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1 Introduction

Recent empirical studies have uncovered significant heterogeneity in productivity levels

across firms, even within industries. This finding is often interpreted as evidence of an

inefficient capital allocation among firms, stemming from various distortions, and is referred

to as “misallocation” (Hsieh and Klenow, 2009). The literature has focused on understand-

ing the role of specific factors, such as adjustment costs, financing frictions, and firm risk

in hindering the equalization of productivity across firms. A key insight emerging from this

body of research is that reallocating capital from firms with lower marginal productivity to

those with higher marginal productivity, such as by lifting financial constraints, can result

in improvement in overall output and efficiency while reducing cross-sectional dispersion in

productivity.

From the perspective of misallocation, which is usually measured by the dispersion in

firms’ value added to input ratios, firms that make large investments despite having low

output can be seen as recipients of misallocated capital. However, many well-known firms,

such as Tesla or Amgen, adopted a strategy of making substantial investments for several

years after going public, even though their output levels were initially low. This approach

ultimately led to a significant increase in their sales and productivity. This observation chal-

lenges the notion of the initial “misallocation” of capital, as it suggests that such investments

were, in fact, successful strategies. Reallocating capital away from these firms, based solely

on their lower productivity at the time, could potentially undermine long-run efficiency and

hinder overall productivity growth.

In this paper, our focus is on firms that appear to be accumulating too much capital

relative to their output, i.e. “investing in misallocation”, relative to other firms in the cross-

section. We study the properties of these firms and explore their role for the dispersion across

firms and aggregate efficiency. Empirically, we document that 20% of firms in the Compustat
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data set simultaneously have below-median marginal product of capital (MPK) and above-

median investment rates. These firms are typically younger and approximately 4% of them

experience a large upward jump in their sales and MPK in the subsequent period, while the

remaining firms have a much lower probability of experiencing such jumps. Importantly,

these firms contribute significantly to the innovative activity within the economy. They

exhibit a patent issuance rate that is more than twice as high as other firms, and their rates

of breakthrough patent issuance and patent citation are more than three times as large.

They are also more likely to be in the innovation stage along their product life cycle.

We explore whether the occurrence of infrequent but significant growth spurts, charac-

terized as jumps, can rationalize the presence and characteristics of high investment-low

MPK firms. To accomplish this, we propose and estimate a simple model that incorporates

heterogeneity among firms, capturing key empirical observations. In our model, firms are

classified as either high-type or low-type, representing their differing potential for produc-

tivity growth. Unlike low-type firms, high-type firms have the potential for a substantial

positive jump in productivity, and the likelihood of experiencing such a jump increases with

their level of investment.1 In our framework, high-type firms optimally invest heavily to

maximize their chances of a jump occurring and to be prepared for its arrival, rather than

solely aiming for immediate production benefits. The presence of high-type firms disrupts

the tight connection between MPK and investment in the cross-section, leading to a realistic

proportion of firms exhibiting high investment despite having low MPK levels.

We conduct a counterfactual experiment where firms’ investment policies ignore the po-

tential of future jumps even though jumps are still present in the data-generating process.

That is, high-type firms do not engage in “investing in misallocation” and just invest the

same amount as a low-type firm with the same productivity and capital. In the counterfac-
1In our model, we consider a single type of capital, which encompasses physical capital such as equipment

as well as intangible capital such as innovative capacity, organizational capital, brand capital, customer base,
etc.
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tual model, investment and MPK become closely aligned in the cross-section, resulting in the

absence of firms in the high investment-low MPK portfolio. This contradicts the empirical

evidence where MPK dispersion among high investment firms is as high as it is among all

firms. Furthermore, the overall MPK and investment dispersion becomes lower suggesting a

decline in misallocation. However, this removal of “investing in misallocation” also leads to

lower productivity in aggregate demonstrating that eliminating this source of cross-sectional

MPK dispersion does not result in higher efficiency. Consistent with the lower aggregate

productivity in the model counterfactual, our empirical findings reveal that the median in-

vestment rate among firms in the high investment-low MPK portfolio serves as a robust

predictor of future aggregate growth in total factor productivity (TFP). Specifically, a one

standard deviation increase in the investment rate corresponds to a one standard deviation

increase in 5-year TFP growth. In sum, while traditional metrics may classify these firms

as misallocating resources, they are creating value in ways that are not captured by their

current MPK levels.

The influential works of Hsieh and Klenow (2009) and Restuccia and Rogerson (2008)

introduced heterogeneous distortions to input and output prices faced by firms, but did

not explicitly identify the sources of misallocation. Subsequent research has identified var-

ious types of distortions as possible sources of misallocation, including adjustment costs

and volatility (Asker, Collard-Wexler, and De Loecker, 2014), information frictions (David,

Hopenhayn, and Venkateswaran, 2016), and excess investor demand (Choi, Kargar, Tian,

and Wu, 2023). The common thread in this literature is the exploration of the factors un-

derlying the deviations of firm-level capital from an efficient allocation across firms, leading

to disparities in MPK and productivity losses.

Another prominent strand of literature has proposed financial frictions as a significant

factor contributing to misallocation (Midrigan and Xu, 2014; Moll, 2014; Whited and Zhao,
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2021; Bau and Matray, 2023). These studies emphasize the importance of financial con-

straints that impede firms, especially those with high MPK and low investment, from ac-

cessing an optimal level of capital. Notably, financial frictions tend to have a particularly

pronounced impact on innovative firms. Li (2011) asserts that financial constraints are more

likely curtail the investment opportunities of these firms, which face additional financial con-

straints due to information asymmetry and agency problems (Hall and Lerner, 2010) as well

as low asset tangibility (Almeida and Campello, 2007). Drawing on the insights derived from

our model and the empirical evidence, we posit that within an environment characterized by

financial frictions, efficient resource allocation following the elimination of these constraints

may require a higher allocation of resources to low MPK but innovative firms that exhibit

the potential for rapid future growth, thereby further increasing the dispersion in MPKs.

To distinguish and quantify the role of various channels on misallocation, David and

Venkateswaran (2019) employ a framework that accounts for adjustment costs, information

frictions, and firm-specific factors to capture all remaining drivers of investment decisions.

Their findings indicate a significant influence of highly persistent firm-specific factors on

investment decisions. Subsequently, David, Schmid, and Zeke (2022) demonstrate that dif-

ferences in firm risk premia can create a persistent firm-specific factor that drives a wedge in

firms’ investment decisions, potentially explaining part of the observed misallocation. Our

model generates a similarly persistent wedge in investment patterns due to firms’ heteroge-

nous growth prospects, resulting in persistently different MPKs. However, our mechanism

operates differently from the risk premium channel in that the presence of risk premium

heterogeneity increases MPK dispersion and lowers aggregate productivity, while “investing

in misallocation” increases both dispersion and productivity.

Our study challenges the conventional notion that high productivity dispersion always

indicates inefficient outcomes. We find that investments made in anticipation of potential
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rapid growth, whether in equipment, software, R&D, or other types of intangibles, play a

crucial role in fueling economic growth, despite the initial appearance of misallocated capi-

tal.2 Therefore, our results align with the findings of Haltiwanger (2016) and Haltiwanger,

Kulick, and Syverson (2018), who emphasize that conventional measures of misallocation

may not only identify spurious inefficiencies but are also more likely to do so among firms

that possess unique strengths, such as future demand and customer base. Our work provides

compelling evidence that high investment-low MPK firms exhibit superior future productiv-

ity prospects, whether driven by technological advancements and innovation or by strong

demand dynamics.

While the elimination of most mechanisms for misallocation generally leads to increased

efficiency by reducing dispersion (such as easing financial constraints, minimizing risk pre-

mium dispersion, or lowering adjustment costs), Kehrig and Vincent (2020) present an ex-

ception to this pattern. They demonstrate that within-firm dispersion, specifically MPK

dispersion across establishments, can enhance efficiency. Their model focuses on firms with

multiple establishments subject to fixed adjustment costs and financial frictions, highlighting

the benefits of this “good” dispersion. In our research, we explore a different source of “good”

dispersion, namely the investment choices made by firms based on their growth prospects.

