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Introduction

The seminal work of Lustig and Verdelhan (2007) shifted the focus from explaining country-

specific currency returns to explaining portfolios of currencies sorted on interest rate dif-

ferentials. Lustig et al. (2011) document that one factor, carry (CAR), which borrows in

low and invests in high interest rate currencies, explains almost all of the cross-sectional

variation in interest-rate sorted currency returns. Hence, equilibrium stochastic discount

factors (SDFs) need to differ in their exposure to only one global shock. US-specific shocks,

on the other hand, are identified via an idiosyncratic shock, dollar (DOL), which borrows

in US dollars and lends in all other currencies. Their two-factor DOL-CAR model is shown

to explain many salient features of international asset returns. These papers marked not

only the beginning of a new era in international finance in the quest for understanding the

factor structure of currency returns but also spurred a growing number of new currency risk

factors.

The proliferation of new factors can be motivated by the fact that the two-factor DOL-

CAR model performs poorly when applied to currency portfolios beyond the classic interest-

rate differential sort, such as currency momentum, value, correlation risk, or dollar-beta

sorted portfolios. The reasons for rejection of the two-factor model can be twofold. First, the

default conclusion drawn in the literature is that two factors are not enough and additional

country-specific or global shocks are needed. However, given the very strong factor structure

of exchange rates, it seems unlikely that international SDFs should consist of a large number

of factors. Alternatively, while the unconditional two-factor model may fail, a conditional

version may help explain the momentum and value effects, among others. In that case,

each country-specific SDF loads on only one global shock and one idiosyncratic shock but

time-varying risk loadings, such that DOL and CAR suffice to span both the US-specific and

global shocks. However, the time-varying risk loadings imply that the covariance between the

conditional risk premia of the DOL and CAR and the conditional loadings of test assets on

these factors is non-zero. According to Jagannathan and Wang (1996), this covariance term

leads to a rejection of the unconditional DOL-CAR model (i.e., significant unconditional

pricing errors), while the conditional DOL-CAR model holds.

In this paper, we propose a novel conditional factor model approach and we provide

empirical evidence in favor of this alternative explanation: Each country-specific SDF loads

on only one global shock and one idiosyncratic shock as in Lustig et al. (2011) but with

time-varying risk loadings. We show that this parsimonious model can explain over 80% of
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the variation of a rich cross-section of various test assets.

In our empirical analysis, we first construct a cross-section of 27 currency portfolios as

test assets and confirm the finding in the literature that the unconditional DOL-CAR factor

model fails to explain the average returns of our test assets using several testable restrictions.

Most importantly, the pricing errors of the test assets are jointly significantly different from

zero. Moreover, the model’s R2 is essentially zero.

We then introduce a novel GMM estimation setting to assess conditional factor models.

More specifically, building on Jagannathan and Wang (1996) we take unconditional expec-

tations of the conditional model to obtain unconditional moment conditions. In contrast to

Jagannathan and Wang (1996) (and much of the subsequent literature), however, our ap-

proach does not require us to specify a set of conditioning variables which maybe empirically

challenging, since in general, there is no theoretical guidance on how betas and risk premia

vary with variables that represent conditioning information. Instead, our approach is closely

related to the “direct” estimation of the conditional CAPM by Lewellen and Nagel (2006)

which relies on estimating intercepts and risk loadings by short-window regressions. The

time-series of the estimated coefficients can then be used to formally test the conditional

DOL-CAR-model. We estimate the conditional DOL-CAR factor model, and find that

contrary to the unconditional model, none of the testable restrictions can reject the model.

Moreover, the model fit is astounding, reaching an R2 of 89% to explain the average returns

of our 27 FX portfolios.

Using our estimates, we then proceed to document the following findings. First, we follow

in spirit Lewellen and Nagel (2006) and investigate the pricing implications of the covariation

σβγ between conditional factor loadings (βt) and conditional factor risk premia (γt), as well

as the average conditional loadings versus the unconditional loadings β̄ − β. We document

a striking relation between unconditional pricing errors of assets and σβγ and β̄ − β. While

pricing errors roughly range from -3% to over 5.5% per year in the unconditional DOL-CAR

model, these errors reduce to an insignificant amount (well between -1% and 1.5%) after

accounting for σβγ and β̄ − β. Therefore, the conditional version of the DOL-CAR factor

model resolves many anomalies documented in the literature.

Furthermore, we document that σβγ is of first-order importance to explain the superior

performance of the conditional DOL-CAR model over its unconditional counterpart. In

contrast, β̄−β is of secondary importance. This emphasizes again the importance to account

for the time variation in the conditional factor loadings and risk premia when assessing

factor models. Unconditional estimations which ignore the time-variation in the conditional
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moments mistakenly reject the DOL-CAR two factor model.

Meanwhile beyond the importance of time-varying information, we emphasize the unique-

ness of DOL and CAR in the significant improvement of cross-sectional pricing power. This

is in contrast to other currency factors (or combinations thereof) which perform inferior to

the DOL-CAR two-factor model and are all rejected in the cross-sectional asset pricing test

based on GMM estimation results.

Our findings also provide guidance to the modeling of international SDFs. For example,

the success of the conditional DOL-CAR model is at odds with the idea pursued in extant

literature that the underlying no-arbitrage model features multiple global shocks or multiple

idiosyncratic shocks in each country. Our conclusions are that country-specific SDFs load

on one global shock and one idiosyncratic shock, and risk loadings are time-varying.

Second, time variation in risk loadings implies predictability in factor returns. Accord-

ingly, we estimate lower bounds for the predictive regression R2 of 7.55% for the DOL and

4.44% for the CAR. Moreover, statistical or economic constraints to address estimation er-

rors reduce these lower bounds by roughly half. Contrary to the equity literature, which has

argued that time-variation in risk loadings need to be unreasonably large to explain asset

pricing anomalies, we find that the required time-variation in risk loadings in the no-arbitrage

model, and therefore, the time-variation in the factor risk premia in currency markets, does

not appear to be implausible.

Third, recent work shows that currency momentum is a useful state variable to explain

the conditional risk premia of DOL and CAR, see, e.g., Zhang (2022) and Sarno et al.

(2023). However, our results thus far seem to indicate that these results are more general.

More specifically, other popular pricing factors, beyond currency momentum such as value,

correlation risk, and dollar-beta slope, must be useful state-variables to describe the time-

variation in the DOL and CAR factor risk premia and the conditional factor loadings of the

test assets. In other words, they describe the time-variation in the SDF’s risk loadings on

the global shock and the idiosyncratic shock. Moreover, these factors are not only important

to describe the time-variation in conditional factor risk premia but also in the conditional

factor loadings of the test assets.

Finally, our findings provide guidance for the international macro-finance literature in

at least two ways. First, it suffices to focus on economic risks that are related to interest

rate differentials. It is reassuring that this is the main focus in the literature. Second, our

results also pose a new challenge, namely that quantitatively successful models must generate

sufficient variation in the SDF’s risk loadings. Most models in the literature generate constant
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risk loadings and constant risk premia. Hence, more research is needed along this dimension.

Our paper is related to several strands in the literature. The desire to assess conditional

models is motivated by a large literature that provides evidence that factor loadings and

factor risk premia are time-varying. For example, Lustig et al. (2014), Verdelhan (2018),

Panayotov (2020), and Chiang and Mo (2022) show that it is important to condition factors

on the average forward discount across currencies. Balduzzi and Chiang (2020) and Dahlquist

and Penasse (2022) document that real exchange rates predict currency returns and imply a

substantial time-variation in currency risk premia. Zhang (2022) traces currency momentum

back to time-varying risk premia in the DOL and CAR factor. Ma and Zhang (2022)

show that changes in residential-to-nonresidential investment have a significant effect on

conditional currency risk premia. Hassan and Mano (2019) decompose currency returns into

a cross-currency, a between-time-and-currency, and a cross-time component. Maurer et al.

(2023) show that it is important to consider the time-variation in conditional return moments

in the construction of mean-variance optimized currency portfolios. Maurer et al. (2022) and

Chernov et al. (2023) show that a mean-variance optimized currency portfolio with optimal

market timing based on the time-variation in return moments is able to explain the average

returns of a large cross-section of test assets.

We follow this literature and show that there are significant differences between the

unconditionalDOL-CAR factor model, which ignores the time-variation in conditional factor

loadings and factor risk premia, and its conditional counterpart. We document that the

conditional DOL-CAR model fixes the shortcomings of its unconditional counterpart, and

is able to price a rich cross-section of currency returns.

Our paper is also related to the empirical literature which analyzes various pricing fac-

tors in FX markets: carry factor (Lustig and Verdelhan, 2007; Lustig et al., 2011), global

volatility factor (Menkhoff et al., 2012a; Christiansen et al., 2011), momentum factor (Burn-

side et al., 2011; Menkhoff et al., 2012b), global currency skewness factor (Rafferty, 2012),

FX correlation risk factor (Cenedese et al., 2016; Mueller et al., 2017), dollar beta factor

(Lustig et al., 2014; Verdelhan, 2018), downside beta risk factor (Dobrynskaya, 2014; Lettau

et al., 2014; Galsband and Nitschka, 2014), FX liquidity risk factor (Mancini et al., 2013),

economic size factor (Hassan, 2013), economic momentum (Dahlquist and Hasseltoft, 2020),

surplus-consumption risk factor (Colacito et al., 2020), sovereign risk Corte et al. (2022),

and FX trade volume Cespa et al. (2022).

In contrast to this literature, we are not looking for new factors that are able to price

assets which feature significant pricing errors in the unconditional DOL-CAR factor model.
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Instead, we show that theDOL and CAR are sufficient and we do not need additional factors

if we properly account for the time-variation in conditional return moments and assess a

conditional version of the model. To that extend, additional factors in the literature do not

give rise to new risks in a reduced form no-arbitrage model, but they provide important

information about the time-variation in the factor risk premia and factor loadings of the test

assets.

Finally, our paper is closely related to Sarno et al. (2023), who show that in an uncon-

ditional model at least three factors are important and that these factors are related but

not exactly equal to DOL, CAR, and momentum (MOM). Moreover, these authors do not

estimate significant risk premia for other factors. Our results show that the model can be

further reduced to two factors, DOL and CAR, if we consider a conditional model.

Our paper is organized as follows. Section 1 describes the data, as well as the construction

of our pricing factors and test assets. Section 2 describes the GMM estimations and testable

restrictions of the unconditional and conditional models. Section 3 presents our empirical

results. Finally, Section 4 concludes. Appendix A provides technical details about the GMM

estimations of the conditional and unconditional models. Appendix B provides all tables

and figures. The Online Appendix further provides robustness results using an alternative

estimation approach for conditional factor loadings as well as GMM estimation results for

different currency factors other than DOL and CAR.

1 Pricing Factors and Test Assets

We first define currency returns and describe the data. Then, we describe the construction

of our pricing factors and test assets.

1.1 Currency Returns

We take the view of an investor with the USD as the base currency. We define 1-month

currency excess return ri,t+1 as an uncovered long position in the 1-month forward exchange

rate contract of currency i against the USD. Note that positions in forward contracts are

net-zero investments, and returns are excess returns. We denote by Xi,t and Xi,t,t+1 the spot

and 1-month forward exchange rates in USD per unit of currency i at the end of month t.

We further write the forward discount of currency i as fdi,t = ln
Ä

Xi,t

Xi,t,t+1

ä
, and the exchange

rate growth of currency i against the USD as ∆xi,t+1 = ln
Ä
Xi,t+1

Xi,t

ä
. The forward discount is
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observed at the end of month t, while the exchange rate growth is only realized at the end

of month t+ 1. Accordingly we can write the currency return as

ri,t+1 = ln

Å
Xi,t+1

Xi,t,t+1

ã
= fdi,t +∆xi,t+1.

We define by θsi,t the weights of currency portfolio s in currency i at the end of month t.

The portfolio excess return in the subsequent month is Rs,t+1 =
∑

i θ
s
i,tri,t+1. The portfolio

weights θsi,t do not necessarily have to add up to one. However, most trading strategies in

the literature scale portfolio weights such that the notional value is constant through time,∑
i |θsi,t| = c for time-invariant constant c > 0.

We obtain daily spot and 1-month forward exchange rates against the USD from De-

cember 1983 to March 2021 from Barclays Bank International and Reuters via Datastream.

We use quotes of the last day of the month to compute monthly currency returns ri,t+1.

Our main analysis uses a set of 29 currencies from 15 developed and 14 emerging countries.

We follow the classification of Lustig et al. (2011) and use currencies of the following 15

developed countries: Australia, Belgium, Canada, Denmark, Euro Area, France, Germany,

Italy, Japan, Netherlands, New Zealand, Norway, Sweden, Switzerland, United Kingdom.

The Euro was introduced in January 1999 and we exclude all countries which have joined

the Euro after that and only keep the Euro as a currency.

Finally, the set of 14 emerging countries and regions follows Maurer et al. (2022): Brazil,

Czech Republic, Greece, Hungary, Iceland, Ireland, Mexico, Poland, Portugal, Singapore,

South Africa, South Korea, Spain, Taiwan. The Online Appendix discusses additional data

filters.

1.2 Pricing Factors

Our main focus and contribution are the analysis of the DOL-CAR two factor model. We

describe the construction of the two factors in the following.

DOL (Lustig et al., 2011): The Dollar factor (DOL) is a traded portfolio that (borrows

USD and) invests equally in all currencies.

CAR (Lustig et al., 2011): First, at the end of each month we sort currencies according to

the current forward discount fdi,t. For each quintile, we then construct an equally weighted

portfolio, and denote these five portfolios by Int1-Int5. The CAR factor takes a long position

in the high forward discount portfolio Int5 and a short position in the low forward discount
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portfolio Int1.

1.3 Test Assets

We use N = 27 test assets in our model estimations. First, we use the five forward discount

sorted portfolios Int1 to Int5 as described in the discussion of the CAR factor (section 1.2).

Second, we use the CSCAR pricing factor as a test asset when we estimate and test the

DOL-CAR model. We describe the remaining 21 assets in the following.

Mom1-Mom5 (Burnside et al., 2011; Menkhoff et al., 2012b): We sort currencies based

on past 1-month currency returns into quintiles. The top quintile contains the winner cur-

rencies and the bottom quintile the losers. We construct equally weighted currency portfolios

for each quintile, and denote these five portfolios by Mom1 to Mom5.1

Val1-Val5 (Asness et al., 2013; Menkhoff et al., 2017): Currency value strategies posit

that in the long-run undervalued currencies with low real exchange rates appreciate against

overvalued currencies with high real exchange rates. We sort currencies according to the

5-year change in purchasing power parity (PPP).2 We construct equally weighted currency

portfolios for each quintile, and denote these five portfolios by V al1 to V al5.

FXC1-FXC4 (Mueller et al., 2017): The FX correlation dispersion measure is defined

as the difference between the average of the top and the bottom deciles of the realized con-

ditional correlations between all exchange rates. We then sort currencies into four portfolios

based on the loadings of the currency returns on the innovations in the FX correlation dis-

persion measure. The equally weighted portfolios corresponding to each quartile are denoted

by FXC1 to FX4.

DB1-DB6 (Verdelhan, 2018): First, we regress monthly currency returns on the DOL

and CAR factors using 60-month rolling windows. Then, we sort currencies based on the

DOL factor loading into six quantiles, and construct equally weighted currency portfolios for

each quantile. The six DB1 to DB6 portfolios take long (short) positions in the correspond-

ing equally weighted quantile portfolios if the median forward discount rate of developed

currencies is positive (negative).

1Note that Menkhoff et al. (2012b) find that momentum constructed based on sorting 1-month past
returns yields more profitable portfolios than 3-, 6-, 9- or 12-month formation periods. Therefore, the
1-month past return sorted portfolios pose a bigger challenge and set a higher bar for pricing models.

2Menkhoff et al. (2017) further construct modified value portfolios, which utilize macroeconomic infor-
mation. We only implement the benchmark portfolios based on PPP.
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DDOL (Lustig et al., 2014): DDOL takes a long (short) position in the DOL when the

median forward discount across developed currencies is positive (negative).

CSCAR (Maurer et al., 2022): The CSCAR adjusts the CAR to account for the time-

variation in the covariances among exchange rates and the forward discounts or spreads fdi,t.

It is shown to price the cross-section of various FX test assets well. The portfolio weights are

θCSCAR
t = Ω̃−1

t fdt, where Ω̃
−1
t is a robust version of the inverse of the conditional covariance

matrix Ωt of all exchange rate growths. First, at the end of month t, we use daily exchange

rate growths over the past 6 months and apply an exponential weighting scheme with a

decay factor of 0.95 to put more (less) emphasize on more recent (distant) data. Second, we

use principal component analysis (PCA) and remove PCs that explain less than 1% of the

common variation in exchange rate growths. We then use the remaining PCs to construct

the robust inverse of the conditional covariance matrix Ω̃−1
t . This procedure exploits the

strong factor structure in FX markets and has been shown to efficiently mitigate estimation

errors. In contrast to DOL and CAR, the notional value of CSCAR is time-varying, which

is an important feature to enhance its unconditional performance as a trading strategy and

as a pricing factor (Maurer et al., 2023, 2022). The CSCAR is equivalent to a mean-variance

efficient portfolio or the inverse of the minimum variance stochastic discount factor (SDF) in

FX markets (Hansen and Jagannathan, 1991), if we assume that the forward discount fdi,t

is a proxy for the conditional expected excess return of ri,t+1. This assumption is equivalent

to the random walk hypothesis of Meese and Rogoff (1983), and has been exploited in recent

literature, see, e.g., Baz et al. (2001); Della Corte et al. (2009); Ackermann et al. (2016);

Daniel et al. (2017); Maurer et al. (2023, 2022).

2 Model Estimation using GMM

In this section, we describe our estimation approach of unconditional and conditional factor

models using GMM and provide an overview of the testable restrictions of the models.

2.1 Estimation of the Unconditional Model

The estimation of the unconditional model is standard in the literature. We briefly review

the approach and relegate technical details to Appendix A.
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We estimate a linear factor pricing model

E [Rt] = βγ. (1)

Rt is the N × 1 vector of excess returns of N test assets at time t, N ×K matrix β are the

loadings of the N test assets on K pricing factors, K × 1 vector γ are the risk premia of the

K factors, and E[.] is the unconditional expectation operator.

