020] [0.014](

p̃xi,t+1 − E∗
t

[
p̃xi,t+1

])
−0.033∗∗∗ −0.039∗∗

[0.009] [0.018]
[0.009] [0.015]

errors are explained by predictable errors in next-year earnings growth expectations and

expectations of the future price-earnings ratio. Table AII shows the results for the repre-

sentative anomaly studied in Section III.D. For each anomaly, we estimate a positive value

of σa,p, meaning that investors do not fully anticipate the high growth on high ãi,t stocks.

The predictable errors in one-year earnings growth expectations are more than large enough

to account for the unexpected one-year price growth (i.e., σa,x is greater than σa,p). In Ap-

pendix D Table AVIII we show the exact decomposition results for each of the individual

anomalies.
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C.2. Overlapping observations and Bauer and Hamilton (2018)

Overlapping forecast horizons can increase the persistence of residuals in Table I. Because of

this, we use Driscoll-Kraay and block-bootstrap standard errors to account for any autocor-

relation. For additional robustness, in this section we also directly calculate the significance

of each coefficient under the worst-case scenario for overlapping observations.

We do this following the methodology proposed by Bauer and Hamilton (2018). Specifi-

cally, for expected and realized earnings growth and returns, we run simulations to measure

how often we spuriously find a coefficient as large as what we observe in the data. For clarity,

we discuss the simulation for the regression of earnings forecast errors ∆x̃i,t+1 −E∗
t [∆x̃i,t+1]

on price-earnings ratios p̃xi,t, however, the methodology is identical for the other left hand

side variables.

We specify the price-earnings ratio of each portfolio i as an AR(1) process,

p̃xi,t = µi +
(
p̃xi,t−1 − µi

)
+ σiεi,t.

The mean, persistence, and variance is set equal to the observed values over our sample.

Additionally, the initial value of the simulated price-earnings ratio for portfolio i is set equal

to the initial value observed in our data to account for any drift back to the mean which may

generate trends in price-earnings ratios over the sample. For example, if the price-earnings

ratio for the Growth portfolio is substantially above its mean at the beginning of the sample,

then reversion to the mean will create an downward trend in the price-earnings ratio for this

portfolio over time. We then simulate one-period forecast errors under the null hypothesis

that forecast errors are unpredictable.

If subjective expectations change over time, then there will be little overlap in longer

horizon forecast errors. For example, if E∗
t [∆x̃i,t+2] is very different from E∗

t+1 [∆x̃i,t+2], then

there is little similarity between the second term of
∑h

j=1 ρ
j−1 (∆x̃i,t+j − E∗

t [∆x̃i,t+j]) and the

first term of
∑h

j=1 ρ
j−1
(
∆x̃i,t+1+j − E∗

t+1 [∆x̃i,t+1+j]
)
. However, in the worst-case scenario in

which expectations do not change at all over time, then
∑h

j=1 ρ
j−1 (∆x̃i,t+j − E∗

t [∆x̃i,t+j])
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will be an MA(h− 1) process. This will cause the four-year forecast errors to be persistent

which increases the probability of spuriously finding a large coefficient between price-earnings

ratios and four-year forecast errors.

For our simulations, we push this worst-case scenario even further by making each period

one month instead of one year. This means that
∑h

j=1 ρ
j−1 (∆x̃i,t+j − E∗

t [∆x̃i,t+j]) will be

MA(12h− 1) which dramatically increases the persistence. For all of the left-hand side

variables in Table I, we find that this worst-case scenario substantially overstates the observed

variable persistence. We then set the variance of the monthly forecast errors to match the

observed variance of
∑h

j=1 ρ
j−1 (∆x̃i,t+j − E∗

t [∆x̃i,t+j]). We then run 10,000 simulations and

report the probability of spuriously finding a coefficient as large as what we observe in the

data.

Table AIII shows the coefficients for realized and expected earnings growth and returns,

along with their associated p-values from the simulations. With the exception of four-year

realized earnings growth, we find that all of the coefficients are statistically significant at

the 5% level. Even after accounting for persistence in price-earnings ratios, trends, and a

worst-case assumption for overlapping observations, the probability of spuriously generating

coefficients as large as what we find in the data is quite low.

C.3. Smoothed earnings

To show that our decomposition results are not influenced by fluctuations in earnings in

the denominator of price-earnings ratio, we repeat our analysis normalizing prices with a

three-year-smoothed measure of earnings. AIV shows that the result are very similar to

the main decomposition results in Table I. We find that 37.6% of dispersion in price–

to-smoothed-earnings ratios is accounted for by differences in expected four-year earnings

growth and 12.6% is accounted for by differences in four-year returns. Just as our main

results, differences in cash flow growth are overestimated, with errors in expected cash flows

accounting for nearly a third (31.0%) of all dispersion in price–to-smoothed-earnings ratios,
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Table AIII

Worst-case decomposition of dispersion in price-earnings ratios
This table decomposes the variance of price-earnings ratios using equation (3). The FIRE column report the elements CFh, DRh

and FPXh of the decomposition using future earnings growth, future negative returns and future price-earning ratios. The
Expected column report the elements of the decomposition using expected earnings growth, expected returns and expected price-
earning ratios. Worst-case p-values using the Bauer and Hamilton (2018) procedure are reported in parentheses. ∗p<.1;∗∗p<.05;
∗∗∗p<.01.