Our findings indicate that allowing firms to make such investment decisions can contribute

to a higher level of efficiency, even in the presence of dispersion.

Our paper is informed by the extensive literature on endogenous firm growth, which in-

vestigates how innovation can enhance productivity and competitiveness, leading to growth,
2While the seminal work by Hsieh and Klenow (2009) examines the MPK dispersion as an indicator of

misallocation, contrasting MPK dispersion in emerging economies like India and China with that in the
United States, subsequent international comparisons reveal significant differences in the life cycle growth
patterns of firms across countries. Hsieh and Klenow (2014) compares firm life cycles in the US with those in
India and Mexico, finding that surviving US firms experience much higher growth rates, which they attribute
to their investments in organizational capital. Additionally, Eslava, Haltiwanger, and Pinzón (2022) highlight
the stronger ’up-or-out’ dynamics and highly skewed growth rates prevalent in the US as contributing factors.
Consequently, utilizing MPK dispersion as a measure of misallocation presents additional challenges when
applied to the US context.
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increased profits, market share, and overall technological advancement. We connect to this

vast and continually expanding literature in various ways. In particular, our paper heavily

relies on the works of Klette and Kortum (2004) and Acemoğlu, Akçiğit, Alp, Bloom, and

Kerr (2018), as we introduce exogenous heterogeneity in firms’ productivity growth intensity,

emphasize how this intensity increases with firm investment and capital accumulation, and

model how it changes throughout the firm’s life cycle. Although we recognize the importance

of R&D and innovation – the exclusive focus of this literature – that can lead to rapid growth

in the future, our empirical findings suggest that both intangible investment such as R&D

and innovation and physical investment such as equipment and software are associated with

higher likelihood of jumps. Hence, we take a reduced-form approach in modeling jumps with

a single type of capital and remain agnostic about the further micro level drivers of jumps

within firm investment.

Furthermore, our work shares a connection with Acemoğlu, Akçiğit, Alp, Bloom, and

Kerr (2018) in that they expand on the concept of misallocation beyond conventional pro-

ductive inputs to include R&D inputs. Their research illustrates that reallocating innovative

resources, such as skilled R&D workers, from less innovative established firms to younger,

innovative firms can lead to significant welfare gains, which is in line with our results. This

finding underscores the importance of adopting a more comprehensive perspective on misal-

location, rather than solely focusing on realized MPK.

Our paper is organized as follows: In Section 2, we introduce an illustrative model to

clarify the mechanism and provide the motivation for our empirical evidence in Section 3.

Section 4 presents our full model, explicitly characterizing the endogenous growth mechanism

involving heterogeneous firms. Section 5 discusses the model’s fit to the data and explores

various quantitative aspects of both the model and the data. Section 6 offers insights into the

economic mechanism by analyzing portfolio equity returns. Section 7 provides concluding

6



remarks.

2 Illustrative model

In this section, we shed light on the mechanism underlying “investing in misallocation”

through an illustrative model of firm investment with endogenous growth. We start by

establishing a benchmark without endogenous growth and consider a firm i that needs to

acquire capital for production. The firm solves the following standard problem, maximizing

the value of the firm at time t = 0:

Vi0 + Di0 = max
Ii0

E0

∞∑
t=0

Dit

Rt
, (1)

where Vi0 is the ex-dividend value of the firm, Dit is the dividend at time t, and R is an ex-

ogeneously given discount rate. The firm’s production function is represented as f(Zit, Kit),

where Zit denotes exogenously determined productivity, and Kit represents the sole produc-

tive factor, which is capital. We assume that ∂f/∂Z > 0, ∂f/∂K > 0, and ∂2f/∂K2 < 0.

For example, consider the production function f(Z, K) = ZαK1−α.

Dividends are given by output net of investment expenditures:

Dit = f(Zit, Kit) − Iit. (2)

The law of motion for capital is given by

Kit+1 = (1 − δ)Kit + Iit, (3)

where δ is the capital depreciation rate.
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The solution to the investment problem in (1) subject to (2) and (3) is given by

R − (1 − δ) = Et

[
∂fit+1

∂Kit+1

]
︸ ︷︷ ︸
expected MPK

. (4)

Equation (4) conveys the standard intuition for optimal investment. The cost of capital

(R) is equal to the sum of expected marginal product of capital (MPK) in the next period

and the value of undepreciated capital (1 − δ). This also implies that in this frictionless

framework, firms with the same values of R and δ, such as those within the same industry,

should have the same expected MPK. That is, if a firm has too little (much) capital relative to

its expected productivity, it would (dis)invest to ensure that its expected MPK satisfies (4).

Therefore, the condition in (4) is reminiscent of the motivation in Hsieh and Klenow (2009)

for using the cross-sectional dispersion in MPK as a measure of “distortions” stemming from

factors such as adjustment costs and financial frictions, which represent deviations from the

frictionless benchmark, commonly referred to as “misallocation”.

A crucial assumption behind the optimal investment condition (4) is that productivity Z

is exogenous. Next, we relax this assumption and allow for the possibility that investment

can enhance future productivity. That is, productivity follows the law of motion

Zit+1 = g(Zit, Kit+1, ϵit+1), (5)

where ϵit+1 captures random productivity shocks and ∂git+1/∂Kit+1 > 0. This is a parsi-

monious way of capturing endogenous growth, where investment is motivated not only by

immediate output benefits but also by the potential for future productivity gains. For in-

stance, a firm’s present infrastructure investment could catalyze a potential surge in future

demand, a firm might invest to secure market leadership in the future despite facing low cash

flows in the near term, or a firm might develop patents to enhance the prospects of higher
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future revenues.

With endogenous growth, the solution to the investment problem in (1) subject to (2),

(3), and (5) becomes

R − (1 − δ) = Et

[
∂fit+1

∂Kit+1

]
︸ ︷︷ ︸
expected MPK

+ Et

[
Rηit+1

∂git+1

∂Kit+1

]
︸ ︷︷ ︸

future productivity benefits

, (6)

where η is the marginal value of increased productivity resulting from investment (see Ap-

pendix A for derivations).

Equation (6) shows that firms with identical R and δ do not necessarily have the same

expected MPK. The total marginal benefit of investing, including future productivity bene-

fits, is equalized across firms. The key prediction of our paper arises when firms vary in their

potential for endogenous growth. In the presence of such heterogeneity, firms that invest to

improve future productivity (∂git+1/∂Kit+1 > 0) will optimally have lower expected MPK

compared to firms without endogenous growth opportunities (∂git+1/∂Kit+1 = 0). This

is because these firms accumulate surplus capital to enhance their expected productivity

growth, albeit at the cost of a lower expected MPK. Appendix A shows that this intuition

is preserved in the presence of adjustment costs.

To unpack the economic content of η, it is helpful to consider its steady-state value,

denoted as η̄, where η̄ = ηt = ηt+1 based on equation (A.4) in Appendix A, assuming a

productivity process where ∂git+1
∂Zit

= 1:

η̄ = 1
R − 1

∂f

∂Z
, (7)

where ∂f
∂Z

is the steady-state marginal (per period) output benefit of productivity. Hence,

η̄ is the present value of all future benefits derived from an additional unit of productivity

gain due to investing in the endogenous growth case.
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Importantly, in this frictionless framework, the marginal qit of firm i (∂Vit/∂Kit+1) is equal

to one regardless of whether a firm has the endogenous growth feature (∂git/∂Kit+1 > 0)

or not (∂git/∂Kit+1 = 0).3 Consequently, marginal q does not function as a distinguishing

characteristic between two firms with differing expected MPKs. In this context, the low

MPK firm invests to enhance future productivity, while the high MPK firm’s investment is

primarily driven by exogenous fluctuations in productivity.4

We use this illustrative model to provide qualitative insight into the underlying mecha-

nism, laying the foundation for our empirical findings presented in Section 3. Subsequently, in

Section 4, we expand upon this basic model to explicitly characterize the endogenous growth

mechanism with heterogeneous firms. This expanded model is quantitatively evaluated in

Section 5.