We use GMM to estimate model (1) (Hansen, 1982; Cochrane, 2005). The K+(2+K)N

moment conditions are,

g(b) =

à
E
[
Ft − F̄

]
E

[(
1

Ft

)
⊗ (Rt − α− βFt)

]
E [Rt − βγ]

í
=

Ü
0{K×1}

0{(1+K)N×1}

0{N×1}

ê
(2)

to estimate the 2K + (1 + K)N parameters b =
[
F̄ ′, α′, vec(β)′, γ′]′. ⊗ is the Kronecker

product. Ft is the K × 1 vector of excess returns of the K traded pricing factors at time t,

and F̄ is the correspondingK×1 vector of expected excess returns. We implicitly assume that

pricing factors F are traded portfolios. We refer to Rt = α+ βFt + εt as time-series pricing

equations, while E [Rt] = βγ + α∗ are cross-sectional pricing equations, where α∗ are the

residuals and also referred to as cross-sectional pricing errors. N×1 vector α = E [Rt − βFt]

are abnormal returns of the N test assets in the first set of N time-series equations. We

also refer to α as time-series pricing errors. vec(β) is an NK × 1 vector of all elements

in the factor loadings matrix β, i.e., stacking the columns on top of each other. 1{N×1} is

an N × 1 vector of 1 and 0{Z×1} is an Z × 1 vector of 0. We take into account cross- and

autocorrelations and heteroskedasticity following Newey and West (1987) when constructing

the covariance matrix of the parameter estimates.

2.2 Estimation of Conditional Model

We now discuss our novel estimation method for the conditional factor model using GMM.

In a nutshell, our approach builds on the idea of Jagannathan and Wang (1996) to take

the unconditional expectation of the conditional model. In the following, we describe the

important elements of our approach, while we relegate technical details to Appendix A.
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We focus on a linear conditional factor pricing model

µt = βtγt. (3)

N × 1 vector µt = Et [Rt+1] are the conditional expected excess returns of N test assets

at time t, and Rt+1 is the N × 1 vector of realized excess returns at time t + 1. Et[.] is

the conditional expectation operator given the information at time t. N ×K matrix βt are

the conditional factor loadings of the N test assets on K pricing factors, i.e., the βt are the

conditional analog to the unconditional β. K × 1 vector γt are the conditional risk premia

of the K factors, i.e., γt are the conditional analog to the unconditional γ. We assume that

factors are traded, and therefore, γt = Et [Ft+1], where Ft+1 is the K × 1 vector of realized

excess returns of the factors.

Following Jagannathan and Wang (1996), we write the conditional model (3) in the

following unconditional form,

µ = E [Rt+1] = β̄γ + σβγ1K×1, (4)

where β̄ = E [βt], γ = E [γt], and σβγ = E
[(
βt − β̄

)
diag (γt − γ)

]
is the N × K matrix

of covariances between the conditional factor loadings and the corresponding factor premia,

i.e., element (i, k) is the covariance of asset i’s conditional loading on factor k with the

conditional risk premium of factor k, Cov (βi,k,t, γk,t). diag (γt − γ) is the K × K diagonal

matrix and the diagonal is given by the K × 1 vector γt − γ.

2.2.1 Estimation of Conditional Factor Loadings βt

To estimate equation (4), we first need to construct a time-series of conditional factor loadings

βt. More specifically, our aim is to use more “real-time” information about the factor loadings

and test assets to construct βt.
3

The estimation procedure of this “real-time” approach is as follows. Since we consider

only traded pricing factors, we can estimate factor loadings from the covariance matrix

of individual currency returns. Denote by Ct × N matrix ΘR
t and Ct × K matrix ΘF

t the

currency portfolio holdings of the N test assets andK pricing factors, where Ct is the number

of individual currencies at time t. The N × 1 and K × 1 vectors of excess returns at time

3Note, however, that the estimates and the conclusions are essentially the same as the results based on
6-month simple rolling windows, see Appendix D.
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t+ 1 of the N test assets and K factors are Rt+1 = ΘR
t
′
rt+1 and Ft+1 = ΘF

t
′
rt+1, where rt+1

is the Ct × 1 column vector of currency returns as described in section 1.1.

We can write the conditional pricing model as,

Rt+1 = βtFt+1 + εt+1,

where εt+1 is an N × 1 vector of residuals. Post multiplying by F ′
t+1 and taking conditional

expectations,

Et

[
Rt+1F

′
t+1

]
= Et

î
ΘR

t

′
rt+1r

′
t+1Θ

F
t

ó
= Et

[
(βtFt+1 + εt+1)F

′
t+1

]
= Et

î
βtΘ

F
t

′
rt+1r

′
t+1Θ

F
t

ó
+ Et

[
εt+1F

′
t+1

]
.

Noticing that Et

[
rt+1r

′
t+1

]
= Ωt is the Ct×Ct conditional covariance matrix of the individual

currency returns, and residuals εt+1 are not correlated with the factor returns Ft+1, we obtain

βt = ΘR
t

′
ΩtΘ

F
t

Ä
ΘF

t

′
ΩtΘ

F
t

ä−1
. (5)

This estimation of βt is similar to a simple rolling window estimation with one crucial

difference. While the estimation of the conditional covariance matrix Ω̃t is obtained from

rolling estimations, portfolio weights ΘF
t are real-time. That is, we estimate βt directly

in rolling window regressions of Rt on Ft, but both Ω̃t and ΘF
t are (weighted) averages of

historical data. In that sense, the approach using ΘF
t produces βt that are more real-time

and rely less on historical data. An implicit key assumption of this approach is that the

pricing factors are traded, and we have portfolio weights ΘF
t .

In the subsequent GMM estimation of equation (4), we take our first-stage estimates of βt

and neglect estimation errors. As long as the estimated βts are unbiased and the estimation

noise is not correlated with future factor returns, this does not introduce any bias.4

Table 1 and 2 provide summary statistics of βt for all 27 test assets, as well as the DOL

and CAR factors. The first column, labeled “uncon”, further reports the unconditional

factor loadings obtained from the unconditional model estimation. For some test assets the

difference can be substantial between the unconditional loading β and the average conditional

loading β̄. For instance, for CSCAR the unconditional loadings for DOL are half the size

4Note, that inference may be affected as the estimated errors will be too small, leading to too many
rejections of the conditional model. This, however, does not affect our main results (in section 3.2) that the
conditional DOL-CAR cannot be rejected by the data, and is able to explain a comprehensive cross-section
of average FX returns.

12



of the average conditional loadings. These differences imply differences in model-implied

expected returns across the conditional and unconditional models. However, as shown later,

the more important difference between the conditional and unconditional models comes from

the covariation between conditional loadings and risk premia.

Some assets feature a large time-series variation in the conditional loadings. For instance,

we observe large dispersion in the conditional loading of the CSCAR. This is intuitive for

the following reason. While DOL and CAR have a constant notional value, the CSCAR

has market timing and adjusts its notional value in response to changes in the first two

moments of currency returns. These moments are volatile, and thus, conditional loadings

are volatile. Similarly, there is a lot of volatility in conditional factor loadings of the DB

portfolios and the DDOL on the DOL factor. This is not surprising as these test assets

by construction switch between positive and negative exposures to the DOL when the sign

of the average forward discount flips from one month to the next. The sizable volatility in

conditional loadings (and covariation with conditional risk premia as we show later) is the

first order explanation for the success of the conditional DOL-CAR factor model.

2.2.2 Estimation of σβγ

Equipped with a times-series of βt, we can now estimate β̄ in equation (4). In addition,

we need to estimate the covariation of βt with conditional risk premia γt. The problem

is that we do not directly observe γt. A common approach in the literature is to impose

a functional form on γt (and βt) and use conditioning variables to construct a time-series.

However, an obvious limitation is that the estimation of equation (4) critically hinges on the

specific functional form and the set of conditioning variables.

To address this concern, we use an approach which is model-free and does not require

a specific set of conditioning variables. By definition of γt = Et [Ft+1] the law of iterative

expectations yields E [Ft+1] = E [Et [Ft+1]] = E [γt] = γ. Applying again the law of iterative

expectations to the unconditional covariance of βt with Ft+1,

Cov (βt, Ft+1) = E
[(
βt − β̄

)
diag (Ft+1 − E [Ft+1])

]
= E

[
Et

[(
βt − β̄

)
diag (Ft+1 − γ)

]]
= E

[(
βt − β̄

)
diag (γt − γ)

]
= σβγ. (6)

Notice that this approach is analogous to the methodology employed by Lewellen and Nagel

(2006) and Kozak and Santosh (2020).
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2.2.3 GMM: Conditional Model

We can now estimate equation (4) using GMM (Hansen, 1982; Cochrane, 2005). We use the

following K + 2NK +N moment conditions,

g(b) =

à
E
[
Ft+1 − F̄

]
E
[
vec
(
βt − β̄

)]
E
[
vec
((
βt − β̄

)
diag

(
Ft+1 − F̄

)
− σβγ

)]
E
[
Rt − β̄γ − σβγ1K×1

]

í
=

à
0{K×1}

0{NK×1}

0{NK×1}

0{N×1}

í
(7)

to estimate the K + 2NK + K parameters b =
[
F̄ ′, vec(β̄)′, vec(σβγ)

′, γ′]′. We need N >

K so that the model is overidentified. We take into account cross- and autocorrelations

and heteroskedasticity following Newey and West (1987) when constructing the covariance

matrix of the parameter estimates. This is our benchmark model while we also consider

the GMM estimation setup which allows a free coefficient δ for the term σβγ, in which case

K + 2NK + 2K parameters b =
[
F̄ ′, vec(β̄)′, vec(σβγ)

′, γ′, δ
]′
are estimated.

There are two main differences between the GMM estimations of the unconditional and

conditional models. First, in contrast to the moment conditions (2) of the unconditional

model, we do not have a time-series pricing equation in the moment conditions (7) of the

conditional model. The time-series pricing equations are equivalent to equation (11), and

we directly use βt from equation (11) as an input in our GMM estimation in the conditional

model.

The second main difference is the additional explanatory variable σβγ in the cross-

sectional pricing equation, E [Rt] = β̄γ + σβγ1K×1 + α∗. Our empirical analysis shows that

this term is the main driving force that the unconditional DOL-CAR model is rejected in

the data (section 3.1), while the conditional DOL-CAR model is able to successfully explain

average currency returns in a large cross-section of test assets (section 3.2).

2.3 Testable Restrictions

We use several tests to evaluate our factor pricing models. In the following, we denote by b̂

the estimates of parameters b.

First, to validate pricing factor k, we check whether it is priced in the cross-section of

asset returns. We use the t-test statistic γ̂k√
V ar(γ̂k)

to check whether the estimated factor

premium γ̂k is statistically significantly different from 0. If γ̂k is not significantly different
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from 0, then factor k is not important to explain the cross-section of average returns in FX

markets.

Second, since all pricing factors are traded, the factor premium has to be equal to its ex-

pected excess return, γk = F̄k. We use the t-test statistic γ̂k− ˆ̄Fk√
V ar
Ä
γ̂k− ˆ̄Fk

ä with V ar
Ä
γ̂k − ˆ̄Fk

ä
=

V ar (γ̂k) + V ar
Ä
ˆ̄Fk

ä
− 2Cov

Ä
γ̂k,

ˆ̄Fk

ä
to test whether γ̂k − ˆ̄Fk is statistically significantly

different from 0. If it is significantly different from 0, then we reject the model.

Third, in the conditional model we have the prediction δk = 1 ∀k. For the conditional

model setup with free δ, we test whether δ̂k is statistically significantly different from 0 or

1 using the t-test statistic δ̂k√
V ar(δ̂k)

or δ̂k−1√
V ar(δ̂k)

. In theory, if there is a covariation between

βk,t and γk,t, then this covariation appears in the cross-sectional pricing equation, and δk is

equal to one. Only if there is no covariation between βk,t and γk,t, then δk can deviate from

one, and it should be close to zero in empirical tests. Therefore, a δ̂k that significantly differs

from zero, but does not significantly differ from one, suggests that the conditional model

significantly differs from the unconditional version due to the covariation between the risk

premium of factor k and the factor loadings of the test assets on factor k.

Fourth, we test whether the estimated abnormal returns α̂∗ = E[Rt] − β̂γ̂ (in case of

the unconditional model) or α̂∗ = E[Rt]− ˆ̄βγ̂ − σ̂βγ1K×1 (in case of the conditional model)

in the N cross-sectional pricing equations are jointly statistically significantly different from

0. We use α̂∗′Cov(α̂∗)−1α̂∗ as the test-statistic. It is χ2 distributed with N − K degrees

of freedom for both the unconditional and conditional model with δ = 1. A large test-

statistic means a rejection of the model. For the conditional model which allows a free δ,

α̂∗ = E[Rt]− ˆ̄βγ̂ − σ̂βγ δ̂ and χ2 is distributed with N − 2K degrees of freedom.

Fifth, in case of the unconditional model, we test whether the estimated abnormal re-

turns α̂ = E
î
Rt − β̂Ft

ó
in the N time-series pricing equations are jointly statistically sig-

nificantly different from zero. Our test-statistic is T−N−K
NT

α̂′Cov(α̂)−1α̂ ∼ FN,T−N−K . A

large test-statistic is a rejection of the unconditional model. We cannot use this test for the

conditional model as we do not estimate time-series pricing equations with GMM. Instead,

βt is determined in equation (11) without any testable restrictions.

Finally, we report the R2 of the N cross-sectional pricing equations. R2 provides an

indication of how well the model explains the average returns in the cross-section. It is,

however, not a formal test to reject a model.
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3 Empirical Results

Our main finding is that the unconditional DOL-CAR factor pricing model is rejected by

the data, while the conditional DOL-CAR model is able to explain the average returns in

our extensive cross-section of 27 test assets.

3.1 The Unconditional DOL-CAR Factor Pricing Model

We first test the unconditional DOL-CAR two factor pricing model. It is well-known in

the literature that this model correctly prices the cross-section of forward-discount sorted

portfolios, but is rejected in a richer cross-section of FX market returns. Accordingly, this

section merely confirms already known results, and serves as a benchmark for our main

analysis in section 3.2.

Columns 1 and 4 in Table 3 provide the GMM estimation results of the unconditional

DOL-CAR two factor pricing model. Column 1 reports results for our cross-section of five

Int, five Mom, and five V al portfolios (15 test assets). This is a popular cross-section in

the literature, and motivates previous research to add momentum and value factors to the

pricing models. Column 4 utilizes our complete cross-section of 27 test assets discussed in

section 1.3.

The risk premium γ̂DOL is positive but small in magnitude and insignificant (1.70% resp.

2.21% per year). In contrast, γ̂CAR is positive and significant (3.72% resp. 7.69% per year) in

both sets of 15 and 27 test assets. Thus, only the CAR factor appears to matter to explain

the cross-section of currency returns.

In the case of 27 test assets, we reject the unconditional model based on the finding that

γ̂DOL = 2.21% is significantly larger than the average return of DOL (1.65%). Moreover,

γ̂CAR = 7.69% is significantly larger than the average return of CAR (4.71%). In the case

of 15 test assets, we find a marginally significant difference between γ̂CAR = 3.72% and the

average return of CAR (4.71%).

More importantly, we find that the cross-sectional pricing errors α∗ and the time-series

pricing errors α are jointly significantly different from zero independent from specific set of

test assets used. In case of the smaller cross-section the p-values are around 3%, while in the

larger cross-section the rejection of the model comes with p-values below 0.1%. This provides

clear evidence that the unconditional DOL-CAR model fails to explain the cross-section of

average currency returns.
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Finally, the R2s are 35% and -2% for the cross-sections of 15 and 27 test assets. Recall

that the R2 is not bounded below by zero in our analysis as our cross-sectional regression

does not include a constant. While the R2 does not provide a formal test, it is still indicative.

The low or even negative values suggest that the unconditional DOL-CAR model does not

explain much of the cross-section of average currency returns.

We further illustrate the poor model fit in Figure 1. The vertical axis measures the

expected returns in the unconditional DOL-CAR model. The horizontal axis reports the

average returns between 1983 and 2021. The model implied and historical average returns

are essentially orthogonal. We observe particularly large deviations from the 45 degree line

in the case of CSCAR, most of the DB portfolios, Mom1, and V al1.

Column 1 and 2 in Table 4 provide additional insights on whether the unconditionalDOL-

CAR model explains the average returns of the test assets. We report the cross-sectional

pricing errors α∗ of each test asset. The pricing errors are statistically significant and large in

magnitude for many assets. The model does a particularly poor job explaining the average

returns of Int5, Mom1, V al1, FXC2, (almost) every DB portfolio, factor DDOL and the

CSCAR.

Consistent with earlier literature, we find strong evidence that the unconditional DOL-

CAR two factor model strongly rejected in the data. This finding has motivated a large

literature in search of new FX factors.

3.2 The Conditional DOL-CAR Factor Pricing Model

Given the failure of the unconditional DOL-CAR two-factor model, we next test whether

a conditional version of the model performs better. If not, then additional pricing factors

are necessary as suggested in the literature. In contrast, if the conditional model fares well,

then we do not need additional pricing factors. In that sense, the additional factors in the

literature can be interpreted as useful variables to capture the variation in the conditional

factor loadings and the conditional moments of the two factors DOL and CAR.

We show that the conditional DOL-CAR two factor model does a good job explaining

the cross-section of currency returns, and the model cannot be rejected. This is the main

contribution of our paper.

Columns 2, 3, 5, and 6 in Table 3 provide the GMM estimation results of the conditional

DOL-CAR two factor pricing model. Column 2 and 3 report results for our cross-section of

15 test assets, while column 5 and 6 consider our full set of 27 test assets. δ = 1 refers to our
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benchmark exercise when we set δ exactly to 1 which is theoretically true if the conditional

DOL-CAR model holds. For robustness, we also estimate the case with a free δ, which

enables us to test whether δ is significantly different from 1. Relative GMM estimation

procedures can be found in Appendix A.1 and A.2.

The risk premium γ̂DOL is again small (1.81% resp. 1.76% per year) and insignificant,

while γ̂CAR is positive (4.45% resp. 6.27% per year) and significant for both sets of 15 and 27

test assets. Accordingly, the CAR factor matters significantly for pricing. The model implied

risk premia are consistent with (or not significantly different from) the average returns of

DOL and CAR. Thus, we cannot reject the model based on our second test. Note that

the estimation errors are slightly larger in the conditional model with free δ as we need to

estimate more parameters (i.e., δk) compared to the unconditional model.

As predicted by the theory δ̂DOL and δ̂CAR do not significantly differ from one in either

specification. δ̂CAR is always significantly different from zero, while we can only reject the

hypothesis of δ̂DOL = 0 in the larger cross-section of 27 test assets. This difference in

significance appears to be a power issue in the smaller cross-section. The point estimate do

not change much (and if anything they decrease as we increase the number of test assets)

but the standard errors are decreasing a lot. The higher precision increases the significance.