One-year horizon (h = 1) One-to-four year horizon (h = 4)

FIRE Expected Forecast FIRE Expected Forecast
errors errors

1999-2020 CFh 0.103∗∗∗ 0.331∗∗∗ −0.228∗∗∗ 0.099 0.433∗∗∗ −0.335∗∗∗

(0.006) (0.000) (0.000) (0.118) (0.000) (0.001)

1999-2020 DRh 0.143∗∗∗ 0.033∗∗∗ 0.110∗∗∗ 0.320∗∗∗ 0.127∗∗∗ 0.192∗∗

(0.000) (0.008) (0.001) (0.004) (0.008) (0.047)

and differences in return are underestimated.

C.4. Delisting firms

As explained in Section III.C, we require in the main analysis that firms have an observed

future price and future earnings. This allows us to calculate direct forecast errors for the

subjective expectations. To test whether survivorship bias is impacting the results, we

repeat our analysis without the requirement that firms must have a future observed price

and observed earnings. Instead, when firms exit the sample, we measure the delisting return

and reinvest those funds into the remaining firms in the portfolio. We then calculate earnings

growth and returns under this reinvestment strategy.

As shown in Table AV, the results are quite close to our main estimation in Table I. We

find that 36.3% (7.3%) of dispersion in price-earnings ratios is explained expected (realized)

four-year earnings growth and 15.5% (31.1%) is explained by expected (realized) four-year

returns.
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Table AIV

Decomposition of dispersion in price-earnings ratios using smoothed earnings
This table shows the three components of the left hand side of equation (3) using three-year smoothed earnings instead of
annual earnings to form the valuation ratios. Let st be the three-year smoothed average of earnings. For each period, we form
the price-to-smoothed-earnings ratio p̃si,t. The FIRE column report the components CFh, DRh and FPEh of equation (3)
using future earnings growth, future returns and future price-earning ratios. The Expected column report the elements of the
equation (3) using expected earnings growth, expected price growth and expected price-earning ratios. The Forecast Errors
column reports the contribution of the forecast errors of each element. For instance, CF1 = Cov

(
∆x̃i,t+1, p̃si,t

)
/V ar

(
p̃si,t

)
is

shown in the FIRE column. This component can be split into its expected component Cov
(
E∗

t [∆x̃i,t+1] , p̃si,t
)
/V ar

(
p̃si,t

)
and

its error component Cov
(
∆x̃i,t+1 − E∗

t [∆x̃i,t+1] , p̃si,t
)
/V ar

(
p̃si,t

)
. The main sample period is 1999 to 2020. The fourth row

shows the element CFh of the decompositions estimated over the longer sample period of 1982-2020. Driscoll-Kraay standard
errors and block-bootstrap standard errors are calculated for each coefficient. In both cases, we use a lag equal to the maximum
lag with any significant residual autocorrelation. Superscripts indicate Driscoll-Kraay significance at the 1% (∗∗∗), 5% (∗∗),
and 10% (∗) level.

One-year horizon (h = 1) One-to-four year horizon (h = 4)

FIRE Expected Forecast FIRE Expected Forecast
errors errors

1999-2020 CFh 0.090** 0.290*** -0.200*** 0.066 0.376*** -0.310***
[0.036] [0.021] [0.037] [0.053] [0.023] [0.050]
[0.048] [0.024] [0.051] [0.073] [0.029] [0.067]

1999-2020 DRh 0.131*** 0.032*** 0.099** 0.291*** 0.126*** 0.165**
[0.046] [0.011] [0.048] [0.079] [0.038] [0.082]
[0.043] [0.012] [0.048] [0.097] [0.038] [0.097]

1999-2020 FPXh 0.681*** 0.573*** 0.108** 0.523*** 0.357*** -0.166***
[0.048] [0.025] [0.051] [0.051] [0.024] [0.057]
[0.048] [0.032] [0.048] [0.059] [0.026] [0.066]

1982-2020 CFh 0.120*** 0.264*** -0.143*** 0.109*** 0.392*** -0.283***
[0.025] [0.018] [0.029] [0.038] [0.024] [0.032]
[0.026] [0.018] [0.028] [0.038] [0.025] [0.030]
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Table AV

Decomposition of dispersion in price-earnings ratios including exiting firms
This table decomposes the variance of price-earnings ratios including firms that may exit after portfolio formation. To account
for these firms, we reinvest the delisting returns of exiting firms in the corresponding portfolio. The FIRE column report the
elements CFh, DRh and FPXh of the decomposition using future earnings growth, future negative returns and future price-
earning ratios. The Expected column report the elements of the decomposition using expected earnings growth, expected returns
and expected price-earning ratios. The Forecast Errors column reports the contribution of the forecast errors of each element. For
instance, CF1 = Cov

(
∆x̃i,t+1, p̃xi,t

)
/V ar

(
p̃xi,t

)
is shown in the FIRE column. This component can be split into its expected

component Cov
(
E∗

t [∆x̃i,t+1] , p̃xi,t

)
/V ar

(
p̃xi,t

)
and its error component Cov

(
∆x̃i,t+1 − E∗

t [∆x̃i,t+1] , p̃xi,t

)
/V ar

(
p̃xi,t

)
.

The sample period is 1999 to 2020. Driscoll-Kraay standard errors and block-bootstrap standard errors are calculated for each
coefficient. In both cases, we use a lag equal to the maximum lag with any significant residual autocorrelation. Superscripts
indicate Driscoll-Kraay significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level.