3 Motivating evidence

Building upon the insights gained from the illustrative model in Section 2, this section

introduces empirical evidence that forms the foundation for our subsequent extended model

and quantitative assessment.5 In this context, we hypothesize that firms investing with the

aim of unlocking the potential for rare but substantial productivity growth spurts in the

future may exhibit a greater disparity between their current MPK and optimal investment

levels. As demonstrated in Section 2, these firms might appear to have “excess” capital

when assessed solely based on their current MPK. However, this surplus capital may be

strategically motivated by an elevated probability of experiencing rapid growth in the future,

as observed in studies like Klette and Kortum (2004) and Acemoğlu, Akçiğit, Alp, Bloom,
3See Appendix A for the derivation.
4It is worth noting that in the full model presented in Section 4, marginal q is not equal to one due to

the presence of adjustment costs. Appendix A shows that, even then, investment and q do not serve as a
distinguishing factor between firms investing based on endogenous growth expectations or other factors.

5Appendix B.1 provides detailed information about the data and variable construction.
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and Kerr (2018).

Therefore, we begin our discussion by establishing a connection between the probability

of firm jumps (large increases in output and marginal product of capital), investments, and

the current marginal product of capital. “Jumps” are defined as instances where a company’s

sales more than double, while its marginal product of capital increases by at least 50%. From

1975 to 2019, the unconditional annual probability of a firm experiencing a jump was 1.62%.6

Although jumps were infrequent on an annual basis, many Compustat firms encountered a

performance jump at some point during their existence. Among firms that joined Compustat

after 1975 and remained for at least 5 years, 17% experienced at least one jump until 2019.7

Next, we explore the relationship between firm characteristics and the probability of

jumps according to our defined criteria. The purpose of this empirical analysis is to examine

whether the distribution of capital across firms is linked to the occurrence of large booms

at the individual firm level. Specifically, we investigate whether the likelihood of jumps is

influenced by the marginal product of capital, and whether firms allocate more capital to

current investments in anticipation of future jumps.

Table 1 presents the parameter estimates obtained from a linear probability model that

investigates the relationship between experiencing a jump and several variables, including

lagged investment rates (I/K) in physical and intangible capital, lagged marginal product

of capital (MPK), and firm age. In Column 1, we find that firms with initially low MPK

can experience a significant increase in both MPK and sales. This suggests that MPK is
6To minimize the impact of noise, we measure jumps over a four-year period where the thresholds are

applied to the growth of sales and MPK from the first two years to the last two years. Our timing convention
treats growth from years t-1 and t to years t+1 and t+2 as events in year t. For instance, jumps recorded in
2019 are based on growth rates from 2018-2019 to 2020-2021. All results are robust to variations in cutoffs
for sales and MPK growth. Further details can be found in Appendix B.1.

7We observe that jumps are not confined to just a few industries within the economy; rather, firms
across many industries experience jumps. In Appendix Table A.5, we present the frequency of jumps across
industries. Although there is some heterogeneity in jump frequency, firms from a wide range of industries
exhibit higher propensity for jumps, including chemicals (particularly pharmaceuticals), metal mining, oil
and gas extraction, and professional and scientific instruments.
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Table 1: Determinants of Firm Jumps

This table presents coefficient estimates obtained from linear probability models analyzing realized jumps.
The dependent variable is the jump dummy, which takes a value of 1 when a jump occurs from the current
period to the next period. Jumps are defined as cases where a company’s sales double, accompanied by
a minimum 50% increase in its MPK. For a comprehensive explanation and the definition of explanatory
variables, please refer to Appendix B. The regressions incorporate 2-digit SIC industry-year fixed effects.
The corresponding t-statistics are presented in parentheses, and standard errors are clustered at the firm-year
level. Statistical significance levels are indicated by one, two, and three stars, denoting significance at the
10%, 5%, and 1% levels, respectively. The variable N denotes the count of firm-year observations, while R2

represents the adjusted R-squared value.

(1) (2) (3) (4) (5)

Physical I/K 0.020*** 0.020***
(11.20) (12.29)

Intangible I/K 0.023*** 0.031***
(7.13) (9.97)

Total I/K 0.050*** 0.039***
(15.24) (11.42)

Log MPK −0.025*** −0.027*** −0.027*** −0.027***
(−18.49) (−21.44) (−21.15) (−21.55)

Log age −0.011***
(−18.09)

Ind × Year FE x x x x x

R2 0.043 0.031 0.055 0.053 0.057
N 203,253 203,054 203,054 203,253 203,253

not a fixed characteristic of a firm and can vary over time.8 Furthermore, Column 2 shows

that investment in both physical and intangible capital predicts a higher likelihood of a

jump occurring. In Column 3, which includes both MPK and investment measures, all

variables demonstrate strong predictive power. Specifically, given a certain level of current

MPK, a higher investment rate is linked to a greater probability of experiencing a jump.

Consequently, firms that continue to invest in spite of having low MPK are more likely to

encounter rapid growth.

Columns 2 and 3 of Table 1 highlight the importance of both physical and intangible

investments as relevant predictors of jumps, with comparable magnitudes. As per Peters
8We include year×industry fixed effects in these regressions. Therefore, all comparisons are across firms

within the same industry–year pair.
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and Taylor (2017), we combine physical and intangible investments to derive the firm’s total

investment and total capital. The results in Column 4 indicate that total investment is able

to capture the explanatory power of its individual physical and intangible components in

predicting jumps. Lastly, in Column 5, we introduce firm age as an additional factor. The

results demonstrate that younger firms have a higher probability of experiencing jumps, indi-

cating that firm age plays a role in predicting booms. Notably, the predictive ability of high

investment and low MPK is not overshadowed by firm age, highlighting their independent

contributions in identifying firms likely to experience jumps.

The implications of the results presented in Table 1 become clearer when we examine two

firms with identical and high investment rates but differing levels of current MPK. Consider

a firm with high MPK, indicating that it already has high output relative to its capital.

In this case, the firm’s high investment rate can be justified by the potential benefits of

having more capital to further enhance its output. On the other hand, we have a low MPK

firm that seemingly has excess capital compared to its output, yet it still falls within the

high investment group. This combination of characteristics, namely high investment and

low MPK, poses a challenge when analyzing the firm solely based on its current observable

productivity characteristics. Nevertheless, they are more likely to experience rapid growth

in the future, suggesting that their investment decisions are influenced by factors beyond

current MPK. This indicates the presence of alternative channels or factors driving their

investment behavior, possibly related to their expectations of future growth opportunities,

and empirically challenges the prevailing notion that a lower MPK among firms in the cross-

section represents misallocated capital that could be more efficiently utilized by high MPK

firms.

We next adopt a portfolio approach and analyze the characteristics of firms that are

sorted based on both their total I/K and MPK. This approach allows us to investigate
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the significance and implications of MPK variation among firms with similar investment,

and helps us understand the potential economic channels behind the high I/K-low MPK

phenomenon. Accordingly, we sort firms into four portfolios based on their placement in

below or above median groups for both I/K and MPK. To ensure that our findings are

not driven by variations across industries, we conduct the sorting within each 2-digit SIC

industry, allowing us to focus on within-industry comparisons.9 In a frictionless economy

where firm productivity is static or completely exogenous, we would expect investment rate

and MPK to be perfectly correlated. Consequently, all firms would fall into either the low I/K

- low MPK (I/K1, MPK1) portfolio or the high I/K - high MPK (I/K2, MPK2) portfolio.

However, Panel A of Table 2 reveals that 42% of Compustat firms are placed in off-diagonal

portfolios.10

We observe significant persistence in firms’ allocations to I/K and MPK sorted portfolios,

consistent with previous findings in the literature. Appendix Table A.4 presents the 1-year

transition matrix of firms across these portfolios. The likelihood of a firm remaining in the

same portfolio varies from 60% to 73%. This is especially notable for the (I/K2, MPK1)

portfolio, where firms continue to invest heavily despite having low marginal products of

capital.

In line with the results of Table 1, we observe that firms in high I/K - low MPK
9Throughout our study, we have categorized industries using 2-digit SIC codes to ensure an adequate

representation of firms within each industry. However, it is worth emphasizing that this classification is not
essential, as our results remain robust when employing 3- and 4-digit SIC classifications.