These results suggest that the conditional model significantly differs from the unconditional

model due to the covariation between the factor risk premia and the factor loadings of the

test assets.

We cannot reject the null hypothesis that the cross-sectional pricing errors α∗ are jointly

equal to zero in either set of 15 or 27 test assets. The p-values are 16% resp. 13%, therefore

exceeding standard testing thresholds. Accordingly, there is no evidence of mispricing, and

the conditional DOL-CAR appears to do an excellent job explaining the cross-section of

currency returns.

Finally, the fit of the conditional model is remarkable. The R2s are 74% and 89% for the

cross-sections of 15 and 27 test assets. This is a substantial improvement over the 35% and

-2% R2 in the unconditional model. We further illustrate the astounding model fit in Figure

2 and 3. Notice that in stark contrast to the unconditional DOL-CAR model (Figure 1),

the expected returns in the conditional DOL-CAR model line up almost perfectly with the

historical average returns in both cases with either a restricted or a free δ. Not a single test

asset displays a sizable deviation from the 45 degree line.

Column 3, 4, 5, and 6 in Table 4 provide additional insights on how well the conditional

DOL-CAR model explains the average returns of each test asset separately. The reduction
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in pricing errors is substantial across the board as we move from the unconditional to the

conditional model. We find that the cross-sectional pricing errors α∗ of 25 out of 27 test assets

are insignificantly different from zero. In δ = 1 case, only for V al1 and CSCAR the pricing

errors are significant at the 10% and 5% level respectively. They economically moderate

with α∗
V al1 = 1.82% and α∗

CSCAR = 1.12% per year. Even significant, comparing with the

unconditional model, these two portfolios also experience a reduction in their magnitudes.

Given a cross-section of 27 test assets we expect to observe roughly two rejections at the

10% level when the null hypothesis is true. In other words, the rejections are no reason for

concern. In contrast, they confirm that the distribution of α∗ is as expected under the null

hypothesis.

In previous analysis, the conditional DOL-CAR model shows drops of unconditional

pricing errors in the cross-section for almost all test portfolios regarding their significance

and magnitudes. Beyond that evidence, we next turn to time-series pricing errors of these

currency test assets. In Table 5, we report mean, standard deviation, significance and

skewness of time-series pricing error α of each test asset after the conditional model fitting,

which is called Hedged, and compare it to asset return of each test portfolio, which is referred

as Original. For original test assets that have significant asset returns including Int5, Mom4,

V al4, all DB portfolios, DDOL and CSCAR, it is shown that their time-series pricing

errors α have either become insignificant or received a reduction after fitting the conditional

model with conditional betas and factor returns with the only exception being V al1. To

alleviate the concern of single portfolio driving our result, we run a F-test to test whether

these time-series pricing errors are jointly significantly different from zero. While this null

hypothesis is strongly rejected for the original test assets at a 1% significance level with p-

value equal to zero, we could only reject the hedged portfolios at a 10% level, which suggests

an improvement of reduced time-series pricing errors for the conditional DOL-CAR model.

Std of hedged DDOL is 0.00 but whether keep it or not in the F-test generates robust results.

To sum up, we find strong evidence in favor of the conditional DOL-CAR two factor

pricing model. None of our tests rejects the conditional model, and the model does a very

good job to explain a rich cross-section of average currency returns. This is an important

contribution to the literature. Our results suggest that we do not require additional FX risk

factors beyond the DOL and the CAR. However, it is important to account for the time

variation in the conditional factor loadings and risk premia. Unconditional estimations which

ignore the time-variation in the conditional moments mistakenly reject the DOL-CAR two

factor model. This may lead to the misleading conclusion that there is a need for additional
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pricing factors orthogonal to DOL and CAR. In contrast, additional factors proposed in

the literature appear to capture the variation in the conditional moments of the conditional

two factor model.

Finally, we document that the stark difference between the unconditional and conditional

models appears to be due to the significant covariation between the factor risk premia and

the loadings of the test assets on the factors. In section 3.3, we provide additional evidence

that the unconditional and conditional models mainly differ due to the covariation between

factor premia and factor loadings.

3.3 Decomposition of Unconditional Pricing Errors α

In section 3.2, we document that δ̂DOL and δ̂CAR are significantly different from zero but

not significantly different from one. This is suggestive that the main improvement of the

conditional DOL-CAR model over its unconditional counterpart stems from the covariation

between the conditional factor risk premia and the conditional factor loadings of the test

assets. In this section, we further investigate the difference between the unconditional and

conditional model.

We follow the derivation of Lewellen and Nagel (2006) and decompose the unconditional

time-series pricing errors αn of every asset n ∈ {1, . . . , N} in the unconditional DOL-CAR

model,

αn =
∑
k∈K

γk
(
β̄n,k − βn,k

)
+
∑
k∈K

σβn,kγk , (8)

for K = {DOL,CAR}. γk is the unconditional risk premium of factor k in the unconditional

pricing model. β̄n,k = E [βn,kt] is the average conditional factor loading of asset n on factor k

in the conditional pricing model. βn,k is the unconditional factor loading of asset n on factor

k in the unconditional pricing model. σβn,kγk = Cov (γk,t, βn,k,t) is the covariation between

the conditional factor loading of asset n on factor k and the conditional risk premium of

factor k. γk,t is the conditional risk premium of factor k in the conditional pricing model.

To understand the improvement of the conditional over the unconditional DOL-CAR

model, we run the following linear regression,

αn = c+
∑
k

γk
(
β̄n,k − βn,k

)
+
∑
k

σβn,kγkδk + un (9)
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where c is the intercept, and un are residuals. Estimates of all other explanatory variables

are discussed above.

Table 6 reports the estimated regression coefficients when we use the time-series pricing

errors α of our 27 test assets estimated in the unconditional model (equation (2), Table 3).

First, we find highly significant coefficients δ̂DOL and δ̂CAR. This suggests that the covariances

σβn,DOLγDOL
and σβn,CARγCAR

are important to explain the cross-sectional variation in α. In

turn, they are key to explain the superior performance of the conditional model. Second,

for the case with free δ, γ̂DOL is insignificant, while γ̂CAR is significant in regression (9) and

both of them are significantly priced in the benchmark δ = 1 case. The R2s are remarkable

93% and 91% respectively, suggesting that the conditional model is able to explain almost

all the time-series pricing errors in the unconditional model.

To evaluate the relative importance of σβγ and β̄ − β we compute the partial R2 in

regression (9). The partial R2 is defined as 1 − SSEfull

SSEreduced
, where SSEm are the sum of

squared errors of model m ∈ {full, reduced}, model m = full includes all variables, and

m = reduced excludes the variables of interest. If the partial R2 is high, then the variables

that are excluded in the reduced model specification are important and contribute much to

the R2 in the full model. When we exclude the regressors σβγ in the reduced model, then

the partial R2 is R2
σβγ

= 80% and 74% respectively. This suggests that σβγ are important

to reduce the SSE and contribute a lot to the R2 in the full model. Accordingly, they are

important variables to capture the cross-section of unconditional time-series pricing errors

α. In contrast, when we exclude the regressors β̄ − β in the reduced model, then the partial

R2 is only R2
β̄−β

= 39% for the free δ case and 68% for the benchmark model when δ = 1.

To sum up, the partial R2 analysis suggests that the regressors β̄−β do not substantially

reduce the SSE or contribute to the model fit. As such they are less important to capture the

cross-section of unconditional time-series pricing errors α. The partial R2 analysis provides

evidence that the covariation between the conditional factor loadings and factor risk premia

σβγ are the first order reason explaining the superior performance of the conditional over

the unconditional model. On the other hand, the difference between the average conditional

and the unconditional factor loadings β̄ − β are of secondary importance.

Finally, we compare the average magnitude of the time-series pricing errors in the uncon-

ditional model, E [|α|] = 1.58% per year, to the average magnitude of the intercept plus the

residual in regression (9), E [|c+ u|] = 0.43% and E [|c+ u|] = 0.51% respectively. c + u is

an estimate of the time-series pricing errors in the conditional model as it is the unexplained

part of α after accounting for the correction as we switch from the unconditional to the
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conditional model. The reductions in the average pricing error are 73% and 68%, which are

substantial. Although this result focuses on the pricing errors α in the time-series pricing

equation, it is comparable to and consistent with the difference in cross-sectional pricing

errors α∗ across the unconditional and conditional model in Table 3 and 4, and certainly

Table 5.

Figure 4 and 5 plot α against c+ u. The large dispersion along the vertical axis, ranging

from almost -3% to 5.5%, illustrates that the time-series pricing errors α are substantial in

the unconditional DOL-CAR model. In contrast, the dispersion along the horizontal axis is

small, and is roughly within -1% and 1.5%. The small dispersion along the horizontal axis

suggests that the pricing errors in the conditional DOL-CAR model are close to zero.

The figures further reveal that the unconditional model particularly struggles to correctly

price the CSCAR, Mom1, DDOL and all of the DB portfolios. The magnitude of the time-

series pricing errors |α| are well over 1.5% and up to 5.5% per year for these test assets. The

reduction to less than 1.5% (i.e., |c + u| < 1.5%, is remarkable, when we switch to the

conditional model.

To conclude, we find a significant reduction in the magnitude of the time-series pricing

errors α as we switch from the unconditional to the conditional DOL-CAR model. The

reduction in the pricing errors is mostly due to the covariation between conditional factor

risk premia and the conditional factor loadings of the test assets. The covariation is important

for both the DOL and the CAR factors. The difference between average conditional and

unconditional factor loadings is of second order importance to explain the unconditional

pricing errors.

3.4 Comparison to Different Factor Pricing Model

In previous sections, we show the success of the DOL-CAR pricing model in a conditional

setting in explaining the cross-section of currency returns comparing with the unconditional

model. Now in this section, we investigate the uniqueness and importance ofDOL and CAR.

It is shown that despite considering the conditional information, other well-documented

currency factors and their combinations perform worse than DOL and CAR. Moreover,

these conditional models with pricing factors other than DOL and CAR are significantly

rejected in the cross-sectional tests.

Different currency factors and combinations include CSCAR, DOL and MOM , DOL

and V AL, DOL and FXC, DOL and DB, and CAR and DB, among which we would
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like to emphasize CSCAR, a strategy that has involved the market timing information.

Maurer et al. (2022) show that the unconditional CSCAR single factor model does a good

job explaining the cross-section of currency returns. They also provide evidence that the

CSCAR model outperforms many popular multi-factor models in the literature. In addition,

they emphasize the importance of CSCAR’s market timing, suggesting that the CSCAR

model works well conditionally and unconditionally.

We compare the conditional models of different currency factors to the conditional DOL-

CAR model, and document a superior performance of the conditional DOL-CAR model.

Table 7 reports the results for different conditional factor pricing models when we set δ to

be one. In the first column, we show that the CSCAR factor is compensated with a large

risk premium of roughly 13%. However, this single factor conditional model is significantly

rejected in explaining the rich cross section of currency returns. Note that we do not use the

CSCAR as a test asset when CSCAR itself is the pricing factor, and thus, the cross-section

reduces from 27 to 26 test assets in its case.

Results of test restrictions for conditional models with other risk factors are reported in

column 2 to 6. When the first pricing factor is DOL, MOM is significantly priced and FXC

is marginally priced while V AL and DB don’t have a significant risk premium. In the last

column, we show that CAR and DB are both priced and we can’t reject the null hypothesis

that their risk premia are equal to their factor means. However, all these currency factors

and combinations, even under the conditional model framework, are significantly rejected in

the cross section χ2 tests. Meanwhile, comparing with the conditional DOL-CAR model,

they generate lower R2. Appendix E lists GMM estimation results for each of these factors

respectively.

Overall this section illustrates the superior performance of the conditional DOL-CAR

model stems not only from the time-varying information considered but also the uniqueness

of the two factors: DOL and CAR, which cannot be replaced by other well-documented

currency factors.

3.5 Predictability of Factor Returns

Lewellen and Nagel (2006) dismiss the conditional CAPM for equities based on the argument

that the covariation between the conditional β and the market premium, and thus also

the variation in the conditional premium would have to be unreasonably large to explain

abnormal returns of momentum and value portfolios. Following this idea, we estimate a
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lower bound of the variation in γDOL,t and γCAR,t, and show that these bounds are reasonably

moderate.

Suppose the joint distribution of the conditional factor loadings and factor premium of

factor k is described by (
βk,t

γk,t

)
=

(
µβk

µγk

)
+

(
σβk

σγk

)
zt.

βk,t is the N × 1 vector of conditional loadings of the N assets on factor k (i.e., column k

of βt). Scalar γk,t is the conditional premium of factor k (i.e., element k of vector γt). zt is

an (N + 1) × 1 vector of independent random variables with Et[zt] = 0 and V art[zt] = 1.

N × 1 vectors µβk , µγk are the expected realizations and the N × (N + 1) matrix σβk and

1× (N + 1) vector σγk determine the covariances of βt and γt.

A Cholesky decomposition of the covariance matrix of βk,t yields

σβkσβk
′

= LβkLβk
′
,

where Lβk is a N × N lower triangular matrix. We can re-write the joint distribution of

conditional factor loadings and the premium in the observationally equivalent way(
βk,t

γk,t

)
=

(
µβk

µγk

)
+

(
Lβk 0

lγk[1N ] lγkN+1

)
z̃t,

where lγk is a (N +1)× 1 vector, lγk[1N ] is the vector with the first N elements and lγkN+1 is the

last element of lγk , and z̃t is a rotation of zt with Et[z̃t] = 0 and V art[z̃t] = 1.

We can further write the N × 1 vector of covariances between the N factor loadings and

the premium as

σβk,γk = σβkσγk ′ = Lβk lγk[1N ]
′.

Since the variance of γk,t is given by V ar[γk,t] = σγkσγk ′ = lγk lγk ′, we can define the lower

bound

V ar[γk,t] = lγk[1N ]l
γk
[1N ]

′ = σβk,γk
′(Lβk)−1′(Lβk)−1σβk,γk = σ′

βk,γk

Ä
σβkσβk

′ä−1
σβk,γk .
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Moreover, the lower bound on the predictability of the factor returns is

R2
k =

V ar[γk,t]

V ar[Fk,t]
. (10)

We have estimates of the σβk,γk from the GMM estimation. We further use a standard

sample estimator for the covariance matrix of factor loadings σβkσβk
′
and the variance of

factor returns V ar[Fk,t]. The first row of Table 8 reports the lower bound R2
k for k ∈

{DOL,CAR} when we use all 27 test assets. For DOL we find the lower bound R2
DOL =

7.55%, while it is R2
CAR = 4.44% for CAR5.

Our estimator of σβk,γk is unbiased. Nevertheless, estimation errors of σβk,γk cause an

upward bias of the lower bound R2
k. Suppose for asset n = 1 the true σβn,k,γk = 0. Because

of estimation errors we observe σ̂βn,k,γk = σβn,k,γk + φn = φn ̸= 0, where the hat indicates

the estimated value, and φn is noise. Since Lβk is a lower triangular matrix (i.e., only the

first element on the first row is non-zero) the first element of the true lγk has to be zero to

match the true σβn,k,γk = 0 for n = 1. However, because of the noise φn the first element

of the estimated l̂γk cannot be zero to match the estimated σ̂βn,k,γk = φn ̸= 0. Accordingly,

l̂γk[1N ]l̂
γk
[1N ]

′
> lγk[1N ]l

γk
[1N ]

′, and the estimated lower bounds V ar[γk,t] and R2
k are higher than the

true values. Similarly, estimation errors in σβn,k,γk for n > 1 cause to an upward bias of the

lower bounds. Moreover, a similar argument holds for true σβn,k,γk different from but close

to zero and sufficiently large estimation errors.

To address estimation errors and obtain robust lower bounds we impose statistical and

economic constraints. As a statistical criterion we only use assets in the construction of

the lower bounds if the estimated covariance σβn,k,γk = Cov (βn,k,t, Fk,t+1) is statistically

significant. In other words, we set element n of σβk,γk equal to zero if the p-value of σβn,k,γk

is larger than 10%. We use Newey and West (1987) standard errors to account for auto-

correlations and heteroskedasticity when we compute the p-value. The second row of table

8 shows that for the DOL factor (k = DOL) σβn,k,γk = Cov (βn,k,t, Fk,t+1) is statistically

significant for 8 out of 27 assets. For the CAR factor (k = CAR) this number drops to 2.

Using this statistical constraint, we find R2
DOL = 3.64% and R2

CAR = 1.63%.

As an economic constraint we only use assets in the construction of the lower bounds

if the pricing error α∗
n in the unconditional DOL-CAR model is statistically significant.

5We exclude test assets with conditional betas of extremely small (less than 10−8) variance or covariance
between DOL or CAR. For example, in the full sample case, covariance of conditional beta between test
asset DDOL and factor CAR is less than 10−8, then DDOL is excluded and that’s why # Assets for CAR
in the table is 26.
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That is, we set element n of σβk,γk equal to zero if the cross-sectional pricing error α∗
n in the

unconditional model has a p-value larger than 10%. The point estimate and standard error of

α∗
n are obtained from the GMM estimation in Table 3. The idea is that if there is no pricing

error in the unconditional model, then it is likely that the covariance σβn,k,γk is close to zero.6

The third row of Table 8 shows that for 9 out of 27 assets the unconditional pricing errors

are significant (see also Table 4). Using this economic constraint we find R2
DOL = 3.07% and

R2
CAR = 2.13%.

In the second panel of Table 8, we further report results when we only use assets in the

construction of the lower bounds if the magnitude of the unconditional pricing error is larger

than a certain threshold value, |α∗
n| > c. We investigate thresholds c ∈ [0.25%, 4%]. For

21 out of 27 assets the annualized unconditional pricing errors are larger than 0.25%, and

the lower bounds are R2
DOL = 6.06% and R2

CAR = 4.27%. At the other end, only 2 assets

have an annualized unconditional pricing error larger than 4%, and the bounds decrease to

R2
DOL = 1.89% and R2

CAR = 0.10%.

In the third panel of Table 8, we repeat the analysis of the second panel but focus

directly on the covariance σβn,k,γk instead of α∗
n. This is more direct as α∗

n is a combination

of both σβn,DOL,γDOL
, σβn,CAR,γCAR

, β̄n,DOL−βn,DOL, and β̄n,CAR−βn,CAR. We document that

|σβn,DOL,γDOL
| is larger than 0.25% for 17 out of 27 assets, and larger than 4% for 3 assets.

In comparison |σβn,CAR,γCAR
| is larger than 0.25% for 11 assets, and never even close to 4%.