One-year horizon (h = 1) One-to-four year horizon (h = 4)

FIRE Expected Forecast FIRE Expected Forecast
errors errors

1999-2020 CFh 0.126*** 0.302*** -0.176*** 0.073 0.363*** -0.290***
[0.040] [0.028] [0.042] [0.068] [0.025] [0.065]
[0.049] [0.032] [0.052] [0.096] [0.027] [0.092]

1999-2020 DRh 0.076 0.046*** 0.031 0.311*** 0.155*** 0.165**
[0.069] [0.011] [0.068] [0.081] [0.035] [0.075]
[0.068] [0.012] [0.066] [0.110] [0.038] [0.097]

1999-2020 FPXh 0.796*** 0.636*** 0.160*** 0.569*** 0.383*** 0.194***
[0.063] [0.025] [0.059] [0.060] [0.023] [0.064]
[0.061] [0.031] [0.059] [0.076] [0.027] [0.081]
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D. Extended anomaly results

In Tables AVI, AVII, and AVIII, we show the detailed results for each of the individual

anomalies. Table AVI shows the decomposition of unexpected returns into earnings growth

surprises and unexpected future price-earnings ratios. Table AVII shows that positive earn-

ings growth surprises are consistently associated with a decrease in expected next period

earnings growth. Table AVIII shows an exact decomposition of anomaly price growth rather

than anomaly returns.

E. FIRE model simulations

For each model, we simulate the cross-section of firms. We set the number of firms based

on the original calculations in each paper. Specifically, we use 50, 5,000, and 200 firms for

Berk et al. (1999), Zhang (2005), and Lettau and Wachter (2007), respectively. We set every

sample to a length of 20 years and we run 1,000 simulations for each model. All parameter

values are taken from the original papers.

For Berk et al. (1999) and Zhang (2005), we sort firms into five portfolios based on their

price-book ratios. For Berk et al. (1999), we treat profits as our measure of earnings and

for Zhang (2005), we treat profits after the cost of new capital and adjustment costs as our

measure of earnings.35 For Lettau and Wachter (2007), the only firm variables are price and

dividends, so we treat dividends as our measure of earnings and sort firms into five portfolios

based on their price-dividend ratios. We then estimate the finite-horizon and infinite horizon

decomposition in equation (3) for each model.

E.1. Berk, Green, and Naik 1999

Each firm has some existing projects which generate cash flows. Each period, the firm draws

a new potential project, which it can pay a fixed cost to undertake. The value of the firm

comes from its existing projects as well as the option to undertake future projects (“growth
35We find nearly identical results if we use profits as our measure of earnings for Zhang (2005).
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Table AVI

Unexpected anomaly returns
This table measures and decomposes unexpected anomaly returns using equation (5). For each anomaly ãi,t, we sort stocks into
five equal-value portfolios based on the anomaly variable. The table shows the coefficients of regressing each of the dependent
variables on a specific anomaly variable. The three dependent variables are the unexpected return r̃i,t+1 − E∗

t [r̃i,t+1], the
earnings growth forecast errors ∆x̃i,t+1 −E∗

t [∆x̃i,t+1], and the price-earnings ratio forecast errors ρ
(
p̃xi,t+1 − E∗

t

[
p̃xi,t+1

])
.

The Representative Anomaly (RA) is the average ranking of each stock across 20 different anomalies. P/X show sthe results for
the main portfolios used to study cross-sectional variation in price-earnings ratios. Each anomaly variable ãi,t is scaled to have
unit variance and to posititvely comove with future returns. The sample period is 1999 to 2020. Driscoll-Kraay standard errors
are calculated for each coefficient using a lag equal to the equal to the maximum lag with any significant residual autocorrelation.
∗p<.1;∗∗p<.05; ∗∗∗p<.01.

Decomposition Decomposition

ãi,t σa,r σa,x σa,px ãi,t σa,r σa,x σa,px

rdm 0.0087 0.0551*** -0.0437*** noa 0.0189*** -0.0392*** 0.0567***
[0.0058] [0.0132] [0.0134] [0.0069] [0.0111] [0.0084]

bm 0.0133 0.0524** -0.0405*** oaa 0.0215 0.0789*** -0.0585**
[0.0138] [0.0234] [0.0157] [0.0178] [0.0292] [0.0236]

cfp 0.0142 0.0111 -0.0017 ol 0.0150*** 0.0698*** -0.0512***
[0.0144] [0.0190] [0.0119] [0.0053] [0.0140] [0.0136]

adm 0.0179** 0.1233*** -0.1038*** pia -0.0064 -0.0110 0.0068
[0.0072] [0.0101] [0.0104] [0.0107] [0.0133] [0.0139]

nop 0.0184** -0.0448*** 0.0572*** poa 0.0019 0.0382*** -0.0347***
[0.0082] [0.0148] [0.0127] [0.0067] [0.0115] [0.0102]

ia 0.0458*** 0.1404*** -0.0955*** pta 0.0070 -0.0034 0.0084
[0.0157] [0.0297] [0.0194] [0.0072] [0.0084] [0.0084]

gp 0.0081 0.0091 0.0016 occ 0.0189** 0.0544*** -0.0337***
[0.0101] [0.0156] [0.0147] [0.0088] [0.0162] [0.0124]

ivc 0.0106 -0.0326*** 0.0398*** dur 0.0620*** 0.0736** -0.0126
[0.0072] [0.0124] [0.0094] [0.0161] [0.0333] [0.0202]

ivg 0.0130 0.0230 -0.0115 cei 0.0479** 0.0283 0.0160
[0.0104] [0.0145] [0.0117] [0.0209] [0.0311] [0.0153]

ig 0.0191 0.0351** -0.0181** P/E 0.0331** 0.0687*** -0.0380**
[0.0117] [0.0141] [0.0082] [0.0160] [0.0096] [0.0169]

nsi 0.0260** 0.0287 -0.0043 RA 0.0340** 0.0635*** -0.0317***
[0.0123] [0.0184] [0.0090] [0.0132] [0.0201] [0.0088]
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Table AVII