10Based on the evidence presented in Table 1, we have defined total capital as the sum of physical and
intangible capital. Our I/K and MPK are also consistent with this definition. We have conducted two
additional portfolio sorts using alternative capital definitions. The first exercise employs a more restrictive
capital definition, where I/K and MPK are solely based on physical capital. While the results, presented in
Appendix Table A.1, share similarities with those presented in Table 2 across most dimensions, we have ob-
served that the distinctions between the (I/K2, MPK1) portfolio and the other portfolios are somewhat less
pronounced, both in terms of economic significance and statistical significance. The second exercise employs
a broader capital definition, encompassing inventories and leased capital in addition to the physical and
intangible capital considered in the baseline case. The results of this second exercise, presented in Appendix
Table A.2, closely align with the baseline case, both in overall patterns and in how the (I/K2, MPK1)
portfolio differs from the remaining portfolios.
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Table 2: Descriptive Statistics for Total I/K and MPK Sorted Portfolios

To construct the four portfolios, all firms are annually sorted into below and above median I/K and MPK groups. The resulting portfolio
statistics are presented in columns 1 to 4, while columns 5 and 6 display the differences between firms in the (I/K2, MPK1) group and
the entire sample and their t−statistics. For each variable, the statistics are initially computed for all firms within each portfolio and then
averaged across years. Appendix B provides a detailed explanation of variable definitions and sources. To account for industry differences,
total I/K, log MPK, and log TFP are normalized by subtracting the median values of their respective 2-digit SIC industries, and the median
SA and LW index are normalized to be 0 each year to increase readability. Excess future stock returns (r − rf ) are measured from July of
year t + 1 to June of year t + 2. Most variables are reported as portfolio medians, except for TFP where the 90th percentile is also presented.
Excess returns (r − rf ) are calculated as value-weighted averages, while patent-based variables are reported as means due to the highly
skewed nature of patenting activity.

(I/K1, MP K1) (I/K1, MP K2) (I/K2, MP K1) (I/K2, MP K2) (I/K2, MP K1)–All
Difference t–stat

Panel A: Portfolio properties

N 1428.3 993.8 997.2 1393.9

Total I/K (median, ind. adj.) -0.058 -0.048 0.085 0.097

Log MPK (median, ind. adj.) -0.40 0.35 -0.36 0.44

Portfolio share 0.30 0.21 0.21 0.29

Portfolio share among young firms (≤ 10 years) 0.22 0.14 0.27 0.37

Age (median) 15.1 16.2 9.20 9.42 -2.96*** -4.65

Jump probability (%) 1.46 0.56 4.09 0.93 2.46*** 8.25

Panel B: Innovative activity and product development

Patents/K (mean) 9.24 6.67 26.5 17.0 11.9*** 5.29

Patent value/K (mean) 24.9 22.8 90.1 93.0 32.4** 2.58

Patent Citations/K (mean) 293.9 142.1 1157.3 594.5 627.9*** 4.04

Top 10% patents/K - 5 yr (mean) 1.17 0.47 4.40 2.20 2.40*** 3.92

Top 10% patents/K - 10 yr (mean) 1.31 0.48 4.69 2.26 2.58*** 3.62

Exposure to Life1 stage (median) 0.22 0.19 0.29 0.25 0.061*** 13.2

Panel C: Productivity, returns, financial constraints

Log TFP (median, ind. adj.) -0.056 -0.033 0.020 0.074 0.020*** 4.09

Log TFP (90th pctile, ind. adj.) 0.36 0.34 0.50 0.59 0.048** 2.33

Log future TFP (5yr later, median, ind. adj.) -0.021 -0.019 0.012 0.010 0.015*** 3.09

Log future TFP (5yr later, 90th pctile, ind. adj.) 0.41 0.35 0.55 0.50 0.10*** 4.53

Excess future stock returns (VW mean, annual, %) 8.46 8.88 9.66 9.86 0.76 0.19

Total q (median) 0.43 0.44 0.86 0.87 0.27*** 4.97

SA index (median) -0.12 -0.26 0.21 0.14 0.21*** 11.8

LW equity index (median) 0.026 -0.16 0.27 -0.027 0.27*** 15.2
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(I/K2, MPK1) portfolio have a significantly higher probability of experiencing a jump than

firms in other portfolios. Specifically, these firms have an annual jump probability of 4.09%,

which is more than twice as high as the average jump probability of the entire sample.11

These firms are also younger, which is associated with a higher likelihood of experiencing a

jump, as shown in Table 1. While 21% of all firms belong to the (I/K2, MPK1) portfolio,

this proportion increases to 27% among young firms, defined as those firms that have been

included in the Compustat sample for 10 years or less.

When examining the characteristics of the (I/K2, MPK1) portfolio over time, several

intriguing patterns emerge. As shown in Panel A of Figure 1, the share of firms in this

portfolio remains relatively stable throughout the sample period with minor fluctuations.12

In contrast, the annual jump probability depicted in Panel B varies over time, reaching its

first peak in the late 1990s, and its second peak in the last few years. Interestingly, late 1990s

are also the years when firms in this group experienced their highest investment rate and

had the lowest MPK relative to the median firms in their industry (Panel C). Moreover, the

investment rate and MPK move in opposite directions, and jumps comove positively with the

investment rate and negatively with MPK. These time series patterns are consistent with the

cross-sectional results presented in Table 1: not only are firms with high investment and low

MPK more likely to jump in the cross-section, but a larger fraction of these firms experience

a jump when median investment is high and median MPK is low in the time series.

11While our primary focus is on endogenous growth, and therefore positive jumps, we also investigate
the presence of negative productivity jumps—-simultaneous significant declines in both sales and MPK,
characterized by logarithmic changes of the opposite sign—and explore their potential link to a firm’s MPK
and investment. Our analysis reveals that the unconditional likelihood of negative jumps closely mirrors
that of positive jumps. However, the probabilities of observing negative jumps are uniform across portfolios,
ranging from 1.4% to 1.8%, and do not demonstrate any statistically significant deviation from the overall
unconditional probability of negative jumps, which remains at 1.7%.

12Appendix Figure A.1 replicates Figure 1 utilizing solely physical capital, while Appendix Figure A.2
recreates it using the comprehensive capital definition (including physical, intangible, inventories, and leased
capital). These figures illustrate that the time series dynamics of the (I/K2, MPK1) portfolio’s share, jump
probability, investment, and MPK remain largely unaltered.
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Figure 1. (I/K2, MPK1) Portfolio share and jump probability

The figure illustrates the portfolio share, jump probability, and median investment rate and MPK for firms in
the (I/K2, MPK1) portfolio. Panel A presents the portfolio shares, Panel B displays the jump probabilities,
and Panel C shows the industry-adjusted median investment rate and log MPK. All variables are presented
as 3-year moving averages.
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Jumps in firm performance can stem from various factors fueled by investment. These

jumps are characterized by rapid growth, and they are not randomly distributed among

firms but strongly associated with both investment and MPK. Examples of such factors are

innovative activity and new product development, which often require sustained investment

over a considerable period, with the anticipation of potential but uncertain future benefits.

To gain insights into the differences in firm jump propensity, we examine outcomes that

capture innovative activity and new product development, as proposed in recent literature.

To evaluate innovative quantity and quality, we employ multiple patent-based measures,

such as traditional patent and citation counts, as well as patent values derived from stock

market reactions to patent news developed by Kogan, Papanikolaou, Seru, and Stoffman

(2017) and breakthrough patent measures that identify the most innovative and influential

patents using textual analysis proposed by Kelly, Papanikolaou, Seru, and Taddy (2021). To

ensure comparability of innovative intensity across firms of varying sizes, we scale all patent

measures by the firm’s total capital.

The average innovation metrics for the portfolios are presented in Panel B of Table 2.