This is interesting as it suggests that σβn,DOL,γDOL
causes more mispricing for more assets

in the unconditional model than σβn,CAR,γCAR
. The six DB portfolios display the largest

covariances σβn,DOL,γDOL
. The lower bounds range from R2

DOL = 5.16% and R2
CAR = 2.66%

(for the threshold value c = 0.25%) to R2
DOL = 1.89% and R2

CAR = 0.00% (for the threshold

value c = 4%).

Overall, the lower bounds are relatively moderate and within a reasonable range. Lustig

et al. (2014) are the first to document that DOL is well forecasted by the average forward

discount. The profitability of the DDOL strategy is based on this forecastability. There is

also evidence of predictability of the CAR. For instance, Dupuy (2021) and Maurer et al.

(2023) show that the magnitude of forward discounts has predictive power and can be used

as signals to enhance the profitability of the CAR. To get a sense of the magnitude, Maurer

et al. (2022) report R2 of 5.12% and 2.22% for DOL and CAR. They only look at a small

set of predictors and do not provide a comprehensive analysis. As such, we expect that the

6It is possible that σβn,k,γk
is sizable but offset by σβn,j ,γj

for j ̸= k or γi(β̄n,i − βn,i) for i ∈ {k, j} and
the resulting pricing error in the unconditional model is close to zero.
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true forecastability is higher. These values from the literature are roughly in line with our

lower bounds.

In summary, the evidence in favor of a conditional DOL-CAR model together with the

rejection of its unconditional counterpart implies predictability in the factor returns. The

estimated lower bounds are R2
DOL = 7.55% and R2

CAR = 4.44%. Statistical or economic

constraints to address estimation errors reduce the lower bounds by roughly half.

4 Conclusion

A conditional two-factor model explains over 80% of the variation of a rich cross-section

of currency strategies. To this end, we build on Jagannathan and Wang (1996) and intro-

duce a novel GMM estimation procedure to assess conditional factor models. We apply the

approach to FX markets, and find strong evidence in favor of the conditional DOL-CAR

two factor pricing model. None of our tests reject the conditional model, and the model

does a remarkable job to explain a rich cross-section of average currency returns. Moreover,

this superior performance of the conditional DOL-CAR model cannot be replaced by other

currency risk factors or their combinations even when the conditional setup is applied. This

is an important contribution to the literature. Our results suggests that we do not require

additional FX risk factors beyond the DOL and the CAR. However, it is important to

account for the time variation in the conditional factor loadings and risk premia. Uncon-

ditional estimations which ignore the time-variation in the conditional moments mistakenly

reject the DOL-CAR two factor model. This may lead to the misleading conclusion that

we need additional pricing factors. Our finding further suggests that additional factors in-

troduced in the literature do not capture pricing information beyond the DOL and CAR,

but they capture relevant information describing the variation in conditional moments of

DOL and CAR and conditional factor loadings. Finally, our finding has implications for the

predictability in factor returns. We estimate lower bounds for R2 in predictive regressions

for DOL and CAR, R2
DOL = 7.55% and R2

CAR = 4.44%. Statistical or economic constraints

to address estimation errors reduce the lower bounds by roughly half.
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tematic Risk of Carry Trade Strategies, Journal of Financial and Quantitative Analysis
46, 1107–1125.

Cochrane, John H., 2005, Asset pricing (Princeton University Press, NJ).

Colacito, Riccardo, Steven Riddiough, and Lucio Sarno, 2020, Business Cycles and Currency
Returns, Journal of Financial Economics 35, 659–678.

Corte, Pasquale Della, Lucio Sarno, Maik Schmeling, and Christian Wagner, 2022, Exchange
Rates and Sovereign Risk, Management Science 68, 5591–5617.

Dahlquist, Magnus, and Henrik Hasseltoft, 2020, Economic Momentum and Currency Re-
turns, Journal of Financial Economics 136, 152–167.

Dahlquist, Magnus, and Julien Penasse, 2022, The missing risk premium in exchange rates,
Journal of Financial Economics 143, 697–715.

Daniel, Kent, Robert J. Hodrick, and Zhongjin Lu, 2017, The Carry Trade: Risks and
Drawdowns, Critical Finance Review 6, 211–262.

28



Della Corte, Pasquale, Lucio Sarno, and Ilias Tsiakas, 2009, An Economic Evaluation of
Empirical Exchange Rate Models, Review of Financial Studies 22, 3491–3530.

Dobrynskaya, Victoria, 2014, Downside Market Risk of Carry Trades, Review of Finance 18,
1885–1913.

Dupuy, Philippe, 2021, Risk-adjusted return managed carry trade, Journal of Banking and
Finance 129, 106–172.

Fama, Eugene F., and James D. MacBeth, 1973, Risk, Return, and Equilibrium: Empirical
Tests, Journal of Political Economy 81, 607–636.

Galsband, Victoria, and Thomas Nitschka, 2014, Currency Excess Returns and Global Down-
side Risk, Journal of International Money and Finance 47, 268–285.

Hansen, Lars Peter, 1982, Large sample properties of generalized method of moments esti-
mators, Econometrica 50, 1029–1054.

Hansen, Lars Peter, and Ravi Jagannathan, 1991, Implications of Security Market Data for
Models of Dynamic Economies, Journal of Political Economy 99, 225–262.

Hassan, Tarek, 2013, Country Size, Currency Unions, and International Asset Returns,
Journal of Finance 68, 2269–2308.

Hassan, Tarek, and Rui Mano, 2019, Forward and Spot Exchange Rates in a Multi-Currency
World 134, 397–450.

Jagannathan, Ravi, and Zhenyu Wang, 1996, The Conditional CAPM and the Cross-Section
of Expected Returns, Journal of Finance 51, 3–53.

Kozak, Serhiy, and Shrihari Santosh, 2020, Why do discount rates vary?, Journal of Financial
Economics 137, 740–751.

Lettau, Martin, Matteo Maggiori, and Michael Weber, 2014, Conditional Risk Premia in
Currency Markets and Other Asset Classes, Journal of Financial Economics 114, 197–
225.

Lewellen, Jonathan, and Stefan Nagel, 2006, The conditional capm does not explain asset-
pricing anomalies, Journal of Financial Economics 82, 289–314.

Lustig, Hanno, Nick Roussanov, and Adrien Verdelhan, 2011, Common Risk Factors in
Currency Returns, Review of Financial Studies 24, 3731–3777.

Lustig, Hanno, Nick Roussanov, and Adrien Verdelhan, 2014, Countercyclical Currency Risk
Premia, Jounal of Financial Economics 111, 527–553.

Lustig, Hano, and Adrien Verdelhan, 2007, The Cross-section of Foreign Currency Risk
Premia and Consumption Growth Risk, American Economic Review 97, 89–117.

Ma, Sai, and Shaojun Zhang, 2022, Housing Cycles and Exchange Rates, Working paper.

29



Mancini, Loriano, Angelo Ranaldo, and Jan Wrampelmeyer, 2013, Liquidity in the Foreign
Exchange Market: Measurement, Commonality, and Risk Premiums, Journal of Finance
68, 1805–1841.

Maurer, Thomas A., Thuy-Duong To, and Ngoc-Khanh Tran, 2022, Pricing Implications
of Covariances and Spreads in Currency Markets, Review of Asset Pricing Studies 12,
336–388.

Maurer, Thomas A., Thuy-Duong To, and Ngoc-Khanh Tran, 2023, Market Timing and
Predictability in FX Markets, Review of Finance 27, 223–246.

Meese, R., and K. Rogoff, 1983, Empirical Exchange Rate Models of the Seventies: Do They
Fit Out of Sample?, Journal of International Economics 14, 3–24.

Menkhoff, Lukas, Lucio Sarno, Maik Schmeling, and Andreas Schrimpf, 2012a, Carry Trades
and Global Foreign Exchange Volatility, Journal of Finance 67, 681–718.

Menkhoff, Lukas, Lucio Sarno, Maik Schmeling, and Andreas Schrimpf, 2012b, Currency
Momentum Strategies, Journal of Financial Economics 106, 620–684.

Menkhoff, Lukas, Lucio Sarno, Maik Schmeling, and Andreas Schrimpf, 2017, Currency
Value, Review of Financial Studies 30, 416–441.

Mueller, Philippe, Andreas Stathopoulos, and Andrea Vedolin, 2017, International Correla-
tion Risk, Journal of Financial Economics 126, 270–299.

Newey, Whitney K., and Kenneth D. West, 1987, A Simple, Positive Semi-definite, Het-
eroskedasticity and Autocorrelation Consistent Covariance Matrix, Econometrica 55, 703–
708.

Panayotov, George, 2020, Global risks in the currency market, Review of Finance 24, 1237–
1270.

Rafferty, Barry, 2012, Currency Returns, Skewness and Crash Risk, Working paper, Duke
University.

Sarno, Lucio, Federico Nucera, and Gabriele Zinna, 2023, Currency Risk Premia Redux .

Verdelhan, Adrien, 2018, The Share of Systematic Risk in Bilateral Exchange Rates, Journal
of Finance 73, 375–418.

Zhang, Shaojun, 2022, Dissecting currency momentum, Journal of Financial Economics 144,
154–173.

30



Appendix

A Technical Details about GMM Estimation

A.1 Details about GMM Estimation of the Conditional Model

We solve

AgT (b̂) = 0 with A =



IK 0 0 0

0 INK 0 0

0 0 INK 0

0 0 0 β̂′

0 0 0 σ̂′
βγ

 ,

gT (b̂) =
1

T

T∑
t=1

ht(b̂) and ht(b̂) =

à
Ft+1 − F̄

vec (βt − β)

vec
(
(βt − β) diag

(
Ft+1 − F̄

)
− σβγ

)
Rt − βγ − σβγδ

í
.

gT (b̂) is the sample estimate of g(b). Ix is an identity matrix with dimension x × x. Note

that matrix A has dimension [K + 2NK + 2K]× [K + 2NK +N ].

The closed-form solution of b̂ is

ˆ̄F = E [Ft+1]

vec
Ä
β̂
ä

= E [vec (βt)]

vec (σ̂βγ) = E
î
vec
ÄÄ

βt − β̂
ä
diag

Ä
Ft+1 − ˆ̄F

äó
(
γ̂

δ̂

)
=

[(
β̂′

σ̂′
βγ

) Ä
β̂ σ̂βγ

ä]−1(
β̂′

σ̂′
βγ

)
E [Rt] ,

with E[x] being estimated using the sample average 1
T

∑T
t=1 xt. Note that we chooseA to fully

separate the estimation of F̄ , vec (β), vec (σβγ), and
Ä
γ′ δ′

ä
. Therefore, the point estimates

of
Ä
γ̂′ δ̂′

ä′
are identical to the estimates in the second-stage cross-sectional regressions of
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Fama and MacBeth (1973). The covariance matrix of b̂ and gT (b̂) are estimated as follows,

Cov
Ä
b̂
ä

=
1

T
[AD(b̂)]−1AS(b̂)

Ä
[AD(b̂)]−1A

ä′
Cov
Ä
gT (b̂)

ä
=

1

T

Ä
I(K+2NK+N −D(b̂)[AD(b̂)]−1A

ä
S(b̂)

Ä
I(K+2NK+N −D(b̂)[AD(b̂)]−1A

ä′
,

with the [K + 2NK +N ]× [K + 2NK + 2K] matrix of partial derivatives

D(b̂) =
∂gT (b̂)

∂b̂′

=

à
−IK 0 0 0 0

0 −INK 0 0 0

−diag
Ä
vec
Ä
β̃t

ää (
IK ⊗ 1{N×1

)
−diag

Ä
F̃t+1

ä
⊗ IN −INK 0 0

0 −γ̂′ ⊗ IN −δ̂′ ⊗ IN −β̂ −σ̂βγ

í
,

with β̃t = βt − β̂, F̃t+1 = Ft+1 − ˆ̄F and following Newey and West (1987) the [K + 2NK +

N ] × [K + 2NK + N ] matrix S(b̂), which is a consistent estimate of the covariance matrix

E [g(b)g(b)′],

S(b̂) =
1

T

T∑
t=1

ht(b̂)ht(b̂)
′ +

L∑
l=1

Å
1− l

1 + L

ã
1

T − l

T∑
t=1+l

Ä
ht(b̂)ht−l(b̂)

′ + ht−l(b̂)ht(b̂)
′
ä
,

with L = T 1/4. Note that the estimate S(b̂) takes into account cross- and auto-correlations

and heteroskedasticity.

In our tests we use the following elements of Cov(b̂). V ar(γ̂k) is the diagonal element of

Cov(b̂) on row and column K+2NK+k. V ar( ˆ̄Fk) is the diagonal element of Cov(b̂) on row

and column k. Cov
Ä
γ̂k,

ˆ̄Fk

ä
is the element of Cov(b̂) on row k and column K + 2NK + k.

V ar(δ̂k) is the diagonal element of Cov(b̂) on row and column K + 2NK +K + k. Cov (α̂)

is the N ×N lower, right sub-matrix of Cov
Ä
gT (b̂)

ä
.
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A.2 Details about GMM Estimation of the Conditional Model:

δ = 1

We solve

AgT (b̂) = 0 with A =

à
IK 0 0 0

0 INK 0 0

0 0 INK 0

0 0 0 β̂′

í
,

gT (b̂) =
1

T

T∑
t=1

ht(b̂) and ht(b̂) =

à
Ft+1 − F̄

vec (βt − β)

vec
(
(βt − β) diag

(
Ft+1 − F̄

)
− σβγ

)
Rt − βγ − σβγIK,1

í
.

gT (b̂) is the sample estimate of g(b). Ix is an identity matrix with dimension x × x. Note

that matrix A has dimension [K + 2NK +K]× [K + 2NK +N ].

The closed form solution of b̂ is

ˆ̄F = E [Ft+1]

vec
Ä
β̂
ä

= E [vec (βt)]

vec (σ̂βγ) = E
î
vec
Ä
βt − β̂

ä
diag

Ä
Ft+1 − ˆ̄F

äó
γ̂ =

Ä
β̂′β̂
ä−1

β̂′E (Rt − σ̂βγ)

with E[x] being estimated using the sample average 1
T

∑T
t=1 xt. Note that we choose A to

fully separate the estimation of F̄ , vec (β), vec (σβγ), and γ′. Therefore, the point estimates

of γ̂′ are identical to the estimates in the second-stage cross-sectional regressions of Fama

and MacBeth (1973). The covariance matrix of b̂ and gT (b̂) are estimated as follows,

Cov
Ä
b̂
ä

=
1

T
[AD(b̂)]−1AS(b̂)

Ä
[AD(b̂)]−1A

ä′
Cov
Ä
gT (b̂)

ä
=

1

T

Ä
IK+2NK+N −D(b̂)[AD(b̂)]−1A

ä
S(b̂)

Ä
IK+2NK+N −D(b̂)[AD(b̂)]−1A

ä′
,
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with the [K + 2NK +N ]× [K + 2NK +K] matrix of partial derivatives

D(b̂) =
∂gT (b̂)

∂b̂′

=

à
−IK 0 0 0

0 −INK 0 0

−diag
Ä
vec
Ä
β̃t

ää (
IK ⊗ 1{N×1

)
−diag

Ä
F̃t+1

ä
⊗ IN −INK 0

0 −γ̂′ ⊗ IN −I1,K ⊗ IN −β̂

í
,

with β̃t = βt − β̂, F̃t+1 = Ft+1 − ˆ̄F and following Newey and West (1987) the [K + 2NK +

N ] × [K + 2NK + N ] matrix S(b̂), which is a consistent estimate of the covariance matrix

E [g(b)g(b)′],

S(b̂) =
1

T

T∑
t=1

ht(b̂)ht(b̂)
′ +

L∑
l=1

Å
1− l

1 + L

ã
1

T − l

T∑
t=1+l

Ä
ht(b̂)ht−l(b̂)

′ + ht−l(b̂)ht(b̂)
′
ä
,

with L = T 1/4. Note that the estimate S(b̂) takes into account cross- and auto-correlations

and heteroskedasticity.

In our tests we use the following elements of Cov(b̂). V ar(γ̂k) is the diagonal element of

Cov(b̂) on row and column K+2NK+k. V ar( ˆ̄Fk) is the diagonal element of Cov(b̂) on row

and column k. Cov
Ä
γ̂k,

ˆ̄Fk

ä
is the element of Cov(b̂) on row k and column K + 2NK + k.

Cov (α̂) is the N ×N lower, right sub-matrix of Cov
Ä
gT (b̂)

ä
.
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A.3 Details about GMM Estimation of the Unconditional Model

We solve

A1gT (b̂) = 0 with A1 =

Ü
IK 0 0

0 I(1+K)N 0

0 0 β̂′

ê
,

where Ix is an identity matrix with dimension x× x and

gT (b̂) =
1

T

T∑
t=1

ht(b̂) with ht(b̂) =

à
Ft − ˆ̄F(

1

Ft

)
⊗
Ä
Rt − α̂− β̂Ft

ä
Rt − β̂γ̂

í
,

is the sample estimate of g(b).

The closed form solution of b̂ is

ˆ̄F = E[Ft](
α̂′

β̂

)
= E

[(
1

Ft

) Ä
1 F ′

t

ä]−1

E

[(
1

Ft

)
R′

t

]
γ̂ =

î
β̂′β̂
ó−1

β̂′E [Rt]

with E[x] being estimated using the sample average 1
T

∑T
t=1 xt. Note that we choose A1 to

fully separate the estimate of F̄ ,

(
α

β

)
, and γ. Therefore, the point estimate of b̂ is identical

to the estimate in 2-stage time-series and cross-sectional regressions (Fama and MacBeth,

1973). The covariance matrix of b̂ and gT (b̂) are estimated as follows,

Cov(b̂) =
1

T
[A1D(b̂)]−1A1S(b̂)([A1D(b̂)]−1A1)

′

Cov(gT (b̂)) =
1

T
(I(2+K)N −D(b̂)[A1D(b̂)]−1A1)S(b̂)(I(2+K)N −D(b̂)[A1D(b̂)]−1A1)

′,
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with the [K + (2 +K)N ]× [K + (1 +K)N +K] matrix of partial derivatives

D(b̂) =
∂gT (b̂)

∂b̂′
=

à
−IK 0 0 0

0 −IN −E[F ′
t ]⊗ IN 0

0 −E[ft]⊗ IN −E[Ft ⊗ F t
′]⊗ IN 0

0 0 −γ̂′ ⊗ IN −β̂

í
,

and following Newey and West (1987) the [K + (2 +K)N ]× [K + (2 +K)N ] matrix S(b̂),

which is a consistent estimate of the covariance matrix E [g(b)g(b)′],

S(b̂) =
1

T

T∑
t=1

ht(b̂)ht(b̂)
′ +

L∑
l=1

Å
1− l

1 + L

ã
1

T − l

T∑
t=1+l

Ä
ht(b̂)ht−l(b̂)

′ + ht−l(b̂)ht(b̂)
′
ä
,

with L = T 1/4. Note that the estimate S(b̂) takes into account cross- and auto-correlations

and heteroskedasticity.