Revisions in expectations
This table shows the effect of earnings growth surprises on revisions. For each anomaly ãi,t, we sort stocks into five equal-
value portfolios based on the anomaly variable. Each row shows the coefficient from regressing the revision in earnings growth
E∗

t+1 [∆x̃i,t+2] − E∗
t [∆x̃i,t+2] on the earnings growth surprise ∆xi,t+1 − E∗

t [∆xi,t+1] . The Representative Anomaly (RA) is
the average ranking of each stock across 20 different anomalies. P/X show sthe results for the main portfolios used to study
cross-sectional variation in price-earnings ratios. Each anomaly variable ãi,t is scaled to have unit variance and to posititvely
comove with future returns. The first and third columns show the result of the regressions using the main sample period of
1999 to 2020. The second and fourth columns show the result of the regressions using the long sample period of 1982 to 2020.
Driscoll-Kraay standard errors are calculated for each coefficient using a lag equal to the equal to the maximum lag with any
significant residual autocorrelation. ∗p<.1;∗∗p<.05; ∗∗∗p<.01.

ãi,t
Main Sample Long Sample

ãi,t
Main Sample Long Sample

1999-2020 1982-2020 1999-2020 1982-2020

rdm -1.059*** -1.010*** noa -0.873*** -0.878***
[0.046] [0.041] [0.056] [0.039]

bm -0.806*** -0.821*** oaa -0.812*** -0.833***
[0.060] [0.046] [0.053] [0.035]

cfp -0.782*** -0.804*** ol -0.879*** -0.860***
[0.046] [0.039] [0.058] [0.037]

adm -0.957*** -0.917*** pia -0.857*** -0.887***
[0.029] [0.025] [0.053] [0.036]

nop -0.927*** -0.930*** poa -0.873*** -0.859***
[0.036] [0.030] [0.067] [0.045]

ia -0.896*** -0.863*** pta -1.002*** -0.984***
[0.027] [0.024] [0.028] [0.024]

gp -0.743*** -0.777*** occ -0.726*** -0.749***
[0.111] [0.074] [0.081] [0.057]

ivc -1.019*** -0.947*** dur -0.521*** -0.557***
[0.032] [0.031] [0.071] [0.063]

ivg -0.870*** -0.866*** cei -0.863*** -0.886***
[0.044] [0.033] [0.075] [0.047]

ig -0.938*** -0.932*** P/E -0.918*** -0.786***
[0.040] [0.025] [0.067] [0.091]

nsi -0.832*** -0.857*** RA -0.811*** -0.818***
[0.030] [0.031] [0.049] [0.060]
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Table AVIII

Unexpected anomaly price growth (exact decomposition)
This table measures and decomposes unThis table shows the effect of earnings growth surprises on revisions. For each anomaly,
we sort stocks into five equal-value portfolios based on the anomaly variable. Each column shows the coefficient from regressing
the revision in earnings growth E∗

t+1 [∆x̃i,t+2] − E∗
t [∆x̃i,t+2] on the earnings growth surprise ∆xi,t+1 − E∗

t [∆xi,t+1] . Value
is measured using the price-earnings ratio. Profitability is measured using gross profitability. Investment is measured using
net stock issuance. The Representative Anomaly is the average ranking of each stock across 22 different anomalies. The first
row shows the result of the regressions using the main sample period of 1999 to 2020. The second row shows the result of
the regressions using the long sample period of 1982 to 2020. Driscoll-Kraay standard errors are clustered at the portfolio and
year level. Superscripts indicate significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level.expected anomaly price growth using
equation (A10). For each anomaly ãi,t, we sort stocks into five equal-value portfolios based on the anomaly variable. The
table shows the coefficients of regressing each of the dependent variables on a specific anomaly variable. The three dependent
variables are the unexpected price growth ∆p̃i,t+1 −E∗

t [∆p̃i,t+1], the earnings growth forecast errors ∆x̃i,t+1 −E∗
t [∆x̃i,t+1],

and the price-earnings ratio forecast errors
(
p̃xi,t+1 − E∗

t

[
p̃xi,t+1

])
. The Representative Anomaly (RA) is the average ranking

of each stock across 20 different anomalies. P/X show sthe results for the main portfolios used to study cross-sectional variation
in price-earnings ratios. Each anomaly variable ãi,t is scaled to have unit variance and to posititvely comove with future price
growth. The sample period is 1999 to 2020. Driscoll-Kraay standard errors are calculated for each coefficient using a lag equal
to the equal to the maximum lag with any significant residual autocorrelation. ∗p<.1;∗∗p<.05; ∗∗∗p<.01.