We find that firms in the (I/K2, MPK1) portfolio exhibit higher patent issuance, with these

patents being more valuable and receiving more citations. Notably, this portfolio stands out

in terms of top (breakthrough) patent issuance and patent citation measures, surpassing the

performance of all other portfolios. This finding is consistent with a higher jump propensity

in performance. To measure new product development activity, we use firm exposure to

Life1 (product innovation) stage, which is identified by textual analysis of 10-K files by

Hoberg and Maksimovic (2022). As shown in Panel B of Table 2, firms in the (I/K2, MPK1)

portfolio exhibit significantly higher exposure to this stage of product development compared

to the other portfolios. The Life1 stage is characterized as risky since firms need to acquire

capacity before knowing the outcome of product development, which aligns with the notion

that investment predicts future jumps.
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We also compare current and future firm productivity (total factor productivity, TFP)

across portfolios using TFP estimates from İmrohoroğlu and Tüzel (2014). Panel C Table

2 shows that firms in high I/K portfolios exhibit higher productivity levels than firms in

low I/K portfolios. Additionally, among the two high investment portfolios, firms in the

high MPK portfolio have higher median and 90th percentile productivity levels compared

to firms in the (I/K2, MPK1) portfolio. However, the pattern shifts in the subsequent

years, as TFP of firms in the (I/K2, MPK1) portfolio exceeds other portfolios five years

later. More strikingly, this improvement in TFP for firms in the (I/K2, MPK1) portfolio is

particularly prominent among top performing firms in each portfolio (such as firms in the

90th percentile), indicating that currently high I/K - low MPK firms are likely to be in the

right tail of TFP distribution in five years, experiencing substantial jumps in performance.

To gain further insight into the potential longer-term jump outcomes of high I/K and low

MPK firms, which tend to be younger, we define “high-type” firms in the dataset as those

that remained in the (I/K2, MPK1) portfolio for at least 5 years within their first 10 years

of inclusion in the Compustat sample. Of the firms that joined Compustat after 1975 and

remained for at least 5 years, 12% are identified as high-type firms. Among these high-type

firms, we find that 37% experienced at least one jump by 2019, which is more than twice

the average life-time jump probability of the entire firm sample (17%). Many of these firms

eventually become significant players in the economy. Specifically, about 5% of high-type

firms are eventually included in the S&P 500, compared to only 3.5% of the entire sample

of firms.

A large body of research has highlighted the importance of risk premia in explaining the

cross-sectional differences in investment behavior. As noted by David, Schmid, and Zeke

(2022), it is the appropriately discounted marginal product of capital (MPK) that should

be equalized across firms when capital is efficiently allocated, rather than the MPK itself.
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Therefore, it is essential to account for any differences in risk premia across portfolios. Panel

C of Table 2 reports the value-weighted average excess stock returns for the portfolios in the

year following the portfolio formation.13 We find that the realized risk premia were remark-

ably similar across the portfolios in our sample period. This suggests that the dispersion in

MPK and I/K were not driven by variations in the discount rates of the portfolios.

Importantly, in line with the insights drawn from our illustrative model, controlling for in-

vestment, Tobin’s q does not differentiate between low and high MPK portfolios. Within both

low and high investment portfolios, those with low and high MPKs exhibit virtually iden-

tical total q values. Specifically, while the (I/K2,MPK1) portfolio and the (I/K2,MPK2)

portfolio fundamentally differ in terms of their current MPK and growth prospects, their q

values are indistinguishable from one another.

Recent literature has highlighted financial frictions as a potential source of misallocation

(Midrigan and Xu, 2014; Moll, 2014; Whited and Zhao, 2021; Bau and Matray, 2023). To

examine whether such frictions may explain the low investment despite high MPK and high

investment despite low MPK that we observe in off-diagonal portfolios, we employ various

metrics from the existing literature. The first metric we utilize is the SA index introduced

by Hadlock and Pierce (2010), which identifies firm age and size as key indicators of financial

constraints. The second metric is a recent development by Linn and Weagley (2023), the

LW equity index. This index broadens the application of text-based constraint measures

by employing a random forest model trained on financial constraint metrics derived from

textual analysis, originally formulated by Hoberg and Maksimovic (2014).

Our findings show that (I/K2, MPK1) has the highest SA index and LW equity index

among the four portfolios, indicating that it has the most financially constrained firms. In

contrast, (I/K1, MPK2), the portfolio of firms with low investment despite having high
13Following the standard convention, we match CRSP stock return data from July of year t + 1 to June of

year t + 2 with accounting information for the fiscal year that ended in year t, as in Fama and French (1992)
and Fama and French (1993).
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MPK, has the least financially constrained firms. Therefore, if financial constraints are

indeed impeding investment, we would expect (I/K2, MPK1) firms to invest even more in

the absence of such constraints, leading to an even wider gap between investment and MPK.

Conversely, the low investment of (I/K1, MPK2) firms is unlikely to be due to financial

constraints. Hence, the observed “misallocation” in the off-diagonal portfolios cannot be

attributed to the financial constraints faced by these firms. In summary, our findings suggest

that removing financial constraints would not necessarily redirect more capital exclusively

to high MPK firms, but also potentially to firms in the (I/K2, MPK1) portfolio.

The evidence indicating that high-type (young, high I/K - low MPK) firms have the po-

tential to make substantial leaps in innovation, productivity, and sales contradicts the stan-

dard neoclassical firm model, which primarily relies on marginal product of capital (MPK)

for capital allocation. Instead, this evidence supports features of endogenous growth models,

which suggest that firms pursue investments to innovate, enhance production processes, and

introduce new products to achieve higher growth.14 In the following section, we present a

simple quantitative model of an economy that extends the neoclassical framework with a

jump augmented productivity process. This addition incorporates aspects of the endoge-

nous growth model in a reduced-form and concise manner. Importantly, the model disrupts

the near perfect correlation between I/K and MPK, and gives rise to a nuanced and het-

erogeneous relationship between the two. When applied to data from Compustat firms, the

model produces significant variation in MPK, allowing for the analysis of counterfactual ex-

periments with different firm policies and their impact on MPK and productivity outcomes.
14The key takeaway from the empirical evidence for the models is that current productivity does not

perfectly reflect the marginal value of investing today. Models featuring such decoupling include Kogan and
Papanikolaou (2013) where the exogenous arrival rate of growth opportunities is independent from current
firm productivity in the cross-section of firms. In contrast, our model, incorporating endogenous growth,
upholds the connection between productivity and investment akin to the neoclassical model. However, it
also indicates that growth opportunities for some firms are shaped by their investment decisions rather than
solely dictated by exogenous forces.
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4 Full Model

In this section, we introduce a simple model that differentiates between firms with and

without the prospects of a large positive jump in the productivity of capital. Let i denote

the index of firms. Every firm uses capital Ki,t at time t as the single productive factor

whose law of motion is given by

Ki,t+1 = (1 − δ)Ki,t + Ii,t, (8)

where δ is the depreciation rate and Ii,t is investment. In line with our empirical anal-

ysis, capital in the model encompasses both intangible capital such as R&D, branding,

and new product development, and physical capital. Investment is subject to standard

quadratic adjustment costs on net investment and the total cost of investment is given by

Ii,t + 1
2c
(

Ii,t

Ki,t
− δ

)
Ki,t.

Following Klette and Kortum (2004) and Acemoğlu, Akçiğit, Alp, Bloom, and Kerr

(2018), we assume that firms differ in their potential for experiencing productivity jumps.

Upon entering the economy, a firm’s type θi, either high or low, is randomly assigned, and

each newly established firm has an identical probability p of being categorized as high-type:

Pr(θi = θh) = p and Pr(θi = θl) = 1 − p, (9)

where p ∈ (0, 1).

Firm i produces output Yi,t based on the technology given by

Yi,t = Zα
i,tK

1−α
i,t , (10)

where Zi,t denotes productivity. High-type and low-type firms differ in their stochastic
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productivity process. Log productivity zi,t of a high-type firm follows

zi,t+1 = zi,t + ϵi,t+1 + Ji,t+1, (11)

where ϵi is a Gaussian shock with mean zero and volatility σ, and Ji represents a jump

shock.15 In each period, jumps are characterized by

Pr(Ji,t+1 = ζ) = λi,t and Pr(Ji,t+1 = 0) = 1 − λi,t, (12)

where λi,t is the probability of a jump and ζ > 0 is the time-invariant jump size. Low-type

firms’ productivity does not feature jumps and follows zi,t+1 = zi,t + ϵi,t+1.