In our tests we use the following elements of Cov
Ä
b̂
ä
. Cov(α̂) is given by the N × N

sub-matrix between rows K + 1 and K + N and columns K + 1 and K + N of Cov(b̂).

V ar(γ̂k) is the element on row K + (1+K)N + k and column K + (1+K)N + k of Cov(b̂).

V ar( ˆ̄Fk) is equal the element on row k and column k of Cov(b̂). Cov( ˆ̄Fk, γ̂k) is equal to the

element on row k and column K + (1 +K)N + k of Cov(b̂). Cov(α̂∗) is the N × N lower,

right sub-matrix of Cov(gT (b̂)).
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Table 1: Summary Statistics of Conditional Betas of DOL

uncon mean med std skew kurt min max 5% 95%

Int1 0.96 0.96 0.96 0.12 -0.08 3.02 0.57 1.29 0.95 0.97
Int2 0.98 1.03 1.01 0.26 -0.03 3.17 0.10 1.70 1.01 1.06
Int3 1.04 1.03 1.02 0.23 -0.02 2.62 0.38 1.69 1.01 1.05
Int4 1.12 1.03 1.03 0.20 0.01 2.44 0.51 1.59 1.02 1.05
Int5 0.96 0.96 0.96 0.12 -0.08 3.00 0.57 1.29 0.95 0.97

Mom1 0.95 0.93 0.95 0.32 -0.35 2.84 -0.03 1.77 0.90 0.96
Mom2 1.03 0.99 1.03 0.29 -0.25 2.67 0.16 1.69 0.97 1.02
Mom3 1.07 1.06 1.06 0.22 -0.07 3.28 0.31 1.66 1.03 1.08
Mom4 1.07 1.04 1.06 0.25 -0.45 3.59 0.08 1.66 1.02 1.07
Mom5 0.92 0.98 1.02 0.28 -0.28 2.53 0.22 1.64 0.96 1.01

V al1 -0.14 -0.03 0.00 0.48 -0.09 2.25 -1.23 1.12 -0.07 0.01
V al2 0.08 0.19 0.16 0.49 0.19 2.88 -1.06 1.38 0.14 0.23
V al3 0.88 0.92 0.95 0.32 -0.24 2.26 -0.06 1.72 0.89 0.95
V al4 1.00 1.02 1.02 0.26 0.04 3.59 0.28 1.93 1.00 1.05
V al5 1.03 1.05 1.04 0.22 0.04 2.98 0.40 1.66 1.03 1.07

FXC1 1.04 1.04 1.07 0.24 -0.33 3.10 0.18 1.65 1.02 1.06
FXC2 1.01 0.99 1.01 0.21 -0.13 3.02 0.43 1.66 0.97 1.01
FXC3 0.91 0.87 0.90 0.31 -0.60 3.21 0.01 1.56 0.85 0.90
FXC4 1.02 0.95 0.96 0.19 -0.08 2.94 0.42 1.56 0.93 0.97

DB1 0.14 0.05 0.10 0.42 -0.19 1.94 -1.03 1.02 0.01 0.09
DB2 0.31 0.13 0.47 0.70 -0.38 1.65 -1.40 1.30 0.07 0.20
DB3 0.42 0.18 0.74 0.95 -0.41 1.34 -1.67 1.65 0.09 0.27
DB4 0.47 0.26 1.03 1.10 -0.43 1.25 -1.45 1.56 0.15 0.36
DB5 0.49 0.28 1.12 1.21 -0.42 1.23 -1.51 1.54 0.17 0.39
DB6 0.53 0.31 1.20 1.33 -0.42 1.23 -1.60 1.72 0.18 0.43

DDOL 0.40 0.21 1.00 0.98 -0.43 1.18 -1.00 1.00 0.12 0.30
CSCAR 0.10 0.22 0.11 0.60 1.65 10.64 -1.51 4.35 0.16 0.28

Notes: This table shows summary statistics of conditional betas of test assets with regard to the

Dollar factor. uncon refers to corresponding unconditional beta of each test asset with regard to

the Dollar factor. mean, med ,std, skew, kurt, min, max, 5% and 95% report the mean, median,

standard deviation, skewness, kurtosis, minimum, maximum value and the [5%, 95%] confidence

interval of conditional betas. The data are our set of 29 developed and emerging currencies from

December 1983 to March 2021.
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Table 2: Summary Statistics of Conditional Betas of CAR

uncon mean med std skew kurt min max 5% 95%

Int1 -0.48 -0.50 -0.51 0.14 -0.05 2.29 -0.83 -0.22 -0.51 -0.49
Int2 -0.18 -0.17 -0.17 0.13 0.27 3.09 -0.48 0.25 -0.18 -0.16
Int3 -0.09 -0.07 -0.08 0.13 0.08 2.95 -0.49 0.28 -0.09 -0.06
Int4 0.07 0.03 0.03 0.14 -0.06 3.08 -0.38 0.44 0.01 0.04
Int5 0.52 0.50 0.50 0.14 -0.06 2.29 0.17 0.78 0.49 0.51

Mom1 0.14 0.01 0.00 0.35 0.43 3.16 -0.82 1.21 -0.02 0.05
Mom2 -0.02 -0.07 -0.08 0.24 0.59 4.66 -0.64 1.17 -0.09 -0.05
Mom3 -0.08 -0.06 -0.07 0.21 0.28 3.19 -0.64 0.71 -0.08 -0.04
Mom4 -0.08 -0.02 -0.02 0.22 0.12 2.75 -0.62 0.67 -0.04 -0.00
Mom5 0.00 0.09 0.10 0.25 0.03 2.53 -0.54 0.78 0.07 0.12

V al1 -0.09 -0.01 -0.04 0.44 0.39 2.75 -1.03 1.48 -0.05 0.03
V al2 -0.12 -0.16 -0.25 0.47 0.52 2.76 -1.44 1.05 -0.21 -0.12
V al3 -0.05 0.04 0.01 0.25 0.35 3.08 -0.59 0.78 0.02 0.07
V al4 0.06 0.02 0.01 0.29 0.35 4.70 -1.26 1.46 -0.00 0.05
V al5 0.00 0.01 0.00 0.25 0.03 3.00 -0.67 0.79 -0.02 0.03

FXC1 0.00 0.01 -0.04 0.27 1.06 5.92 -0.68 1.43 -0.02 0.04
FXC2 0.07 -0.02 -0.01 0.19 -0.05 2.81 -0.46 0.54 -0.04 -0.00
FXC3 0.09 0.10 0.13 0.30 -0.36 2.81 -0.71 1.01 0.07 0.13
FXC4 -0.10 -0.04 -0.05 0.20 0.29 3.46 -0.55 0.79 -0.06 -0.02

DB1 0.01 0.03 0.03 0.35 0.13 3.31 -0.86 1.19 0.00 0.07
DB2 -0.05 -0.04 -0.05 0.31 0.45 3.92 -0.84 1.43 -0.06 -0.01
DB3 0.08 -0.01 0.02 0.24 -0.30 3.01 -0.66 0.83 -0.03 0.02
DB4 -0.01 -0.00 0.01 0.26 -0.08 3.28 -0.72 0.87 -0.03 0.02
DB5 -0.00 0.03 0.07 0.30 0.02 3.10 -1.03 1.04 -0.00 0.05
DB6 0.01 -0.02 -0.01 0.23 0.01 2.38 -0.60 0.58 -0.04 0.00

DDOL 0.01 0.00 0.00 0.00 0.58 35.59 -0.00 0.00 -0.00 0.00
CSCAR 0.72 0.92 0.75 0.77 2.55 15.43 -0.38 7.10 0.85 0.99

Notes: This table shows summary statistics of conditional betas of test assets with regard to the Carry

factor. uncon refers to corresponding unconditional beta of each test asset with regard to the Carry

factor. mean, med ,std, skew, kurt, min, max, 5% and 95% report the mean, median, standard

deviation, skewness, kurtosis, minimum, maximum value and the [5%, 95%] confidence interval of

conditional betas. The data are our set of 29 developed and emerging currencies from December 1983

to March 2021.
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Table 3: GMM Tests of DOL-CAR Model

15 assets 27 assets
Uncond δ = 1 Free δ Uncond δ = 1 Free δ

γ̂DOL 1.70 1.81 1.78 2.21 1.76 1.73
(t-stat) (1.12) (1.20) (1.18) (1.44) (1.15) (1.14)
γ̂CAR 3.72∗∗ 4.45∗∗∗ 4.14∗∗ 7.69∗∗∗ 6.27∗∗∗ 4.58∗∗

(t-stat) (2.47) (3.14) (2.83) (4.46) (3.87) (2.75)

δ̂DOL 1.40 0.97
(t-stat) (1.51) (5.10)∗∗∗Ä
t-stat;δ̂ − 1

ä
(0.43) (-0.13)

δ̂CAR 1.92 2.04
(t-stat) (1.99)∗ (3.10)∗∗∗Ä
t-stat;δ̂ − 1

ä
(0.95) (1.58)

γ̂DOL − F̄DOL 0.04 0.12 0.10 0.56∗∗ 0.07 0.04
(t-stat) (0.62) (0.15) (0.12) (2.57) (0.09) (0.06)
γ̂CAR − F̄CAR -0.99∗ -0.25 -0.56 2.98∗∗∗ 1.56 -0.12
(t-stat) (-2.04) (-0.30) (-0.64) (3.10) (1.48) (-0.12)

χ2-test of α̂∗ = 0 23.79∗∗ 17.98 11.02 53.39∗∗∗ 33.09 26.17
(p-value) (0.0331) (0.1583) (0.4420) (0.0008) (0.1288) (0.2931)
F -test of α̂ = 0 1.64∗ 2.02∗∗∗

(p-value) (0.0615) (0.0021)

R2 0.35 0.74 0.78 -0.02 0.89 0.93

Notes: GMM estimation of unconditional and conditional DOL-CAR two factor pricing models.

DOL invests equally in all foreign currencies against the USD. CAR is the equally weighted currency

Carry trade. Cross-sectional pricing equation of unconditional model: E [Rn,t] =
∑

k βn,kγk + α∗
n,

with the corresponding time-series equation Rn,t = αn +
∑

k βn,kFk,t + ϵn,t. Cross-sectional pricing

equation of conditional model: E [Rn,t] =
∑

k β̄n,kγk +
∑

k σβn,kγk
δk + α∗

n. k ∈ {DOL,CAR}, Rn,t

and Fk,t are excess returns of test assets and pricing factors, α∗
n and ϵn,t are residuals, σβn,kγk

are the

covariances between γk,t (or Fk,t+1) and βn,k,t, β̄n,k = E [βn,k,t] and βn,k,t are estimated from daily

currency return data. Details about the estimation are in Appendix A.1, A.2 and ??. The first (last)

three columns report results for 15 (27) test assets. R2 is the model fit of the cross-sectional pricing

equation. χ2-test is the joint test statistic of cross-sectional pricing errors (or residuals) α∗
n = 0 for all

test assets n ∈ {1, . . . , N}. F-test is the joint test statistic of time-series pricing errors (or intercept)

αn = 0 for all test assets n ∈ {1, . . . , N} in the time-series equation of the unconditional model.

(t-stat) indicates the significance of the difference between the coefficient and zero, (t-stat; δ = 1)

indicates the significance of the difference between the coefficient and one, and (p-value) indicates

the significance of the χ2 or F-test statistic. Significance at the 1%, 5% or 10% level are indicated

by ∗∗∗,∗∗ or ∗. Errors are estimated taking into account auto- and cross-sectional correlations and

heteroskedasticity according to Newey and West (1987). The data are our set of 29 developed and

emerging currencies from December 1983 to March 2021.
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Table 4: Cross-Sectional Pricing Errors α∗ in DOL-CAR Model

Uncond δ = 1 Free δ
α∗ (t-stat) α∗ (t-stat) α∗ (t-stat)

Int1 0.73 (1.09) 0.79 (1.28) -0.11 (-0.21)
Int2 -0.73 (-1.16) -0.19 (-0.36) -0.23 (-0.42)
Int3 0.39 (0.69) 0.41 (0.84) 0.32 (0.63)
Int4 -0.74 (-1.15) 0.21 (0.35) 0.46 (0.75)
Int5 -2.25∗∗∗ (-3.31) -0.84 (-1.69) -0.05 (-0.10)

Mom1 -3.59∗∗∗ (-3.29) -1.08 (-1.27) -0.81 (-0.85)
Mom2 -1.38 (-1.59) -0.10 (-0.18) -0.03 (-0.05)
Mom3 0.50 (0.63) 0.88 (1.66) 1.13∗ (1.92)
Mom4 1.01 (1.66) 0.79 (1.51) 0.63 (0.96)
Mom5 0.07 (0.08) -0.76 (-1.31) -0.93 (-1.29)

V al1 2.66∗ (1.92) 1.82∗ (1.94) 1.36 (1.29)
V al2 0.24 (0.16) 0.51 (0.49) 0.83 (0.66)
V al3 -0.17 (-0.22) -0.50 (-0.73) -0.60 (-0.78)
V al4 0.14 (0.20) 0.46 (0.72) -0.02 (-0.03)
V al5 0.08 (0.10) 0.63 (1.02) 0.26 (0.38)

FXC1 -1.01 (-1.52) -0.21 (-0.40) 0.39 (0.69)
FXC2 -1.71∗∗ (-2.38) -0.25 (-0.48) 0.16 (0.28)
FXC3 -0.59 (-0.57) -0.34 (-0.49) -0.53 (-0.64)
FXC4 -0.16 (-0.29) -0.32 (-0.70) -0.52 (-0.99)

DB1 1.52 (1.32) 0.37 (0.47) 0.53 (0.56)
DB2 2.87∗∗ (2.23) 0.07 (0.08) -0.16 (-0.17)
DB3 1.40 (0.97) -0.62 (-0.59) -0.20 (-0.25)
DB4 2.86 (1.66) -0.65 (-0.65) -0.29 (-0.40)
DB5 5.33∗∗∗ (3.00) 0.90 (0.86) 0.81 (1.28)
DB6 4.14∗∗ (2.49) -0.45 (-0.42) -0.48 (-0.77)

DDOL 3.24∗∗ (2.54) -0.11 (-0.16) -0.01 (-0.06)
CSCAR 3.41∗∗∗ (4.31) 1.12∗∗ (2.31) 0.29 (0.56)

Notes: The table reports the cross-sectional pricing errors (or residuals) α∗
n

for each test asset n ∈ {1, . . . , N} in the estimated cross-sectional pricing

equations of the unconditional and conditional DOL-CAR two factor pricing

models in Table 3. The GMM estimation is based on the 27 test assets listed

in this table. (t-stat) indicates the significance of the difference between α∗

and zero. Significance at the 1%, 5% or 10% level are indicated by ∗∗∗,∗∗

or ∗. Errors are estimated taking into account auto- and cross-sectional

correlations and heteroskedasticity according to Newey and West (1987).

The data are our set of 29 developed and emerging currencies from December

1983 to March 2021.
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Table 5: Time-Series Pricing Errors α in DOL-CAR Model

Original Hedged
mean std (t-stat) skew mean std (t-stat) skew

Int1 -0.78 0.84 (-0.57) 0.17 0.04 0.19 (0.13) 0.24
Int2 0.06 0.87 (0.04) -0.26 -0.44 0.29 (-0.92) -0.45
Int3 2.03 0.91 (1.35) -0.15 0.31 0.27 (0.66) 0.30
Int4 2.31 1.01 (1.34) -0.67 0.33 0.33 (0.62) -0.62
Int5 3.92∗∗ 1.00 (2.27) -0.73 0.05 0.19 (0.14) 0.24

Mom1 -0.35 0.97 (-0.22) -0.58 -1.01 0.39 (-1.35) -0.47
Mom2 0.77 0.94 (0.47) -0.64 -0.17 0.31 (-0.33) -0.82
Mom3 2.29 0.95 (1.40) -0.30 0.84 0.29 (1.70) 0.03
Mom4 2.82∗ 0.94 (1.74) -0.24 0.82∗ 0.29 (1.74) -0.05
Mom5 2.17 0.86 (1.52) -0.05 -0.56 0.30 (-1.10) 0.05

V al1 1.68 0.67 (1.44) 0.43 1.82∗∗ 0.48 (2.24) 0.58
V al2 -0.50 0.71 (-0.41) -0.03 0.25 0.49 (0.28) -0.01
V al3 1.40 0.84 (1.02) 0.31 -0.34 0.35 (-0.58) 0.24
V al4 2.87∗ 0.95 (1.84) -0.27 0.54 0.34 (0.97) -0.14
V al5 2.41 0.93 (1.52) -0.36 0.68 0.33 (1.25) 0.24

FXC1 1.34 0.94 (0.84) -0.61 -0.18 0.32 (-0.34) -1.03
FXC2 1.06 0.91 (0.64) -0.59 -0.23 0.26 (-0.52) -0.85
FXC3 2.11 0.90 (1.32) -0.62 -0.16 0.34 (-0.26) 0.26
FXC4 1.38 0.89 (0.92) -0.24 -0.34 0.27 (-0.74) -0.40

DB1 1.88∗ 0.63 (1.82) 0.28 0.48 0.44 (0.66) 0.22
DB2 3.24∗∗ 0.77 (2.64) -0.15 0.13 0.40 (0.20) -0.11
DB3 2.95∗ 0.93 (1.93) -0.68 -0.55 0.43 (-0.77) -0.74
DB4 3.81∗∗ 1.03 (2.30) -0.24 -0.54 0.40 (-0.85) 0.42
DB5 6.46∗∗∗ 1.06 (3.81) -0.10 1.04∗ 0.34 (1.90) 0.49
DB6 5.46∗∗∗ 1.10 (3.06) -0.35 -0.32 0.31 (-0.63) 0.48

DDOL 4.26∗∗∗ 0.82 (3.20) -0.31 -0.00∗∗∗ 0.00 (-2.89) -2.44
CSCAR 9.20∗∗∗ 1.01 (5.54) 0.11 2.68∗∗ 0.64 (2.63) -0.40

DDOL Y es No Y es No

F -test of α̂ = 0 2.52∗∗∗ 2.55∗∗∗ 1.46∗ 1.52∗

(p-value) (0.0001) (0.0001) (0.0676) (0.0517)