Decomposition Decomposition

ãi,t σa,r σa,x σa,px ãi,t σa,r σa,x σa,px

rdm 0.0102* 0.0551*** -0.0449*** noa 0.0189*** -0.0392*** 0.0581***
[0.0058] [0.0132] [0.0138] [0.0069] [0.0111] [0.0086]

bm 0.0108 0.0524** -0.0416*** oaa -0.0189 -0.0789*** 0.0600**
[0.0139] [0.0234] [0.0161] [0.0181] [0.0292] [0.0242]

cfp 0.0093 0.0111 -0.0018 ol 0.0172*** 0.0698*** -0.0525***
[0.0145] [0.0190] [0.0122] [0.0054] [0.0140] [0.0139]

adm 0.0169** 0.1233*** -0.1064*** pia -0.0040 -0.0110 0.0070
[0.0072] [0.0101] [0.0107] [0.0109] [0.0133] [0.0143]

nop -0.0138* 0.0448*** -0.0587*** poa 0.0024 0.0382*** -0.0355***
[0.0080] [0.0148] [0.0130] [0.0067] [0.0115] [0.0104]

ia 0.0429*** 0.1404*** -0.0980*** pta 0.0054 -0.0034 0.0086
[0.0165] [0.0297] [0.0199] [0.0070] [0.0084] [0.0086]

gp 0.0107 0.0091 0.0016 occ 0.0198** 0.0544*** -0.0346***
[0.0102] [0.0156] [0.0150] [0.0089] [0.0162] [0.0127]

ivc -0.0081 0.0326*** -0.0408*** dur 0.0615*** 0.0736** -0.0126
[0.0074] [0.0124] [0.0096] [0.0161] [0.0333] [0.0207]

ivg 0.0112 0.0230 -0.0118 cei 0.0447** 0.0283 0.0164
[0.0105] [0.0145] [0.0120] [0.0212] [0.0311] [0.0157]

ig -0.0165 -0.0351** 0.0186** P/E 0.0301* 0.0687*** -0.0389**
[0.0119] [0.0141] [0.0084] [0.0163] [0.0096] [0.0175]

nsi 0.0242* 0.0287 -0.0044 RA 0.0309** 0.0635*** -0.0326***
[0.0124] [0.0184] [0.0092] [0.0132] [0.0201] [0.0090]
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options”). As the term “growth options” implies, future earnings growth plays a key role in

this model. The ratio of the firm’s price to its current earnings reflects how much of the firm’s

value comes from existing projects versus growth options. Firms with high price-earnings

ratios derive most of their value from their expected future projects rather than existing

projects, and future earnings growth accounts for most dispersion in price-earnings ratios

(CF4 = 0.84).

The model features a time-varying risk-free rate which also generates differences in risk

premia.36 Compared to existing projects, the value of growth options is less sensitive to

changes in the risk-free rate, as the firm can endogenously change its decision to exercise

the option (i.e., it only undertakes the potential project if the risk-free rate is low). Because

of this, the agent requires a higher risk premium for firms with low price-earnings ratios.

Quantitatively, the difference in risk premia is only a small part of the dispersion in price-

earnings ratios (DR4 = 0.03, DR∞ = 0.04).

E.2. Zhang 2005

In this model, firm earnings are

Xi,t = ext+zi,t+ptkα
i,t − f − ii,t − h (ii,t, ki,t)

where xt is aggregate productivity, zi,t is idiosyncratic productivity, pt is the aggregate price

level, ki,t is firm-level capital, f is a fixed cost, ii,t is investment in capital, and h (ii,t, ki,t)

is an adjustment cost. Differences across firms are due to differences in their sequence of

idiosyncratic productivity {zi,τ}tτ=0. Because idiosyncratic productivity is AR(1), future

earnings growth is partly predictable and dispersion in price-earnings ratios largely predicts

differences in future earnings growth (CF4 = 0.69).

The model also features differences in discount rates. Because of adjustment costs, it

is costly for firms to lower their capital to the new optimal level after a negative shock

to aggregate productivity xt. Therefore, the agent requires a higher risk premium for firms
36The risk-free rate is closely tied to the agent’s stochastic discount factor.
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with high capital relative to total firm value, as they are more sensitive to negative aggregate

shocks. Quantitatively, these differences in risk premia are small relative to the dispersion

in price-earnings ratios (DR4 = −0.03).37

In order to calculate CFh and DRh, we have to address the issue that model earnings are

often negative, even at the portfolio level, which is not compatible with the Campbell-Shiller

decomposition.38 To use the decomposition, we want to think about an investor that makes

a one-time payment to buy a claim to the company, never pays anything more in the future,

and receives some cash flows in the future. Thus, we will think of an investor that holds

some share θi,t of the company. When the company has positive cash flows, the investor

does not change her share in the company and receives these cash flows. When the company

has negative cash flows, we assume the investor sells a part of her stake in the company

to cover this. Specifically, this investor receives cash flows X̂i,t ≡ θi,t max {Xi,t, 0}, where

θi,t = θi,t−1 (1 + min {Xi,t, 0} /Pi,t). Intuitively, rather than receiving a negative cash flow,

this investor dilutes her claim to the future (on average positive) cash flows. This investor

receives the same return as someone who owned the entire firm and received the negative

cash flows, θi,tPi,t+X̂i,t

θi,t−1Pi,t−1
≡ Pi,t+Xi,t

Pi,t−1
.