The jumps in high-type firms’ productivity capture infrequent and large upward moves in

firm sales and productivity documented in Section 3. Motivated by the significantly higher

empirical jump propensity of high I/K - low MPK firms, we allow the probability of jumps

to vary with capital accumulation.16 In particular, we parameterize jump probability λi,t as

λi,t = λ0

(
ki,t

kss

)ι

, (13)

where ki,t = Ki,t/Zi,t and kss is the steady-state value of ki,t. As a result, λ0 controls the

level of the jump probability and ι > 0 determines its curvature with respect to the firm

capital level. Firms can accumulate more capital relative to their current productivity to

increase the likelihood of a jump, giving rise to a new determinant of capital investment. In

other words, firms invest not only for current production opportunities, but also to increase
15Our formulation for firm productivity follows a similar structure to the cash flow formulation used by

Andrei, Mann, and Moyen (2019), which includes a Gaussian component, as well as an innovation-driven
jump component.

16This approach is consistent with the modeling of innovation jumps in the literature. For instance, Klette
and Kortum (2004) propose that a firm’s innovation rate is determined by both its R&D investment and its
knowledge capital. Andrei, Mann, and Moyen (2019) make a similar assumption.
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their expected future production. For instance, to achieve potentially rapid growth, firms

need to invest in building up brand capital, developing technology, as well as obtaining

market share to become potential “superstar” firms, which are characterized as the most

productive firms of an industry in Autor, Dorn, Katz, Patterson, and Van Reenen (2020). In

that sense, our broad definition of capital encompasses factors that not only drive a firm’s

current production but also its future potential.

Similarly to Acemoğlu, Akçiğit, Alp, Bloom, and Kerr (2018), we assume that high-type

firms transition to low-type at the exogenous flow rate µ, and low-type is an absorbing state.

Furthermore, each firm is subject to an exogenous destruction rate φ. In case of destruction,

firm value declines to zero and the firm exits the economy.

Given the structure of firms described so far and assuming that firms discount cash flows

at rate R, high-type firms solve the following value maximization problem:

V h(Ki,t, Zi,t) = max
Ii,t

Zα
i,tK

1−α
i,t − Ii,t − 1

2c

(
Ii,t

Ki,t

− δ

)2

Ki,t


+ 1

R
(1 − φ)

(
(1 − µ)Et

[
V h(Ki,t+1, Zi,t+1)

]
+ µEt

[
V l(Ki,t+1, Zi,t+1)

])
,

(14)

and low-type firms solve

V l(Ki,t, Zi,t) = max
Ii,t

Zα
i,tK

1−α
i,t − Ii,t − 1

2c

(
Ii,t

Ki,t

− δ

)2

Ki,t


+ 1

R
(1 − φ)Et

[
V l(Ki,t+1, Zi,t+1)

]
.

(15)

To obtain optimal policies, we utilize value function iteration by normalizing the firm

value functions V h and V l in equations (14) and (15) with respect to productivity Z. See

Appendix C for details. In the quantitative implementation of the model described in Section

5, we make the assumption that all shocks ϵi,t and Ji,t are independent across firms and time,

and we focus solely on the cross-sectional implications by abstracting from any common
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variations in these shocks. Additionally, we consider a fixed number of firms, meaning that

when a firm is hit by an exit shock (with probability φ), it is replaced by a new firm with a

high-type probability of p.

5 Quantitative analysis

In this section, we discuss our estimation strategy and examine the quantitative implications

of our model, considering both targeted and non-targeted moments. Additionally, we perform

counterfactual exercises utilizing the estimated model to illustrate the role of jumps within

the overall framework and the impact of expected jumps on investment policy, thereby

influencing both the cross-sectional distribution of firms and aggregate productivity. Lastly,

we provide empirical evidence that supports the predictions derived from comparing the

baseline model to the counterfactual model.

5.1 Model estimation

We estimate the model parameters using data from Compustat firms. In order to streamline

the computation process, we predetermined a subset of parameters outside of the estimation.

First, we set the depreciation rate δ to 15%, which falls within the commonly used range

for physical and intangible capital.17 Second, we set the discount rate 1/R to 0.91 for all

firms, which corresponds to the (inverse of the) value-weighted average real stock return for

the firms in our sample.18 Third, we set the curvature parameter of the production function

α to 0.35, in accordance with commonly used values in the literature (David, Schmid, and
17In the literature, the depreciation rate for physical capital typically ranges between 8-10% (Jones and

Tüzel, 2013), while for intangible capital, it is around 20% (Peters and Taylor, 2017). In our sample, the
median ratio of intangible capital to physical capital is 1.1. To determine the depreciation rate for total
capital, we computed the weighted average of the depreciation rates for physical and intangible capital. Our
results are not sensitive to the choice of depreciation rate, except for the investment rate.

18As shown in Table 2, the realized risk premia were remarkably similar across the portfolios formed based
on I/K and MPK during our sample period.
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Zeke, 2022). Finally, we determined the exit probability directly from the data and set φ to

3.1%.19

We estimate the remaining 7 parameters jointly using the simulated method of moments

(SMM). Let θ = {c, σ, λ0, ι, ζ, µ, p} denote the set of seven parameters to be estimated. The

SMM approach minimizes the weighted quadratic distance between a vector of moments in

the data Ψd and model-simulated data Ψm(θ):

arg min
θ

g(θ)′Wg(θ), (16)

where g(θ) = Ψd − Ψm(θ). Details on model solution and simulation can be found in

Appendix C. In order to ensure that our estimated structural parameters are economically

meaningful, we carefully select moments from the data that are closely related to them. As a

result, we identify three sets of moment conditions: the first set consists of general moments

that capture the volatility of investment and output outcomes. The second set includes

moments that are specifically linked to the jump mechanism that we empirically illustrate in

Section 3 and discuss in Section 4. Finally, the third set of moments pertains to the portfolio

characterized by high investment and low MPK, which represents the primary focus of our

paper.

Table 3 lists the target moments in our indirect inference procedure. Details on the

empirical computations can be found in Appendix B.2. We formulate the model at an

annual frequency, consistent with our empirical work, and Table 4 displays the calibrated

and estimated parameter values.
19We observed that 7.1% of firms in the Compustat sample exited every year. We distinguish between exits

due to mergers and acquisitions (which were uniformly 4% across our portfolios) and other exits, which were
classified as firm failures. Further details on the classification of Compustat exits can be found in Appendix
B.3. Assuming that in the case of mergers, investors were paid the current value of the firm, mergers do not
affect the firm’s optimization problem. However, we took the merger rate into account in the simulations of
the model.
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Table 3: Moment Conditions

This table presents the target empirical moments and model-generated moments obtained from the estimation
of our baseline and counterfactual models. The empirical moments, presented in column 1, are computed
using Compustat data from the period 1975-2021. For more details, please refer to Appendix Section B.2.
The parameter estimates for the benchmark model can be found in Table 4. The counterfactual model, as
discussed in Section 5.2.2, adopts the same parameter estimates as the baseline model, except that firms’
investment policy ignores the possibility of jumps.

Data Baseline Counterfactual

Panel A: General moments

IQR of I/K among young firms 0.252 0.233 0.135
IQR of I/K among mature firms 0.094 0.128 0.110
Nonnegative investment share 0.988 0.831 0.909
IQR of sales growth 0.243 0.211 0.187

Panel B: Moments related to jump realizations

Median sales jump size 2.970 2.832 2.609
Median log MPK jump size 0.720 0.784 0.885
Median jump age 6.000 6.000 5.000

Panel C: Moments for the (I/K2, MPK1) portfolio

Portfolio share 0.210 0.201 0.000
Jump probability 0.041 0.047 0.000
I/K (ind. adj.) 0.085 0.084 0.000
Portfolio share among young firms 0.270 0.320 0.000

Although all of the model parameters contribute to all of the moments, some of these

moments are particularly informative for identifying certain parameters. The volatility of

Gaussian shocks σ contributes to increased dispersion in both output and investment.20

Conversely, adjustment costs limit large capital adjustments, resulting in a substantial re-

duction in investment volatility, with a relatively smaller impact on sales volatility. By jointly

targeting investment and output dispersion, we can accurately estimate these parameters.