Notes: The table reports mean, standard deviation, (t-stat) and skewness of time-series pricing errors αn

for each test asset n ∈ {1, . . . , N} after the conditional model fitting which is calculated as the sum of

multiplications of conditional betas and Dollar and Carry factor returns, which are reported in the Hedged

panel. Statistics of the test assets without conditional model fitting are reported in the Original panel. F -test

statistics are reported to test whether time-series pricing errors αn are jointly significantly different from zero

for two experiments with and without DDOL. (t-stat) indicates the significance of the difference between the

coefficient and zero. Significance at the 1%, 5% or 10% level are indicated by ∗∗∗,∗∗ or ∗. Errors are estimated

taking into account auto- and cross-sectional correlations and heteroskedasticity according to Newey and West

(1987). The data are our set of 29 developed and emerging currencies from December 1983 to March 2021.
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Table 6: Decomposition of Unconditional Time-Series α

Free δ δ = 1
Coeff (t-stat) Coeff (t-stat)

ĉ 0.12 (0.93) 0.19 (1.53)
γ̂DOL 4.82 (1.62) 2.91∗∗∗ (3.00)
γ̂CAR 6.24∗∗ (2.27) 11.16∗∗∗ (4.43)

δ̂DOL 1.13∗∗∗ (7.37)

δ̂CAR 1.74∗∗∗ (7.36)

R2 0.93 0.91
R2

σβγ
0.80 0.74

R2
β̄−β

0.39 0.68

E[|α|] 1.58 1.58
E[|ĉ+ u|] 0.43 0.51

Notes: Estimation of the cross-sectional regression,

αn = c+
∑
k

γk
(
β̄n,k − βn,k

)
+
∑
k

σβn,kγkδk + un.

k, h ∈ {DOL,CAR}, αn are the pricing errors (or intercept) in the time-series equation of the

unconditional model estimated using GMM in Table 3, c is the intercept, un are residuals, σβk,hγk

are the covariances between βn,h,t and γk,t (or Fk,t+1), and βn,k,t are estimated from daily currency

return data. The results are for 27 test assets. R2 is the model fit of the cross-sectional pricing

equation. R2
σβγ

is the partial R2 that quantifies the importance of σβγ . R2
β̄−β

is the partial R2

that quantifies the importance of β̄ − β. E [|α|] is the cross-sectional average of absolute values

of αn. E [|c+ u|] is the cross-sectional average of absolute values of ĉ+ un. (t-stat) indicates the

significance of the difference between the coefficient and zero. Significance at the 1%, 5% or 10%

level are indicated by ∗∗∗,∗∗ or ∗. Errors un are are assumed i.i.d. The data are our set of 29

developed and emerging currencies from December 1983 to March 2021.
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Table 7: GMM Tests of Different Factor Model

CSCAR DOL+MOM DOL+VAL DOL+FXC DOL+DB CAR+DB

δ = 1

γ̂Factor1 13.14∗∗∗ 1.84 1.83 1.72 1.95 6.17∗∗

(t-stat) (3.03) (1.21) (1.20) (1.13) (1.30) (2.47)
γ̂Factor2 12.30∗∗∗ 1.45 -2.44∗ 2.19 5.69∗∗

(t-stat) (3.15) (1.22) (-1.82) (1.34) (2.49)

γ̂Factor1 − F̄Factor1 4.06 0.15 0.14 0.03 0.27 1.47
(t-stat) (1.12) (0.18) (0.18) (0.04) (0.34) (0.77)
γ̂Factor2 − F̄Factor2 11.00∗∗∗ -0.24 -1.94∗∗ -1.40 2.11
(t-stat) (3.06) (-0.33) (-2.39) (-1.54) (1.16)

χ2-test of α̂∗ = 0 42.75∗∗ 38.49∗∗ 38.74∗∗ 44.84∗∗∗ 41.85∗∗ 36.56∗

(p-value) (0.0149) (0.0414) (0.0391) (0.0087) (0.0187) (0.0636)

R2 0.08 0.59 0.51 0.39 0.52 0.85

Notes: GMM estimation of conditional currency factor pricing models with δ = 1 for the sample with 27 test

assets. Factors include CSCAR, CAR along with DB and combinations of DOL and either MOM , V AL, FXC

or DB. Details about the estimation are in Appendix A.2. R2 is the model fit of the cross-sectional pricing

equation. χ2-test is the joint test statistic of cross-sectional pricing errors (or residuals) α∗
n = 0 for all test assets

n ∈ {1, . . . , N}. (t-stat) indicates the significance of the difference between the coefficient and zero while (p-value)

indicates the significance of the χ2 statistic. Significance at the 1%, 5% or 10% level are indicated by ∗∗∗,∗∗ or ∗.

Errors are estimated taking into account auto- and cross-sectional correlations and heteroskedasticity according

to Newey and West (1987). The data are our set of 29 developed and emerging currencies from December 1983 to

March 2021.
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Table 8: Lower Bound on Factor Predictability (R2)

DOL CAR

# Assets R2(%) # Assets R2(%)

Full Sample 27 7.55 26 4.44
p-val(σβn,k,γk) < 0.1 8 3.64 2 1.63
p-val(α∗

n) < 0.1 9 3.07 8 2.13

|α∗
n| > 0.25% 21 6.06 20 4.27

|α∗
n| > 0.5% 20 5.89 19 4.13

|α∗
n| > 0.75% 15 4.38 14 3.10

|α∗
n| > 1.0% 15 4.38 14 3.10

|α∗
n| > 2.0% 9 3.09 8 1.89

|α∗
n| > 3.0% 5 2.92 4 1.30

|α∗
n| > 4% 2 1.89 2 0.10

|σβn,k,γk | > 0.25% 17 5.16 11 2.66
|σβn,k,γk | > 0.5% 8 3.64 4 1.75
|σβn,k,γk | > 0.75% 8 3.64 1 1.20
|σβn,k,γk | > 1% 7 3.23 1 1.20
|σβn,k,γk | > 2% 6 2.42 1 1.20
|σβn,k,γk | > 3% 5 2.42 0 0.00
|σβn,k,γk | > 4% 3 1.89 0 0.00

Notes: Estimation of lower bound R2
k (in percentage points) for factors k ∈

{DOL,CAR} according to equation (10). The first row reports the values using

information of all 27 test assets. The second row sets sets element n of σβk,γk

equal to zero if the estimated covariance Cov (βn,k,t, Fk,t+1) is insignificant at the

10% level (two-sided test). The third row sets element n of σβk,γk equal to zero

if the cross-sectional pricing error α∗
n in the unconditional model is insignificant at

the 10% level (two-sided test). For the two-sided t-test errors are estimated tak-

ing into account auto-correlations and heteroskedasticity according to Newey and

West (1987). The second (third) panel sets sets element n of σβk,γk equal to zero

if the absolute value of the annualized α∗
n (σβn,k,γk) is smaller than the threshold

value c = {0.25%, 0.5%, 0.75%, 1%, 2%, 3%, 4%}. The column “# Assets reports the

number of elements of σβk,γk that are not set to zero. The data are our set of 29

developed and emerging currencies from December 1983 to March 2021.
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Unconditional DOL-CAR Model Fit

Figure 1: Scatter plot of average vs model implied returns. The model implied returns are
based on the GMM estimates (Table 3) of the unconditional DOL-CAR model using 27
test assets constructed from our set of 29 developed and emerging currencies from December
1983 to March 2021.
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Conditional DOL-CAR Model Fit: Free δ

Figure 2: Scatter plot of average vs model implied returns. The model implied returns are
based on the GMM estimates (Table 3) of the conditional DOL-CAR model with free δ
using 27 test assets constructed from our set of 29 developed and emerging currencies from
December 1983 to March 2021.
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Conditional DOL-CAR Model Fit: δ = 1

Figure 3: Scatter plot of average vs model implied returns. The model implied returns are
based on the GMM estimates (Table 3) of the unconditional DOL-CAR model with δ = 1
using 27 test assets constructed from our set of 29 developed and emerging currencies from
December 1983 to March 2021.
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Unconditional vs Conditional Model: Reduction in Pricing
Error: Free δ

Figure 4: Scatter plot of αi against c + ui. αi are the pricing errors (or intercept) in the
time-series equation of the unconditional model estimated using GMM in Table 3. c is the
intercept and ui are residuals in the regression in Table 6. Conditional model has a free δ.
The data are 27 test assets constructed from our set of 29 developed and emerging currencies
from December 1983 to March 2021.
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Unconditional vs Conditional Model: Reduction in Pricing
Error, δ = 1

Figure 5: Scatter plot of αi against c + ui. αi are the pricing errors (or intercept) in the
time-series equation of the unconditional model estimated using GMM in Table 3. c is the
intercept and ui are residuals in the regression in Table 6. δ of the conditional model is set
to one. The data are 27 test assets constructed from our set of 29 developed and emerging
currencies from December 1983 to March 2021.
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Online Appendix

In section Online Appendix we provide robustness results. In Section D we provide an

alternative method to estimate the conditional factor loadings βt. The approach uses an

estimate of the conditional covariance matrix of individual currency returns and current

portfolio weights of factors and test assets to construct “real-time” factor loadings. We find

that the estimated βt and the conclusions are essentially the same as the results reported in

the main text. Section E lists detailed GMM estimation results for different currency factor

models.

C Data Filters

We further follow Maurer et al. (2022) and apply the following filters to remove individual

currency-month observations. The idea is to remove observations that are likely subject to

major trading frictions, market segmentation or feature a substantial default risk in the short

term sovereign bond market. We assume that currency carry trade investors are unlikely to

invest in a currency under such conditions, and therefore, these currency-month observations

are not important for the test assets and pricing factors that we intend to study. Our filters

use only information known at the end of month t. Thus, the filters do not introduce any

bias. First, we exclude a currency-month observation if the absolute value of the annualized

forward discount 12 × |fdi,t| is larger than 20%. Forward discounts of more than 20% are

rare. We believe that such large values likely indicate the presence of severe trading frictions,

sizable sovereign default risk or an extraordinary large currency devaluation. Second, we

remove a currency in month t if the relative bid-ask spread of either the forward or spot

exchange rate (i.e., the monthly trading cost) is larger than 1%. These filters remove only

0.4% (1.7%) of currency-month observations in our sample of 15 (29) countries.

D Alternative Estimation of Conditional Factor Load-

ings

In this section we provide an alternative estimate method for the conditional factor loadings

βt, which is the widely used rolling-window estimation. To keep the analysis as simple and as

model-free as possible, we run standard OLS regressions using daily data of 6-month rolling
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windows. That is, at time t (which is the last trading day of the month), we estimate βt

using the following regression,

Rt−τ = at + βtFt−τ + εt−τ , (11)

where at is the constant term of the regression, εt+1 is the residual, τ ∈ {1, . . . , T} and T is

the number of daily observations within the 6-month window prior to t. In the main text, we

show that a more sophisticated approach, which provides better “real-time” estimates based

on current portfolio weights of the test assets and factors, yields very similar estimates of βt

and the subsequent conclusions are quantitatively the same.

Tables D1 to D6 and Figure D1 show the results using the simple rolling window approach

to estimate βt and for our set of 29 developed and emerging currencies.
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Table D1: Summary Statistics of Conditional Betas of DOL

uncon mean med std skew kurt min max 5% 95%

Int1 0.96 0.96 0.97 0.11 -1.60 15.43 0.00 1.22 0.95 0.97
Int2 0.98 1.03 1.04 0.22 -0.41 3.91 0.00 1.55 1.01 1.05
Int3 1.04 1.02 1.02 0.18 -0.26 4.37 0.00 1.48 1.00 1.04
Int4 1.12 1.04 1.03 0.16 -0.48 6.27 0.00 1.44 1.02 1.05
Int5 0.96 0.96 0.97 0.11 -1.58 15.17 0.00 1.22 0.95 0.97

Mom1 0.95 0.96 0.96 0.22 -0.37 3.64 0.00 1.57 0.94 0.98
Mom2 1.03 1.00 0.99 0.15 -0.46 7.42 0.00 1.59 0.98 1.01
Mom3 1.07 1.04 1.04 0.12 -0.91 13.94 0.00 1.47 1.03 1.05
Mom4 1.07 1.04 1.05 0.14 -1.11 9.52 0.00 1.43 1.02 1.05
Mom5 0.92 0.97 0.97 0.16 -0.67 5.27 0.00 1.38 0.95 0.98

V al1 -0.14 0.91 0.97 0.29 -0.27 2.28 0.00 1.56 0.89 0.94
V al2 0.08 1.00 1.01 0.20 0.21 5.08 0.00 1.72 0.98 1.01
V al3 0.88 1.06 1.06 0.17 -0.50 6.06 0.00 1.49 1.04 1.07
V al4 1.00 1.04 1.08 0.18 -1.22 6.07 0.00 1.36 1.03 1.06
V al5 1.03 0.99 1.01 0.21 -0.34 3.88 0.00 1.73 0.97 1.01

FXC1 1.04 0.86 0.90 0.31 -0.79 3.34 -0.03 1.48 0.83 0.89
FXC2 1.01 0.94 0.94 0.16 -0.45 5.20 0.00 1.35 0.93 0.96
FXC3 0.91 1.09 1.08 0.16 -0.39 6.58 0.00 1.51 1.08 1.11
FXC4 1.02 1.06 1.09 0.20 -0.95 4.48 0.00 1.39 1.04 1.08

DB1 0.14 0.05 0.09 0.36 -0.26 2.11 -0.87 0.81 0.02 0.09
DB2 0.31 0.15 0.37 0.58 -0.48 1.86 -1.19 1.22 0.09 0.20
DB3 0.42 0.21 0.66 0.84 -0.48 1.61 -1.40 1.40 0.13 0.29
DB4 0.47 0.29 0.78 0.96 -0.47 1.50 -1.43 1.36 0.20 0.38
DB5 0.49 0.30 0.83 1.06 -0.47 1.49 -1.49 1.45 0.21 0.40
DB6 0.53 0.34 0.85 1.18 -0.44 1.48 -1.56 1.70 0.23 0.45

DDOL 0.40 0.23 0.64 0.86 -0.47 1.44 -1.00 1.00 0.15 0.31
CSCAR 0.10 0.21 0.16 0.47 0.54 4.04 -1.06 2.19 0.17 0.25

Notes: This table shows summary statistics of conditional betas of test assets with regard to the

Dollar factor. Conditional betas are widely used rolling-window estimations. uncon refers to corre-

sponding unconditional beta of each test asset with regard to the Dollar factor. mean, med ,std,

skew, kurt, min, max, 5% and 95% report the mean, median, standard deviation, skewness, kur-

tosis, minimum, maximum value and the [5%, 95%] confidence interval of conditional betas. The

data are our set of 29 developed and emerging currencies from December 1983 to March 2021.
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Table D2: Summary Statistics of Conditional Betas of CAR

uncon mean med std skew kurt min max 5% 95%

Int1 -0.48 -0.50 -0.51 0.13 0.09 2.44 -0.78 0.00 -0.52 -0.49
Int2 -0.18 -0.15 -0.16 0.11 0.27 3.02 -0.48 0.16 -0.16 -0.14
Int3 -0.09 -0.08 -0.09 0.11 0.06 2.45 -0.34 0.18 -0.09 -0.07
Int4 0.07 0.02 0.03 0.12 -0.28 3.25 -0.31 0.35 0.01 0.04
Int5 0.52 0.50 0.49 0.13 -0.10 2.43 0.00 0.75 0.48 0.51

Mom1 0.14 0.04 0.05 0.25 -0.23 4.42 -0.82 0.89 0.02 0.06
Mom2 -0.02 -0.07 -0.07 0.15 -0.03 3.34 -0.69 0.39 -0.08 -0.05
Mom3 -0.08 -0.06 -0.08 0.14 0.47 3.26 -0.42 0.44 -0.08 -0.05
Mom4 -0.08 -0.04 -0.03 0.14 0.07 2.44 -0.42 0.29 -0.05 -0.03
Mom5 0.00 0.09 0.08 0.17 -0.06 2.88 -0.41 0.52 0.07 0.10

V al1 -0.09 0.04 0.02 0.23 0.36 3.46 -0.66 0.73 0.02 0.06
V al2 -0.12 0.00 -0.00 0.20 0.16 2.36 -0.45 0.64 -0.02 0.02
V al3 -0.05 -0.01 -0.03 0.20 0.57 3.80 -0.51 0.81 -0.03 0.01
V al4 0.06 0.01 -0.01 0.17 0.58 3.24 -0.35 0.55 -0.01 0.02
V al5 0.00 0.00 0.00 0.17 -0.01 2.58 -0.39 0.51 -0.01 0.02

FXC1 0.00 0.08 0.10 0.25 -0.38 2.75 -0.64 0.60 0.06 0.10
FXC2 0.07 -0.04 -0.05 0.15 0.33 2.89 -0.38 0.52 -0.06 -0.03
FXC3 0.09 -0.06 -0.06 0.16 0.35 2.99 -0.38 0.45 -0.07 -0.04
FXC4 -0.10 -0.06 -0.11 0.21 0.50 3.11 -0.50 0.57 -0.08 -0.04

DB1 0.01 0.03 0.03 0.30 0.14 3.76 -0.79 1.12 0.00 0.06
DB2 -0.05 -0.03 -0.05 0.27 0.68 4.83 -0.69 1.15 -0.06 -0.01
DB3 0.08 0.05 0.04 0.24 0.58 6.09 -0.74 1.09 0.03 0.07
DB4 -0.01 0.02 0.01 0.21 0.13 3.17 -0.54 0.78 -0.00 0.04
DB5 -0.00 0.05 0.08 0.24 -0.09 2.87 -0.61 0.80 0.02 0.07
DB6 0.01 -0.00 -0.01 0.23 0.43 3.65 -0.48 0.97 -0.03 0.02

DDOL 0.01 0.02 0.00 0.09 3.16 19.03 -0.20 0.76 0.01 0.02
CSCAR 0.72 0.95 0.82 0.63 1.53 7.13 0.00 4.55 0.89 1.01

Notes: This table shows summary statistics of conditional betas of test assets with regard to the Carry

factor. Conditional betas are widely used rolling-window estimations. uncon refers to corresponding

unconditional beta of each test asset with regard to the Carry factor. mean, med ,std, skew, kurt,

min, max, 5% and 95% report the mean, median, standard deviation, skewness, kurtosis, minimum,

maximum value and the [5%, 95%] confidence interval of conditional betas. The data are our set of

29 developed and emerging currencies from December 1983 to March 2021.
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Table D3: GMM Tests of DOL-CAR Model

15 assets 27 assets
Uncond δ = 1 Free δ Uncond δ = 1 Free δ

γ̂DOL 1.70 1.66 1.71 2.21 1.77 1.72
(t-stat) (1.12) (1.28) (1.30) (1.44) (1.32) (1.25)
γ̂CAR 3.72∗∗ 4.37∗∗∗ 4.25∗∗∗ 7.69∗∗∗ 6.83∗∗∗ 7.37∗∗∗

(t-stat) (2.47) (3.26) (3.18) (4.46) (4.39) (4.27)

δ̂DOL 1.98 1.45
(t-stat) (1.59) (2.62)∗∗Ä
t-stat;δ̂ − 1

ä
(0.79) (0.82)

δ̂CAR -0.87 -0.69
(t-stat) (-0.48) (-0.54)Ä
t-stat;δ̂ − 1

ä
(-1.04) (-1.32)

γ̂DOL − F̄DOL 0.04 -0.03 0.02 0.56∗∗ 0.08 0.03
(t-stat) (0.62) (-0.04) (0.02) (2.57) (0.11) (0.04)
γ̂CAR − F̄CAR -0.99∗ -0.34 -0.46 2.98∗∗∗ 2.13∗ 2.67∗∗

(t-stat) (-2.04) (-0.40) (-0.55) (3.10) (2.02) (2.15)

χ2-test of α̂∗ = 0 23.79∗∗ 13.67 9.13 53.39∗∗∗ 32.08 31.52
(p-value) (0.0331) (0.3971) (0.6098) (0.0008) (0.1556) (0.1105)
F -test of α̂ = 0 1.64∗ 2.02∗∗∗

(p-value) (0.0615) (0.0021)

R2 0.35 0.38 0.73 -0.02 0.69 0.81

Notes: GMM estimation of unconditional and conditional DOL-CAR two factor pricing models.