E.3. Lettau and Wachter 2007

In this model, each firm receives some share si,t of the aggregate earnings. The value of

si,t goes through a fixed cycle, increasing from s to a peak value of s̄ and then decreasing

back to s. The cross-section of firms is populated with firms at different points in this share

cycle. Because all firms receive a share of the same aggregate earnings, the cross-sectionally

demeaned log earnings growth ∆x̃i,t is simply the log share growth log (si,t)− log (si,t−1).
37In the model, high price-earnings ratio firms have low price-capital ratios. A 1% increase in ezi,t does

not change the current capital (ki,t), increases the current earnings by 1%, and increases the current price
by less than 1% since the increase in productivity is persistent but not permanent. Thus, an increase in zi,t
raises the price-capital ratio and lowers the price-earnings ratio. This is why discount rate news is slightly
negative, as the model predicts that high price-capital ratio firms will have lower future returns, which means
that high price-earnings ratio firms will have higher future returns.

38After a large aggregate shock, nearly all firms will substantially change their capital which requires
paying large adjustment costs.
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In the model, the stochastic discount factor is exposed to shocks that are partly reversed

over time, which means that the agent requires a lower risk premium for longer horizon cash

flows. Because of this, firms with high price-earnings ratios (i.e., firms with a low current

share si,t) earn slightly lower returns for the first few years (DR4 = 0.06). However, the

quantitatively larger component is that high price-earnings ratio firms experience higher

earnings growth as their share increases (CF4 = 0.24). Over time, the firms with low current

si,t eventually become the firms with high si,t+h and require a higher risk premium, as their

cash flows are now front-loaded. Thus, discount rate news is small and ambiguous in terms

of sign at long horizons, DR∞ = −0.04 (0.08).

F. Behavioral and learning model predictions

In this section, we discuss how our findings relate to several behavioral and learning models

in which subjective discount rates are constant and the comovement of current price ratios

with future returns is due to non-FIRE beliefs about cash flow growth. When subjective

expected returns are constant, E∗
t [r̃i,t+j] = r̄, equations (2) and (4) imply that realized

returns are

r̃i,t+1 − r̄ ≈ (∆x̃i,t+1 − E∗
t [∆x̃i,t+1]) +

∞∑
j=2

ρj−1
(
E∗

t+1 [∆x̃i,t+j]− E∗
t [∆x̃i,t+j]

)
.

If one-period cash flow growth surprises (∆x̃i,t+1 − E∗
t [∆x̃i,t+1]) are positively related to

revisions in expected future growth, then one-period cash flow growth surprises will impact

unexpected returns more than 1-1. Empirically, we find that one-period cash flow growth

surprises are negatively related to revisions in expected future growth and thus translate less

than 1-1 into unexpected returns.

Consider the case where agents overstate the persistence of growth. Specifically, the true

persistence of growth is ϕ but agents believe the persistence is ϕ∗ > ϕ. So long as ϕ∗ > 0,

then a positive surprise ∆x̃i,t+1−E∗
t [∆x̃i,t+1] will raise future expected growth and translate

more than 1-1 into realized returns.
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Further, we can consider learning about the mean of an i.i.d. growth process, such

as Nagel and Xu (2022). In this setting, agents form expectations of growth based on a

weighted average of past realized growth. A higher than expected realization for cash flow

growth causes the agent to positively revise her beliefs about mean growth. Because there

are no temporary shocks to the level of cash flows, this increase in expected mean growth

causes the agent to raise her expectations of all future growth. Specifically, Nagel and Xu

(2022) show that the realized unexpected return is

rt+1 − E∗
t [rt+1] =

(
1 +

ρv

1− ρ

)
(∆xt+1 − µ̃t)

where µ̃t is the agent’s current expectation of growth and v is the learning gain parameter.

Given that v > 0, it is immediate that cash flow growth surprises translate more than 1-1

into realized returns.

Finally, we discuss the case of diagnostic growth expectations, as in Bordalo et al. (2022).

This model proposes that earnings growth is impacted by tangible news τt+1 and intangible

news ηt. Specifically, the process for earnings growth is

∆xt+1 = µ∆xt + ηt + τt+1.

Subjective expectations of growth are

E∗
t [∆xt+j] = µj−1 (µ∆xt + ηt) + µj−1ϵt

ϵt = ϕϵt−1 + θ (µτt + ηt)

where ϵt captures biases in expectations and ϕ is assumed to be less than µ. As stated in

the paper, realized unexpected returns are

rt+1 − r̄ = ∆xt+1 − E∗
t [∆xt+1] +

∞∑
j=2

ρj−1
(
E∗

t+1 [∆xt+j]− E∗
t [∆xt+j]

)
.

The covariance of the price-earnings ratio with future earnings growth surprises and
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future unexpected returns is then

Cov (pxt,∆xt+1 − E∗
t [∆xt+1]) = Cov (pxt,−ϵt)

Cov (pxt, rt+1 − r̄) = Cov

(
pxt,−

[
1 +

ρ

1− ρµ
(µ− ϕ)

]
ϵt

)
=

[
1 +

ρ

1− ρµ
(µ− ϕ)

]
Cov (pxt,∆xt+1 − E∗

t [∆xt+1]) .