Additionally, the model exhibits distinctive investment dynamics, with young, primarily

high-type firms experiencing both Gaussian and jump shocks, while old, primarily low-type

firms are only exposed to Gaussian shocks. We separately consider investment dispersion for

young and old firms and incorporate the nonnegative investment rate, as in Tüzel (2010), in
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the targeted moments, to ensure that the parameters influencing investment dynamics are

appropriately estimated.

The primary mechanism in our model hinges on the impact of anticipated rare jumps on

firm investment. To capture this mechanism, we include key moments on the measurement of

realized jumps in our moment conditions. In our model, the magnitude of jump realizations,

conditional on a returns-to-scale parameter α, is primarily determined by the jump size

parameter ζ. We include the measured jump sizes for sales and log MPK in the moment

conditions (Panel B of Table 3). To measure these jump sizes in simulations, we follow the

same procedure employed in the data, as outlined in Section 3. Additionally, we include

the median jump age in our moment conditions, which helps discipline the level of jump

probability λ0 as well as the type-switching probability µ, given the absence of jumps upon

transitioning to low-type.

Our model emphasizes the unique implications of rare jumps for the cross-sectional distri-

bution of firms. High-type firms invest more than expected given their current productivity

because they anticipate rapid growth in the future, which they can influence through invest-

ment. This results in a large number of firms with relatively high levels of capital compared

to their sales (low MPK firms) but also high growth rates (high investment). In order to

estimate parameters associated with jump probability, λ0 and ι, we utilize moment condi-

tions for this particular group during the estimation process, which are presented in Panel

C of Table 3. The fraction of this group among all firms is influenced by changes in in-

vestment policy due to the anticipation of jumps, which in turn, is determined by the jump

probability. Empirically, we observe that the proportion of high investment–low MPK firms

among young firms (within ten years after establishment) is higher compared to the propor-
20Instead of using the standard deviation, which can be sensitive to outliers and winsorization of firm-

level data, we utilize the interquartile range (IQR) to measure investment and output dispersion. Unlike
the standard deviation, the IQR is not influenced by extreme values, making it a more robust measure of
dispersion.
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Table 4: Parameter Estimates

This table provides the parameters resulting from the estimation of the baseline model. Panel A displays
the calibrated parameters, while Panel B presents the estimated parameters, with the target and model-
generated moments shown in Table 3. The standard errors for the parameters are presented in parentheses.

Panel A: Calibrated parameters

Capital depreciation rate, δ 0.15
Discount rate, 1/R 0.91
Production function curvature, α 0.35
Exit probability, φ 0.031

Panel B: Estimated parameters

Gaussian shock volatility, σ 0.377
(0.044)

Adjustment cost parameter, c 3.019
(0.634)

Jump probability level, λ0 0.025
(0.011)

Jump probability curvature, ι 0.439
(0.156)

Jump size, ζ 2.750
(0.286)

Type switching probability, µ 0.104
(0.041)

Probability of being born high-type, p 0.947
(0.237)

tion among all firms (27% versus 21%). We target both of these fractions in our estimation,

which align with the notion that high-type firms transition to low-type firms over time. The

type-switching probability, denoted as µ, plays a crucial role in determining the expected

duration of being a high-type firm and directly influences the present value of investing an

additional unit of capital for such firms. This parameter exhibits significance in determining

both the average jump age and the average investment rate of high-type firms in comparison

to low-type firms. Lastly, we estimate the probability that a new firm is born as high-type,

p, which determines the share of high-type firms in the economy, along with µ.

Table 3 demonstrates that our baseline model provides a reasonably good fit to the data,
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despite targeting 11 moments with only 7 parameters, resulting in an overidentified system.

In particular, the model successfully generates substantial dispersion in sales growth and

investment rates, with higher investment dispersion among young firms, consistent with

empirical observations. Importantly, our model also replicates large movements in sales and

MPK that qualify as jumps, utilizing our empirical jump identification method, which we

apply to the model simulations as well.

Panel B of Table 4 reports the parameter estimates underlying the simulated moments

in Table 3. General moments capturing investment and sales growth dispersion are key for

estimating the adjustment cost parameter c and Gaussian shock volatility σ. While a higher

volatility generates both higher sales growth and higher investment dispersion, high adjust-

ment costs in the estimation prevent the investment dispersion from being counterfactually

high while having a limited effect on sales growth. Furthermore, the nonnegative investment

share decreases with volatility and increases with the adjustment cost parameter.

Moments related to jumps and the (I/K2, MPK1) portfolio in Panels B and C of Table 4

play a crucial role in shaping the estimation of other parameters. Specifically, the estimation

selects a jump size of 2.75 to match the observed jumps characterized by a doubling of sales

and a 50% increase in MPK over a two-year period. Additionally, the jump probability of

the (I/K2, MPK1) portfolio aids in identifying both the level and the curvature of the jump

probability. The estimation also reveals an 10.4% switching probability from high-type to

low-type firms and a significant fraction of new firms being born as high-type (94.7%). As

conjectured, the moment conditions effectively identify the estimated parameters, resulting

overall in low standard errors.

The construction of I/K and MPK-sorted portfolios using simulated data follows the

methodology used in their empirical construction. In the model, 20.1% of simulated firms

belong to the (I/K2, MPK1) portfolio (compared to 21.0% in the data). These firms exhibit
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an average annual jump probability of 4.7% in the model (4.1% in the data). Notably, the

median jump probability in this portfolio significantly exceeds the median probability among

all firms, both in the model (1.67%) and in the data (1.62%), even though it is not a directly

targeted moment in the estimation. Also consistent with the data, the proportion of the

(I/K2, MPK1) portfolio is higher among young firms. Moreover, the median investment rate

within this portfolio surpasses the median among all firms by approximately 8.4 percentage

points in the model (8.5pp in the data).

Furthermore, although not specifically targeted, simulated firms display similar persis-

tence in their investment and MPK to that observed in the data. The model-generated

probabilities of remaining in the same portfolio for two consecutive years range from 56% to

71%, aligning closely with the empirical data presented in Appendix Table A.4.

In sum, the model rationalizes the presence of firms with above-median investment rates

despite below-median MPKs, which may initially appear to be misallocating productive cap-

ital. The characteristics of the (I/K2, MPK1) portfolio guide our mechanism that generates

this portfolio: the anticipation of large positive moves in their future productivity drives high

investment rates despite their low current productivity levels. As a result, we argue that

the high capital allocation to low MPK firms does not necessarily indicate a misallocation

of resources.

5.2 Inspecting the mechanism

In this section, we delve deeper into our model’s mechanism and address two fundamental

questions. First, can a model with conventional Gaussian shocks match the targeted empir-

ical facts regarding jumps without using Poisson shocks as in our baseline model? Second,

what is the role of investment policy in response to anticipated jumps? Specifically, what can

we infer from a counterfactual scenario where firms do not invest and grow in anticipation
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of productivity jumps?

By addressing these questions, we aim to gain a better understanding of the mechanisms

underlying our model and shed light on the role and consequences of investment policies tied

to the anticipation of jumps.

5.2.1 Model implications in the absence of jumps

To answer the first question, we perform two estimations using a modified version of the

model that completely eliminates jumps and keeps all other features the same as in Section

4. This model is essentially a standard neoclassical model with homogeneous firms, random

walk productivity, and quadratic adjustment costs. Consequently, the only parameters to

estimate are c and σ, as all other estimated parameters in the baseline model relate to jumps

and firm types.