DOL invests equally in all foreign currencies against the USD. CAR is the equally weighted currency

Carry trade. Cross-sectional pricing equation of unconditional model: E [Rn,t] =
∑

k βn,kγk + α∗
n,

with the corresponding time-series equation Rn,t = αn +
∑

k βn,kFk,t + ϵn,t. Cross-sectional pricing

equation of conditional model: E [Rn,t] =
∑

k β̄n,kγk +
∑

k σβn,kγk
δk + α∗

n. k ∈ {DOL,CAR}, Rn,t

and Fk,t are excess returns of test assets and pricing factors, α∗
n and ϵn,t are residuals, σβn,kγk

are the

covariances between γk,t (or Fk,t+1) and βn,k,t, β̄n,k = E [βn,k,t] and βn,k,t are widely used rolling-

window estimations. Details about the estimation are in Appendix A.1, A.2 and D. The first (last)

three columns report results for 15 (27) test assets. R2 is the model fit of the cross-sectional pricing

equation. χ2-test is the joint test statistic of cross-sectional pricing errors (or residuals) α∗
n = 0 for all

test assets n ∈ {1, . . . , N}. F-test is the joint test statistic of time-series pricing errors (or intercept)

αn = 0 for all test assets n ∈ {1, . . . , N} in the time-series equation of the unconditional model.

(t-stat) indicates the significance of the difference between the coefficient and zero, (t-stat; δ = 1)

indicates the significance of the difference between the coefficient and one, and (p-value) indicates

the significance of the χ2 or F-test statistic. Significance at the 1%, 5% or 10% level are indicated

by ∗∗∗,∗∗ or ∗. Errors are estimated taking into account auto- and cross-sectional correlations and

heteroskedasticity according to Newey and West (1987). The data are our set of 29 developed and

emerging currencies from December 1983 to March 2021.
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Table D4: Cross-Sectional Pricing Errors α∗ in DOL-CAR Model

Uncond δ = 1 Free δ
α∗ (t-stat) α∗ (t-stat) α∗ (t-stat)

Int1 0.73 (1.09) 0.99 (1.63) 1.40∗ (1.93)
Int2 -0.73 (-1.16) -0.39 (-0.64) 0.00 (0.00)
Int3 0.39 (0.69) 0.69 (1.20) 0.64 (1.09)
Int4 -0.74 (-1.15) 0.28 (0.41) -0.22 (-0.32)
Int5 -2.25∗∗∗ (-3.31) -1.21∗∗ (-2.09) -1.33∗ (-1.94)

Mom1 -3.59∗∗∗ (-3.29) -2.55∗∗ (-2.34) -1.63 (-1.65)
Mom2 -1.38 (-1.59) -0.23 (-0.28) 0.15 (0.20)
Mom3 0.50 (0.63) 1.00 (1.38) 1.07 (1.45)
Mom4 1.01 (1.66) 1.20∗ (1.76) 1.04 (1.55)
Mom5 0.07 (0.08) -0.32 (-0.38) -0.95 (-1.26)

V al1 2.66∗ (1.92) -0.72 (-0.41) 0.61 (0.49)
V al2 0.24 (0.16) -2.21 (-1.15) -1.52 (-0.86)
V al3 -0.17 (-0.22) -0.29 (-0.38) 0.28 (0.37)
V al4 0.14 (0.20) 1.29 (1.58) 0.47 (0.54)
V al5 0.08 (0.10) 0.95 (1.35) -0.00 (-0.00)

FXC1 -1.01 (-1.52) -0.80 (-0.83) -0.00 (-0.00)
FXC2 -1.71∗∗ (-2.38) -0.73 (-1.00) -0.80 (-1.00)
FXC3 -0.59 (-0.57) 0.45 (0.43) 0.28 (0.28)
FXC4 -0.16 (-0.29) 0.07 (0.09) -0.13 (-0.19)

DB1 1.52 (1.32) 0.41 (0.44) 0.18 (0.17)
DB2 2.87∗∗ (2.23) 1.71 (1.41) 0.46 (0.42)
DB3 1.40 (0.97) -0.47 (-0.35) -1.56∗ (-1.75)
DB4 2.86 (1.66) 0.26 (0.18) -0.48 (-0.66)
DB5 5.33∗∗∗ (3.00) 2.59∗ (1.76) 1.40∗ (1.74)
DB6 4.14∗∗ (2.49) 1.26 (0.82) -0.07 (-0.11)

DDOL 3.24∗∗ (2.54) 1.04 (0.96) -0.01 (-0.04)
CSCAR 3.41∗∗∗ (4.31) 1.40∗∗ (2.54) 1.76∗∗ (2.65)

Notes: The table reports the cross-sectional pricing errors (or residuals) α∗
n

for each test asset n ∈ {1, . . . , N} in the estimated cross-sectional pricing

equations of the unconditional and conditional DOL-CAR two factor pricing

models in Table 3. Conditional betas are widely used rolling-window esti-

mations. The GMM estimation is based on the 27 test assets listed in this

table. (t-stat) indicates the significance of the difference between α∗ and zero.

Significance at the 1%, 5% or 10% level are indicated by ∗∗∗,∗∗ or ∗. Errors

are estimated taking into account auto- and cross-sectional correlations and

heteroskedasticity according to Newey and West (1987). The data are our set

of 29 developed and emerging currencies from December 1983 to March 2021.
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Table D5: Time-Series Pricing Errors α in DOL-CAR Model

Original Hedged
mean std (t-stat) skew mean std (t-stat) skew

Int1 -0.78 0.84 (-0.57) 0.17 -0.04 0.21 (-0.11) 0.06
Int2 0.06 0.87 (0.04) -0.26 -0.68 0.34 (-1.22) -0.76
Int3 2.03 0.91 (1.35) -0.15 0.53 0.30 (1.03) 0.32
Int4 2.31 1.01 (1.34) -0.67 0.43 0.36 (0.73) -0.55
Int5 3.92∗∗ 1.00 (2.27) -0.73 -0.04 0.21 (-0.12) 0.08

Mom1 -0.35 0.97 (-0.22) -0.58 -2.40∗∗ 0.58 (-2.30) -0.35
Mom2 0.77 0.94 (0.47) -0.64 -0.33 0.42 (-0.47) -0.95
Mom3 2.29 0.95 (1.40) -0.30 0.92 0.37 (1.50) -0.24
Mom4 2.82∗ 0.94 (1.74) -0.24 1.19∗ 0.37 (2.04) -0.17
Mom5 2.17 0.86 (1.52) -0.05 -0.07 0.43 (-0.09) 0.53

V al1 1.68 0.67 (1.44) 0.43 -0.54 1.05 (-0.30) 0.40
V al2 -0.50 0.71 (-0.41) -0.03 -2.14 1.08 (-1.14) 0.67
V al3 1.40 0.84 (1.02) 0.31 -0.18 0.50 (-0.22) 0.64
V al4 2.87∗ 0.95 (1.84) -0.27 1.36∗ 0.48 (1.74) -0.01
V al5 2.41 0.93 (1.52) -0.36 1.00 0.42 (1.45) 0.52

FXC1 1.34 0.94 (0.84) -0.61 -0.60 0.53 (-0.67) -0.62
FXC2 1.06 0.91 (0.64) -0.59 -0.77 0.37 (-1.27) -0.38
FXC3 2.11 0.90 (1.32) -0.62 0.39 0.57 (0.38) 0.05
FXC4 1.38 0.89 (0.92) -0.24 0.00 0.42 (0.00) -0.03

DB1 1.88∗ 0.63 (1.82) 0.28 0.53 0.57 (0.57) 0.66
DB2 3.24∗∗ 0.77 (2.64) -0.15 1.75 0.66 (1.64) 0.78
DB3 2.95∗ 0.93 (1.93) -0.68 -0.28 0.71 (-0.25) -0.17
DB4 3.81∗∗ 1.03 (2.30) -0.24 0.41 0.80 (0.32) 2.32
DB5 6.46∗∗∗ 1.06 (3.81) -0.10 2.80∗∗ 0.82 (2.13) 3.70
DB6 5.46∗∗∗ 1.10 (3.06) -0.35 1.41 0.81 (1.06) 1.82

DDOL 4.26∗∗∗ 0.82 (3.20) -0.31 1.19 0.59 (1.25) 2.95
CSCAR 9.20∗∗∗ 1.01 (5.54) 0.11 3.54∗∗∗ 0.78 (2.93) 0.47

DDOL Y es No Y es No

F -test of α̂ = 0 2.52∗∗∗ 2.55∗∗∗ 1.28 1.30
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(p-value) (0.0001) (0.0001) (0.1580) (0.1480)

Notes: The table reports mean, standard deviation, (t-stat) and skewness of time-series pricing errors αn

for each test asset n ∈ {1, . . . , N} after the conditional model fitting which is calculated as the sum of

multiplications of conditional betas and Dollar and Carry factor returns, which are reported in the Hedged

panel. Statistics of the test assets without conditional model fitting are reported in the Original panel.

Conditional betas are widely used rolling-window estimations. F -test statistics are reported to test whether

time-series pricing errors αn are jointly significantly different from zero for two experiments with and without

DDOL. (t-stat) indicates the significance of the difference between the coefficient and zero. Significance at

the 1%, 5% or 10% level are indicated by ∗∗∗,∗∗ or ∗. Errors are estimated taking into account auto- and

cross-sectional correlations and heteroskedasticity according to Newey and West (1987). The data are our set

of 29 developed and emerging currencies from December 1983 to March 2021.
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Table D6: Decomposition of Unconditional Time-Series α

Free δ δ = 1
Coeff (t-stat) Coeff (t-stat)

ĉ 0.13 (0.70) 0.32 (1.55)
γ̂DOL 0.31 (0.28) -0.80 (-1.04)
γ̂CAR 13.92∗∗∗ (3.01) 12.90∗∗∗ (3.02)

δ̂DOL 1.34∗∗∗ (7.65)

δ̂CAR -0.47 (-0.56)

R2 0.80 0.75
R2

σβγ
0.69 0.61

R2
β̄−β

0.55 0.46

E[|α|] 1.58 1.58
E[|ĉ+ u|] 0.68 0.83

Notes: Estimation of the cross-sectional regression,

αn = c+
∑
k

γk
(
β̄n,k − βn,k

)
+
∑
k

σβn,kγkδk + un.

k, h ∈ {DOL,CAR}, αn are the pricing errors (or intercept) in the time-series equation of the

unconditional model estimated using GMM in Table 3, c is the intercept, un are residuals, σβk,hγk

are the covariances between βn,h,t and γk,t (or Fk,t+1), and βn,k,t are widely used rolling-window

estimations. The results are for 27 test assets. R2 is the model fit of the cross-sectional pricing

equation. R2
σβγ

is the partial R2 that quantifies the importance of σβγ . R2
β̄−β

is the partial R2

that quantifies the importance of β̄ − β. E [|α|] is the cross-sectional average of absolute values

of αn. E [|c+ u|] is the cross-sectional average of absolute values of ĉ+ un. (t-stat) indicates the

significance of the difference between the coefficient and zero. Significance at the 1%, 5% or 10%

level are indicated by ∗∗∗,∗∗ or ∗. Errors un are are assumed i.i.d. The data are our set of 29

developed and emerging currencies from December 1983 to March 2021.
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Conditional DOL-CAR Model Fit: δ = 1

Figure D1: Scatter plot of average vs model implied returns. Conditional betas are widely
used rolling-window estimations. The model implied returns are based on the GMM es-
timates (Table 3) of the unconditional DOL-CAR model with δ = 1 using 27 test assets
constructed from our set of 29 developed and emerging currencies from December 1983 to
March 2021.
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E GMM Estimations For Different Factors
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Table E1: GMM Tests of CSCAR Model

15 assets 26 assets
Uncond δ = 1 Free δ Uncond δ = 1 Free δ

γ̂CSCAR 9.74 10.97∗∗ 10.77 13.06 13.14∗∗∗ 9.63
(t-stat) (1.24) (2.65) (1.57) (1.56) (3.03) (1.44)

δ̂CSCAR 0.96 0.35
(t-stat) (1.21) (0.42)Ä
t-stat;δ̂ − 1

ä
(-0.05) (-0.79)

γ̂CSCAR − F̄CSCAR 0.70 1.88 1.69 4.02 4.06 0.55
(t-stat) (0.09) (0.53) (0.27) (0.51) (1.12) (0.09)

χ2-test of α̂∗ = 0 23.28∗ 19.86 19.83∗ 39.77∗∗ 42.75∗∗ 42.13∗∗

(p-value) (0.0559) (0.1345) (0.0994) (0.0308) (0.0149) (0.0125)
F -test of α̂ = 0 1.50∗ 1.52∗

(p-value) (0.0999) (0.0500)

R2 0.34 0.43 0.43 0.01 0.08 0.10

Notes: GMM estimation of unconditional and conditional CSCAR single factor pricing

models. CSCAR is the mean-variance optimized currency trading strategy of Maurer et al.

(2022). Cross-sectional pricing equation of unconditional model: E [Rn,t] =
∑

k βn,kγk + α∗
n,

with the corresponding time-series equation Rn,t = αn +
∑

k βn,kFk,t + ϵn,t. Cross-sectional

pricing equation of conditional model: E [Rn,t] =
∑

k β̄n,kγk +
∑

k σβn,kγkδk + α∗
n. k =

CSCAR, Rn,t and Fk,t are excess returns of test assets and pricing factors, α∗
n and ϵn,t are

residuals, σβn,kγk are the covariances between γk,t (or Fk,t+1) and βn,k,t, β̄n,k = E [βn,k,t] and

βn,k,t are estimated from daily currency return data. Details about the estimation are in

Appendix A. The first (last) two columns report results for 15 (26) test assets. R2 is the

model fit of the cross-sectional pricing equation. χ2-test is the joint test statistic of cross-

sectional pricing errors (or residuals) α∗
n = 0 for all test assets n ∈ {1, . . . , N}. F-test is

the joint test statistic of time-series pricing errors (or intercept) αn = 0 for all test assets

n ∈ {1, . . . , N} in the time-series equation of the unconditional model. (t-stat) indicates

the significance of the difference between the coefficient and zero, (t-stat; δ = 1) indicates

the significance of the difference between the coefficient and one, and (p-value) indicates

the significance of the χ2 or F-test statistic. Significance at the 1%, 5% or 10% level are

indicated by ∗∗∗,∗∗ or ∗. Errors are estimated taking into account auto- and cross-sectional

correlations and heteroskedasticity according to Newey and West (1987). The data are our

set of 29 developed and emerging currencies from December 1983 to March 2021.
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Table E2: Cross-Sectional Pricing Errors α∗ in CSCAR Model

Uncond δ = 1 Free δ
α∗ (t-stat) α∗ (t-stat) α∗ (t-stat)

Int1 -0.41 (-0.18) -0.45 (-0.24) -0.35 (-0.19)
Int2 -0.51 (-0.27) -0.58 (-0.37) -0.53 (-0.34)
Int3 0.56 (0.49) 0.78 (0.78) 0.64 (0.60)
Int4 -0.54 (-0.72) -0.48 (-0.66) -0.51 (-0.70)
Int5 -1.52 (-0.90) -2.15 (-1.26) -2.32 (-1.35)

Mom1 -3.24∗∗∗ (-2.84) -2.58∗∗∗ (-2.82) -2.78∗∗∗ (-2.83)
Mom2 -1.62 (-1.62) -1.02 (-0.94) -0.97 (-0.89)
Mom3 0.32 (0.27) 0.57 (0.53) 0.50 (0.45)
Mom4 1.09 (0.94) 0.72 (0.86) 0.67 (0.75)
Mom5 -0.21 (-0.21) -0.87 (-1.01) -0.51 (-0.56)

V al1 2.82 (1.35) 2.92∗ (1.81) 3.00∗ (1.81)
V al2 0.22 (0.11) 0.95 (0.57) 0.31 (0.23)
V al3 -1.08 (-1.06) -0.84 (-0.87) -0.59 (-0.66)
V al4 -0.02 (-0.02) -0.46 (-0.57) 0.14 (0.18)
V al5 0.30 (0.27) -0.02 (-0.02) 0.17 (0.21)

FXC1 -0.79 (-0.85) -0.45 (-0.58) -0.84 (-0.87)
FXC2 -1.45 (-1.55) -1.03 (-1.18) -1.24 (-1.26)
FXC3 -0.51 (-0.45) -0.80 (-0.80) -0.46 (-0.65)
FXC4 -0.54 (-0.52) -0.76 (-0.81) -0.58 (-0.66)

DB1 1.36 (0.69) 1.25 (0.86) 1.21 (0.81)
DB2 2.91∗ (1.71) 2.36∗ (1.78) 2.39∗ (1.75)
DB3 0.80 (0.55) 1.81 (1.36) 1.34 (1.27)
DB4 1.48 (1.01) 1.55 (1.22) 1.34 (1.17)
DB5 3.97∗∗ (2.73) 3.42∗∗ (2.72) 3.56∗∗ (2.57)
DB6 2.99∗∗ (2.16) 2.41∗ (2.02) 2.32∗ (1.97)

DDOL 2.83∗ (1.97) 3.01∗∗ (2.56) 2.93∗∗ (2.56)

Notes: The table reports the cross-sectional pricing errors (or residuals) α∗
n for each test

asset n ∈ {1, . . . , N} in the estimated cross-sectional pricing equations of the unconditional

and conditional CSCAR single factor pricing models in Table E1. The GMM estimation

is based on the 26 test assets listed in this table. (t-stat) indicates the significance of the

difference between α∗ and zero. Significance at the 1%, 5% or 10% level are indicated by
∗∗∗,∗∗ or ∗. Errors are estimated taking into account auto- and cross-sectional correlations

and heteroskedasticity according to Newey and West (1987). The data are our set of 29

developed and emerging currencies from December 1983 to March 2021.
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Table E3: GMM Tests of DOL-MOM Model

15 assets 27 assets
Uncond δ = 1 Free δ Uncond δ = 1 Free δ

γ̂DOL 1.73 1.83 1.84 2.18 1.84 1.74
(t-stat) (1.14) (1.20) (1.20) (1.44) (1.21) (1.15)
γ̂CAR 6.59∗∗ 4.48 -2.05 17.91∗∗∗ 12.30∗∗∗ 4.11
(t-stat) (2.17) (1.26) (-0.35) (3.34) (3.15) (0.77)

δ̂DOL 1.99 0.98
(t-stat) (1.76) (5.09)∗∗∗Ä
t-stat;δ̂ − 1

ä
(0.87) (-0.10)

δ̂CAR 3.34 3.91
(t-stat) (2.32)∗∗ (3.20)∗∗∗Ä
t-stat;δ̂ − 1

ä
(1.62) (2.38)∗∗

γ̂DOL − F̄DOL 0.08 0.14 0.15 0.53∗∗∗ 0.15 0.05
(t-stat) (1.13) (0.18) (0.20) (2.80) (0.18) (0.07)
γ̂CAR − F̄CAR 5.28∗∗ 3.18 -3.35 16.59∗∗∗ 11.00∗∗∗ 2.82
(t-stat) (2.29) (1.08) (-0.58) (3.30) (3.06) (0.58)

χ2-test of α̂∗ = 0 26.99∗∗ 21.87∗ 4.27 66.73∗∗∗ 38.49∗∗ 9.39
(p-value) (0.0125) (0.0574) (0.9615) (0.0000) (0.0414) (0.9945)
F -test of α̂ = 0 2.10∗∗∗ 2.21∗∗∗

(p-value) (0.0093) (0.0005)

R2 0.25 0.57 0.80 -0.16 0.59 0.87

Notes: GMM estimation of unconditional and conditional DOL-MOM two factor pricing models.