Given the paper’s assumption that µ > ϕ, this means that the covariance of price-earnings

ratios with unexpected returns must be a magnified version of the covariance of price-earnings

ratios with earnings growth surprises. In fact, the model implies that for any time t variable,

the comovement of that variable with unexpected returns will be 1 + ρ
1−ρµ

(µ− ϕ) times the

comovement of that variable with earnings growth surprises. Thus, the model cannot match

our finding that the comovement of price-earnings ratios with one-year unexpected returns

is smaller than the comovement of price-earnings ratios with earnings growth surprises.

As an extension, we also consider the model of diagnostic expectations of earnings levels

in Bordalo et al. (2019). In this model, the difference between subjective and objective

expectations of the level of log earnings is

E∗
t [xt+j]− Et [xt+j] = aj

1− (b/a)j

1− b/a

(
f̂ θ
t − f̂t

)
where a, b > 0, f̂t is an objective inference of an underlying component of earnings, and f̂ θ

t is

the biased inference of this component. Simulating the model using the paper’s parameter

values, we find that high price-earnings ratio stocks have lower subjective expected one-

year earnings growth. Further, we find that price-earnings ratios are negatively related to

current f̂ θ
t −f̂t, meaning that high price-earnings ratio stocks have pessimistic expectations of

earnings at all horizons. These predictions do not align with our empirical findings that high

price-earnings ratio stocks have high subjective expected one-year earnings growth and that

high price-earnings ratios are associated with overoptimism in subjective expected earnings

growth.
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G. Subjective risk for our portfolios

One of the main components of our model is that investors perceive lower risk for the high

p̃xi,t firms. While the relation is supported by our main evidence in Table I that high price-

earnings ratios are associated with lower subjective expected returns, we can also look at

more direct measures of subjective risk. In this section we explore the relation between our

portfolios and two subjective risk measures: the absolute risk index assigned to firms by

Value Line, and a cross-sectionally standardized risk index created by Jensen (2023).

The first measure of risk is the “Safety Rank,” directly taken from Value Line. This

measure ranges from 1 to 5, where 5 denotes a high perceived risk, and it equals the average

of the analyst score for price stability and financial strength, two perceived characteristics for

each firm. We take a value–weighted average this measure across all firms in each portfolio

to obtain our first subjective risk measure. To account for time effects, we also construct a

second standardized measure of risk following Jensen (2023). For each firm, we define the

subjective risk as the average cross-sectional rank of price stability and financial strength,

and then we standardize this measure every period (i.e., we rescale the measure so that the

cross-sectional mean and cross-sectional standard deviation are 0 and 1 in every period).

Figure A1 shows that our high p̃xi,t portfolios indeed have lower subjective expected risk

using both the direct and the standardized measures of expected risk. The direct measure

of risk is on average 2.90 for the lowest p̃xi,t portfolio and 2.69 for the highest p̃xi,t portfolio,

while the standardized measure is 0.11 for the lowest p̃xi,t portfolio and -0.12 for the highest

p̃xi,t portfolio. As shown by the 95% confidence interval bars, these differences are highly

significant for both measures.

H. Model estimation

This section derives the cash flow parameters ϕ, σu, and σv from the standard deviation

and autocorrelation of aggregate earnings growth σ (∆xagg
t ) and AC (∆xagg

t ) and the average

across portfolios of the standard deviation over time of earnings growth σ (∆x̃i,t+1) . We
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Figure A1. Subjective risk across portfolios. This figure plots the average subjective risk for
each of the five main portolios. The direct measure in blue is the “Safety Rank” measure from Value Line.
This measure ranges from 1 to 5, where 5 is the highest perceived risk. The standardized measure in red
takes the average of the ’Price Stability’ and ’Financial Strength’ measures and it is cross-sectionally rescaled
to have mean zero and unit standard deviation. This measure increases with perceived risk. Each portfolio
shows the 95% confidence intervals. The 5 portfolios are shown in ascending order of price-earnings ratios.

also relate the constant-gain learning from annual observations used in our model to the

evidence on belief updating from quarterly observations. Finally, we discuss the results from

an alternative model in which there is a time-varying latent component to firm earnings

growth.

H.1. Parameter values

According to equation (7), we can express aggregate earnings growth as:

∆xagg
t = ϕ∆xagg

t−1 − ut−1 + ut. (A11)

Taking covariance of equation (A11) with current earnings growth on both sides results in:

Cov(∆xagg
t ,∆xagg

t−1) = ϕV ar(∆xagg
t−1)− σ2

u

AC(∆xagg
t ) = ϕ− σ2

u

V ar(∆xagg
t )

. (A12)

Taking the variance of equation (A11) on both sides gives:

V ar(∆xagg
t ) = ϕ2V ar(∆xagg

t ) + 2σ2
u − 2ϕσ2

u

V ar(∆xagg
t ) =

2σ2
u

1 + ϕ
. (A13)



74

From equations (A12) and (A13), we have:

ϕ = 1 + 2AC (∆xagg
t )

σu =

(
1 + ϕ

2

)1/2

σ (∆xagg
t ) .

Finally, to estimate the individual variance, we use equation (8) to obtain the value for

σv in terms of idiosyncratic earnings growth:

σv =
σ (∆x̃i,t)√

2
.