DOL invests equally in all foreign currencies against the USD.MOM is the currency momentum trade

of past 1-month. Cross-sectional pricing equation of unconditional model: E [Rn,t] =
∑

k βn,kγk+α∗
n,

with the corresponding time-series equation Rn,t = αn +
∑

k βn,kFk,t + ϵn,t. Cross-sectional pricing

equation of conditional model: E [Rn,t] =
∑

k β̄n,kγk +
∑

k σβn,kγk
δk + α∗

n. k ∈ {DOL,MOM},
Rn,t and Fk,t are excess returns of test assets and pricing factors, α∗

n and ϵn,t are residuals, σβn,kγk

are the covariances between γk,t (or Fk,t+1) and βn,k,t, β̄n,k = E [βn,k,t] and βn,k,t are estimated

from daily currency return data. Details about the estimation are in Appendix A. The first (last)

two columns report results for 15 (27) test assets. R2 is the model fit of the cross-sectional pricing

equation. χ2-test is the joint test statistic of cross-sectional pricing errors (or residuals) α∗
n = 0 for all

test assets n ∈ {1, . . . , N}. F-test is the joint test statistic of time-series pricing errors (or intercept)

αn = 0 for all test assets n ∈ {1, . . . , N} in the time-series equation of the unconditional model.

(t-stat) indicates the significance of the difference between the coefficient and zero, (t-stat; δ = 1)

indicates the significance of the difference between the coefficient and one, and (p-value) indicates

the significance of the χ2 or F-test statistic. Significance at the 1%, 5% or 10% level are indicated

by ∗∗∗,∗∗ or ∗. Errors are estimated taking into account auto- and cross-sectional correlations and

heteroskedasticity according to Newey and West (1987). The data are our set of 29 developed and

emerging currencies from December 1983 to March 2021.
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Table E4: GMM Tests of DOL-V AL Model

15 assets 27 assets
Uncond δ = 1 Free δ Uncond δ = 1 Free δ

γ̂DOL 1.65 1.77 1.80 2.27 1.83 1.67
(t-stat) (1.09) (1.16) (1.18) (1.49) (1.20) (1.11)
γ̂CAR 0.98 1.51 1.63 -1.36 1.45 1.82
(t-stat) (0.82) (1.27) (1.38) (-0.98) (1.22) (1.56)

δ̂DOL 1.60 0.99
(t-stat) (2.21)∗∗ (5.02)∗∗∗Ä
t-stat;δ̂ − 1

ä
(0.83) (-0.03)

δ̂CAR 1.82 3.61
(t-stat) (2.47)∗∗ (2.95)∗∗∗Ä
t-stat;δ̂ − 1

ä
(1.11) (2.14)∗∗

γ̂DOL − F̄DOL -0.00 0.08 0.12 0.62∗∗∗ 0.14 -0.02
(t-stat) (-0.04) (0.11) (0.15) (3.19) (0.18) (-0.02)
γ̂CAR − F̄CAR -0.69∗∗ -0.18 -0.06 -3.03∗∗∗ -0.24 0.14
(t-stat) (-2.74) (-0.26) (-0.08) (-3.20) (-0.33) (0.16)

χ2-test of α̂∗ = 0 30.03∗∗∗ 18.55 12.26 60.37∗∗∗ 38.74∗∗ 22.14
(p-value) (0.0047) (0.1377) (0.3442) (0.0001) (0.0391) (0.5117)
F -test of α̂ = 0 1.94∗∗ 2.12∗∗∗

(p-value) (0.0183) (0.0011)

R2 0.17 0.62 0.69 -0.50 0.51 0.71

Notes: GMM estimation of unconditional and conditionalDOL-V AL two factor pricing models. DOL

invests equally in all foreign currencies against the USD. V AL is currency value trade. Cross-sectional

pricing equation of unconditional model: E [Rn,t] =
∑

k βn,kγk + α∗
n, with the corresponding time-

series equation Rn,t = αn+
∑

k βn,kFk,t+ ϵn,t. Cross-sectional pricing equation of conditional model:

E [Rn,t] =
∑

k β̄n,kγk +
∑

k σβn,kγk
δk + α∗

n. k ∈ {DOL, V AL}, Rn,t and Fk,t are excess returns of

test assets and pricing factors, α∗
n and ϵn,t are residuals, σβn,kγk

are the covariances between γk,t (or

Fk,t+1) and βn,k,t, β̄n,k = E [βn,k,t] and βn,k,t are estimated from daily currency return data. Details

about the estimation are in Appendix A. The first (last) two columns report results for 15 (27) test

assets. R2 is the model fit of the cross-sectional pricing equation. χ2-test is the joint test statistic of

cross-sectional pricing errors (or residuals) α∗
n = 0 for all test assets n ∈ {1, . . . , N}. F-test is the joint

test statistic of time-series pricing errors (or intercept) αn = 0 for all test assets n ∈ {1, . . . , N} in the

time-series equation of the unconditional model. (t-stat) indicates the significance of the difference

between the coefficient and zero, (t-stat; δ = 1) indicates the significance of the difference between the

coefficient and one, and (p-value) indicates the significance of the χ2 or F-test statistic. Significance

at the 1%, 5% or 10% level are indicated by ∗∗∗,∗∗ or ∗. Errors are estimated taking into account

auto- and cross-sectional correlations and heteroskedasticity according to Newey and West (1987).

The data are our set of 29 developed and emerging currencies from December 1983 to March 2021.
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Table E5: GMM Tests of DOL-FXC Model

15 assets 27 assets
Uncond δ = 1 Free δ Uncond δ = 1 Free δ

γ̂DOL 1.67 1.75 1.68 2.26 1.72 1.66
(t-stat) (1.11) (1.15) (1.11) (1.48) (1.13) (1.09)
γ̂CAR -0.91 -1.10 -0.94 -0.79 -2.44∗ -1.69
(t-stat) (-0.74) (-0.90) (-0.78) (-0.60) (-1.82) (-1.37)

δ̂DOL 0.48 0.91
(t-stat) (0.34) (4.74)∗∗∗Ä
t-stat;δ̂ − 1

ä
(-0.36) (-0.48)

δ̂CAR 2.86 4.01
(t-stat) (2.98)∗∗ (3.65)∗∗∗Ä
t-stat;δ̂ − 1

ä
(1.94)∗ (2.74)∗∗

γ̂DOL − F̄DOL 0.02 0.06 -0.00 0.61∗∗∗ 0.03 -0.03
(t-stat) (0.24) (0.08) (-0.01) (2.86) (0.04) (-0.04)
γ̂CAR − F̄CAR -0.39 -0.60 -0.44 -0.27 -1.94∗∗ -1.19
(t-stat) (-1.70) (-0.84) (-0.60) (-0.68) (-2.39) (-1.29)

χ2-test of α̂∗ = 0 29.83∗∗∗ 26.80∗∗ 10.74 63.05∗∗∗ 44.84∗∗∗ 15.65
(p-value) (0.0050) (0.0132) (0.4649) (0.0000) (0.0087) (0.8698)
F -test of α̂ = 0 1.93∗∗ 2.21∗∗∗

(p-value) (0.0193) (0.0006)

R2 0.14 0.49 0.64 -0.50 0.39 0.67

Notes: GMM estimation of unconditional and conditional DOL-FXC two factor pricing models.

DOL invests equally in all foreign currencies against the USD. FXC is high-minus-low currency

trade sorted on loadings on the innovations in the FX correlation dispersion measure. Cross-sectional

pricing equation of unconditional model: E [Rn,t] =
∑

k βn,kγk + α∗
n, with the corresponding time-

series equation Rn,t = αn+
∑

k βn,kFk,t+ ϵn,t. Cross-sectional pricing equation of conditional model:

E [Rn,t] =
∑

k β̄n,kγk +
∑

k σβn,kγk
δk + α∗

n. k ∈ {DOL,FXC}, Rn,t and Fk,t are excess returns of

test assets and pricing factors, α∗
n and ϵn,t are residuals, σβn,kγk

are the covariances between γk,t (or

Fk,t+1) and βn,k,t, β̄n,k = E [βn,k,t] and βn,k,t are estimated from daily currency return data. Details

about the estimation are in Appendix A. The first (last) two columns report results for 15 (27) test

assets. R2 is the model fit of the cross-sectional pricing equation. χ2-test is the joint test statistic of

cross-sectional pricing errors (or residuals) α∗
n = 0 for all test assets n ∈ {1, . . . , N}. F-test is the joint

test statistic of time-series pricing errors (or intercept) αn = 0 for all test assets n ∈ {1, . . . , N} in the

time-series equation of the unconditional model. (t-stat) indicates the significance of the difference

between the coefficient and zero, (t-stat; δ = 1) indicates the significance of the difference between the

coefficient and one, and (p-value) indicates the significance of the χ2 or F-test statistic. Significance

at the 1%, 5% or 10% level are indicated by ∗∗∗,∗∗ or ∗. Errors are estimated taking into account

auto- and cross-sectional correlations and heteroskedasticity according to Newey and West (1987).

The data are our set of 29 developed and emerging currencies from December 1983 to March 2021.
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Table E6: GMM Tests of DOL-DB Model

15 assets 27 assets
Uncond δ = 1 Free δ Uncond δ = 1 Free δ

γ̂DOL 1.69 1.80 1.81 1.79 1.95 1.87
(t-stat) (1.12) (1.19) (1.19) (1.17) (1.30) (1.21)
γ̂CAR 6.74 5.11 -0.71 6.79∗∗∗ 2.19 2.86
(t-stat) (1.28) (0.81) (-0.08) (3.00) (1.34) (1.64)

δ̂DOL 1.71 1.06
(t-stat) (1.86)∗ (5.46)∗∗∗Ä
t-stat;δ̂ − 1

ä
(0.77) (0.30)

δ̂CAR 1.90 2.71
(t-stat) (2.67)∗∗ (2.63)∗∗Ä
t-stat;δ̂ − 1

ä
(1.27) (1.66)

γ̂DOL − F̄DOL 0.04 0.11 0.12 0.13∗ 0.27 0.18
(t-stat) (0.55) (0.14) (0.16) (1.72) (0.34) (0.23)
γ̂CAR − F̄CAR 3.19 1.53 -4.30 3.24∗ -1.40 -0.73
(t-stat) (0.61) (0.25) (-0.46) (2.04) (-1.54) (-0.65)

χ2-test of α̂∗ = 0 26.98∗∗ 22.72∗∗ 14.75 63.14∗∗∗ 41.85∗∗ 23.16
(p-value) (0.0125) (0.0452) (0.1944) (0.0000) (0.0187) (0.4513)
F -test of α̂ = 0 1.87∗∗ 2.18∗∗∗

(p-value) (0.0240) (0.0007)

R2 0.15 0.67 0.78 0.09 0.52 0.65

Notes: GMM estimation of unconditional and conditional DOL-DB two factor pricing models. DOL

invests equally in all foreign currencies against the USD. DB is the high-minus-low dollar beta sorted

currency trade. Cross-sectional pricing equation of unconditional model: E [Rn,t] =
∑

k βn,kγk + α∗
n,

with the corresponding time-series equation Rn,t = αn +
∑

k βn,kFk,t + ϵn,t. Cross-sectional pricing

equation of conditional model: E [Rn,t] =
∑

k β̄n,kγk +
∑

k σβn,kγk
δk + α∗

n. k ∈ {DOL,DB}, Rn,t

and Fk,t are excess returns of test assets and pricing factors, α∗
n and ϵn,t are residuals, σβn,kγk

are the

covariances between γk,t (or Fk,t+1) and βn,k,t, β̄n,k = E [βn,k,t] and βn,k,t are estimated from daily

currency return data. Details about the estimation are in Appendix A. The first (last) two columns

report results for 15 (27) test assets. R2 is the model fit of the cross-sectional pricing equation.

χ2-test is the joint test statistic of cross-sectional pricing errors (or residuals) α∗
n = 0 for all test

assets n ∈ {1, . . . , N}. F-test is the joint test statistic of time-series pricing errors (or intercept)

αn = 0 for all test assets n ∈ {1, . . . , N} in the time-series equation of the unconditional model.

(t-stat) indicates the significance of the difference between the coefficient and zero, (t-stat; δ = 1)

indicates the significance of the difference between the coefficient and one, and (p-value) indicates

the significance of the χ2 or F-test statistic. Significance at the 1%, 5% or 10% level are indicated

by ∗∗∗,∗∗ or ∗. Errors are estimated taking into account auto- and cross-sectional correlations and

heteroskedasticity according to Newey and West (1987). The data are our set of 29 developed and

emerging currencies from December 1983 to March 2021.

17



Table E7: GMM Tests of CAR-DB Model

15 assets 27 assets
Uncond δ = 1 Free δ Uncond δ = 1 Free δ

γ̂DOL 3.60∗∗ 4.17∗∗ 4.25∗∗ 5.45∗∗ 6.17∗∗ 4.88∗

(t-stat) (2.35) (2.79) (2.82) (2.09) (2.47) (1.90)
γ̂CAR 3.71 6.91 7.71 5.04∗ 5.69∗∗ 5.95∗∗

(t-stat) (0.68) (0.87) (1.00) (1.95) (2.49) (2.57)

δ̂DOL 0.60 1.70
(t-stat) (1.08) (2.58)∗∗Ä
t-stat;δ̂ − 1

ä
(-0.73) (1.06)

δ̂CAR 1.14 0.75
(t-stat) (2.46)∗∗ (1.28)Ä
t-stat;δ̂ − 1

ä
(0.30) (-0.44)

γ̂DOL − F̄DOL -1.10∗ -0.53 -0.45 0.74 1.47 0.18
(t-stat) (-1.94) (-0.62) (-0.53) (0.37) (0.77) (0.09)
γ̂CAR − F̄CAR 0.16 3.33 4.13 1.49 2.11 2.37
(t-stat) (0.03) (0.43) (0.55) (0.74) (1.16) (1.38)

χ2-test of α̂∗ = 0 20.34∗ 11.63 9.86 55.64∗∗∗ 36.56∗ 33.32∗

(p-value) (0.0871) (0.5585) (0.5431) (0.0004) (0.0636) (0.0757)
F -test of α̂ = 0 1.42 1.95∗∗∗

(p-value) (0.1342) (0.0035)

R2 0.39 0.85 0.86 0.42 0.85 0.87

Notes: GMM estimation of unconditional and conditional CAR-DB two factor pricing models. CAR

is the equally weighted currency Carry trade. DB is the high-minus-low dollar beta sorted currency

trade. Cross-sectional pricing equation of unconditional model: E [Rn,t] =
∑

k βn,kγk + α∗
n, with the

corresponding time-series equation Rn,t = αn +
∑

k βn,kFk,t + ϵn,t. Cross-sectional pricing equation

of conditional model: E [Rn,t] =
∑

k β̄n,kγk +
∑

k σβn,kγk
δk +α∗

n. k ∈ {CAR,DB}, Rn,t and Fk,t are

excess returns of test assets and pricing factors, α∗
n and ϵn,t are residuals, σβn,kγk

are the covariances

between γk,t (or Fk,t+1) and βn,k,t, β̄n,k = E [βn,k,t] and βn,k,t are estimated from daily currency

return data. Details about the estimation are in Appendix A. The first (last) two columns report

results for 15 (27) test assets. R2 is the model fit of the cross-sectional pricing equation. χ2-test

is the joint test statistic of cross-sectional pricing errors (or residuals) α∗
n = 0 for all test assets

n ∈ {1, . . . , N}. F-test is the joint test statistic of time-series pricing errors (or intercept) αn = 0

for all test assets n ∈ {1, . . . , N} in the time-series equation of the unconditional model. (t-stat)

indicates the significance of the difference between the coefficient and zero, (t-stat; δ = 1) indicates the

significance of the difference between the coefficient and one, and (p-value) indicates the significance

of the χ2 or F-test statistic. Significance at the 1%, 5% or 10% level are indicated by ∗∗∗,∗∗ or ∗.

Errors are estimated taking into account auto- and cross-sectional correlations and heteroskedasticity

according to Newey and West (1987). The data are our set of 29 developed and emerging currencies

from December 1983 to March 2021.
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