From the empirical values over the 1982-2020 sample of σ (∆xagg
t ) = 0.353, AC (∆xagg

t ) =

−0.086 and a median portfolio volatility of σ (∆x̃i,t) = 0.140 we infer ϕ = 0.828, σu = 0.337

and σv = 0.099

H.2. Constant-gain parameter

We set our constant-gain parameter based on previous estimates of belief updating from

Malmendier and Nagel (2016). In this section, we show that for small gains β, annual

updating of beliefs based on annual surprises is quite close to quarterly updating of beliefs

based on quarterly surprises.

For intuition, first consider the case of semi-annual updating. In this scenario, the agent

is attempting to learn the parameter µ from a semi-annual variable xt using the updating

rule

E∗
t [µ] = E∗

t−1/2 [µ] + β
(
xt − E∗

t−1/2 [µ]
)
. (A14)

Iterating this equation, we have

E∗
t [µ] = E∗

t−1 [µ] + β
(
xt − E∗

t−1/2 [µ]
)
+ β

(
xt−1/2 − E∗

t−1 [µ]
)

(A15)

= E∗
t−1 [µ] + β

(
xt−1/2 + xt − 2E∗

t−1/2 [µ]
)
− β2

(
xt−1/2 − E∗

t−1 [µ]
)

(A16)

≈ E∗
t−1 [µ] + β

(
xt−1/2 + xt − 2E∗

t−1/2 [µ]
)
. (A17)
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Equation (A17) shows that for small values of β, this semi-annual updating rule is closely

approximated by an annual updating rule using the same gain β and the annual surprise

xt−1/2 + xt − 2E∗
t−1/2 [µ]. This is because the effect of within-year updating depends on

β2, which in our case would be quite small at 0.0003. In other words, the adjustment

for within-year updating is second order compared to the first order change in beliefs

β
(
xt−1/2 + xt − 2E∗

t−1/2 [µ]
)
.

Now, we consider the scenario of quarterly updating. The agent is attempting to learn

the parameter µ from a quarterly variable xt. The agent’s updating rule is

E∗
t [µ] = E∗

t−1/4 [µ] + β
(
xt − E∗

t−1/4 [µ]
)

(A18)

= E∗
t−1 [µ] + β

(
xt−3/4 + xt−1/2 + xt−1/4 + xt − 4E∗

t−1 [µ]
)

−β2
[
3
(
xt−3/4 − E∗

t−1 [µ]
)
+ 2

(
xt−1/2 − E∗

t−3/4 [µ]
)
+ xt−1/4 − E∗

t−1/2 [µ]
]
.(A19)

Once again, this is approximately equal to an annual updating rule based on the annual

surprise xt−3/4 + xt−1/2 + xt−1/4 + xt − 4E∗
t−1 [µ]. The adjustments for within-year updating

are all scaled by β2.

H.3. Time-varying latent component of growth

In this extension, we consider a model in which each firm’s underlying growth is time-varying

rather than a fixed parameter. Specifically, the firm-specific component of earnings growth

is

x̃i,t = zi,t + vi,t

∆zi,t − µ = ϕz (∆zi,t−1 − µ) + εi,t

where the shocks are independent and have variances σ2
v and σ2

ε , respectively. The agent

attempts to infer the underlying ∆zi,t using constant-gain learning,

E∗
t [∆zi,t − µ] = ϕzE

∗
t−1 [∆zi,t−1 − µ] + β

(
∆x̃i,t − E∗

t−1 [∆x̃i,t]
)

(A20)

E∗
t [vi,t] = (1− β)

(
∆x̃i,t − E∗

t−1 [∆x̃i,t]
)
. (A21)
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Her expectation for the future growth of the firm-level component is then

E∗
t [∆x̃i,t+1] = µ+ ϕzE

∗
t [∆zi,t − µ]− E∗

t [vi,t] . (A22)

Her expectation for the future level of the firm-level component is

E∗
t [x̃i,t+n] = x̃i,t + nµ+ ϕz

1− ϕn
z

1− ϕz

E∗
t [∆zi,t − µ]− E∗

t [vi,t] . (A23)

Since we are considering price-earnings ratios, we will normalize µ to 0 for simplicity. In the

case of ϕz = 1 and σε = 0, this extended model collapses back to the main model of Section

IV.

Note that the introduction of a time-varying component of firm-level growth does not

affect the pricing of aggregate strips in equations (14)-(16). Further, given these new defini-

tions for expected cash flows, the description of firm prices, expected returns, and realized

returns in equations (17)-(19) still hold.

Qualitatively, this model matches the main implications of our main model in Section

IV. A higher expectation of ∆zi,t will raise a firm’s price by increasing the expected future

cash flows and by lowering the subjective risk premium. If the constant-gain β is small, then

earnings growth disappointment will raise expected next-period earnings growth, as shown

by equations (A20)-(A22). Similarly, if the constant-gain β is small. then disappointment

in one-year earnings growth will only have a small immediate impact on returns, as shown

by equations (19), (A20), (A21), and (A23).

Quantitatively, we find that this extension does not noticably alter our results. Compared

to our main model, this extension provides two additional parameters (ϕz, σε). We estimate

these parameters to best match the decomposition targets shown in Figure 3. The result

is ϕz = 0.9999 and σε = 0, meaning that the extended model is virtually identical to the

fixed parameter model of Section IV. In other words, for the purposes of explaining our

empirical findings, the main model of Section IV and the extended model with a time-

varying latent component of growth perform equally well. Because of this, we focus on the

more parsimonious fixed-parameter model for our main analysis.