Table 5 presents the simulated moments obtained from the estimation of the no-jump

model. First, we target the moments in Panel A related to investment and sales growth

dispersion and observe that the estimation selects higher values for c and σ compared to

the baseline model (Table 6). The absence of jumps in this model requires higher volatility

to match the dispersion of sales growth. However, this also necessitates higher adjustment

costs to prevent investment dispersion and the negative investment share from being coun-

terfactually high. While this model successfully matches the dispersion among mature firms,

it fails to generate additional investment dispersion among young firms due to the absence

of young high-type firms. Panel B of Table 5 reveals an interesting finding: there are some

observations of sales growth and log MPK growth that are classified as jumps in the no-jump

model. However, the probability of these large moves is very small in this model (0.01%)

compared to the data (1.62%), despite their magnitudes conditional on realization being

similar to the data. Furthermore, in this model, the (I/K2, MPK1) portfolio is completely

empty. This is because in the absence of jumps, there is a counterfactually tight positive
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Table 5: Moments in a Model with No Jumps

This table displays the target empirical moments and model-generated moments obtained from the estimation
of a model without jumps, as discussed in Section 5.2.1. The empirical moments, presented in column 1, are
computed using Compustat data from the period 1975-2021. For more detailed information, please refer to
Appendix Section B.2. Column 2 presents the model-generated moments resulting from an estimation that
focuses solely on matching the moments in Panel A. Panel B presents the moments when both Panels A and
B are targeted. Parameter estimates for both estimations can be found in Table 6.

Data Targeting Panel A Targeting Panel A & B

Panel A: General moments

IQR of I/K among young firms 0.252 0.109 0.113
IQR of I/K among mature firms 0.092 0.109 0.113
Nonnegative investment share 0.988 0.592 0.592
IQR of sales growth 0.243 0.246 0.246

Panel B: Moments related to jump realizations

Median sales jump size 2.970 2.090 2.089
Median log MPK jump size 0.720 0.433 0.432
Median jump age 6.000 9.000 11.000
Jump probability (in %) 1.620 0.005 0.006

Panel C: Moments for the (I/K2, MPK1) portfolio

Portfolio share 0.210 0.000 0.000
Jump probability 0.041 0.000 0.000
I/K (ind. adj.) 0.085 0.000 0.000
Portfolio share among young firms 0.270 0.000 0.000

relationship between investment and MPK in the cross-section of firms. Consequently, MPK

resembles the endogenous state variable that determines investment for all firms, and low

MPK directly implies low investment.

The observation that the no-jump model can generate a small number of large moves

similar to the data motivates our next estimation, which targets both the general moments

in Panel A and the jump-related moments in Panel B of Table 5. However, this estimation

yields similar values for c and σ as shown in Table 6. The reason behind this outcome is

that increasing the Gaussian volatility to improve the jump statistics leads to excessively

high levels of investment and sales growth dispersion, which is not favored by the objective
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Table 6: Parameter Estimates in a Model with No Jumps

This table presents the parameters obtained from the estimation of the no-jump model, as discussed in
Section 5.2.1. The corresponding target and model-generated moments can be found in Table 5. Column
1 displays the parameters resulting from an estimation that only targets the moments in Panel A of Table
5. Column 2 presents the parameters when both Panels A and B are targeted. The standard errors for the
parameters are presented in parentheses.

Targeting Panel A Targeting Panel A & B

Gaussian shock volatility, σ 0.512 0.513
(0.027) (0.032)

Adjustment cost parameter, c 3.360 3.246
(0.439) (1.621)

function of the estimation. Consequently, the targeted jump probability only increases from

0.005% to 0.006%, still very far from the data value of 1.62%. Similar to the case where

jumps are not targeted, there are no firms in the (I/K2, MPK1) portfolio, and the realized

jumps in Panel B are solely the result of large random realizations of the Gaussian shocks.

5.2.2 Model implications without “investing in misallocation”

To address the second question posed in Section 5.2, we conduct a counterfactual analysis

using our baseline model. In this counterfactual scenario, jumps in productivity are still

present in the data-generating process, but firms’ investment policies ignore the potential of

future jumps. That is, high-type firms do not engage in “investing in misallocation,” meaning

they do not invest more than a low-type firm with the same productivity and capital, even

though they have a positive probability of experiencing a jump and additional capital could

potentially increase their likelihood of jumping. The only distinction between low-type and

high-type firms in this counterfactual scenario arises from the realized jumps, which are not

anticipated. For this counterfactual exercise, we maintain the same model parameters as in

the baseline model.

Table 3 presents a comparison of the simulated moments in the baseline model and the
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counterfactual model. The results show that the counterfactual model fails to generate

higher investment dispersion for young firms (Panel A), indicating that the difference in

investment dispersion between young and mature firms can be attributed to high-type firms’

heightened investment in anticipation of jumps. The reduction in sales growth dispersion is

also observed, although not to the same extent as the decline in young firms’ investment dis-

persion. Despite these differences, the counterfactual model simulations still exhibit jumps,

and their magnitudes closely resemble those observed in the data (Panel B). However, the

unconditional probability of jumps is significantly lower, at 0.65% compared to 1.67% in the

baseline model. This discrepancy arises from the jump specification in equation (A.1). In

the counterfactual scenario, where firms ignore jumps in their investment policies, they also

overlook the heightened jump probability associated with upward deviations of capital from

its steady-state value. Consequently, firms do not invest to increase their jump probability,

leading to an overall decline in the average jump probability.

Panel C of Table 3 illustrates that in the counterfactual model, the joint distribution of in-

vestment and MPK leads to the (I/K2, MPK1) portfolio share becoming zero. When firms

ignore jumps in their investment policies, investment is solely determined by the current

MPK, thereby eliminating the occurrence of high investment despite a low MPK. Conse-

quently, our model predicts that this portfolio, which constitutes 21% of Compustat firms,

would be absent when the mechanism in our model concerning the impact of anticipated

jumps on investment is shut down, even though jump realizations still form part of the

data-generating process.

We also examine the relationship between predicted jumps, investment, and MPK in both

the baseline and alternative models. The results of this comparison can be found in Table 7.

In the data, we observe that investment positively predicts jumps while controlling for MPK,

indicating that higher levels of investment are associated with a greater likelihood of jumps.
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Table 7: Predicting Jumps in the Model

This table presents coefficient estimates obtained from linear probability models analyzing realized jumps
using both empirical data and model-simulated data. The dependent variable is the jump dummy, which
takes a value of 1 when a jump occurs from the current period to the next period. Jumps are defined as
cases where a company’s sales double, accompanied by a minimum 50% increase in its MPK. Column 1
reproduces Column 4 of Table 1, which contains coefficient estimates based on empirical data. Columns 2
to 5 correspond to coefficient estimates obtained from simulations of the Baseline model, the counterfactual
model, and two versions of the no-jump model, respectively. Point estimates for the coefficients are simulation
averages, while the confidence intervals (presented in parentheses) are constructed from the 2.5th and 97.5th
percentiles of the simulated distribution of each coefficient.

Data Baseline Counterfactual No Jump No Jump
Targeting A Targeting A & B

Total I/K 0.050 0.113 0.017 0.006 0.005
[0.088; 0.141] [-0.040; 0.095] [0.000; 0.038] [0.000; 0.033]

Log MPK -0.027 -0.052 -0.003 -0.001 -0.002
[-0.066; -0.039] [-0.027; 0.017] [-0.006; 0.000] [-0.005; 0.000]

Conversely, MPK negatively predicts jumps while controlling for investment, suggesting

that lower MPK values are associated with a higher probability of jumps. Importantly, the

baseline model successfully captures this pattern.

The core mechanism of the baseline model centers around this relationship. For a given

level of investment across firms, a lower MPK is associated with a higher probability of a

jump. This is because high-type firms, despite experiencing a low current MPK, are incen-

tivized to invest due to their higher expected growth prospects. However, this mechanism is

absent in the counterfactual model. Consequently, the predicted coefficients on investment

and MPK in the counterfactual model are statistically insignificant.

The last two columns of Table 7 present the regression results from the no-jump model.

In these models, we observe that neither investment nor MPK predict jumps. This is because

the occurrence of jumps cannot be predicted; it is solely driven by random realizations of

large Gaussian shocks.

The cross-sectional dispersion in realized MPK is a commonly used metric for misallo-
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Figure 2. Dispersion and Aggregate Productivity in the Model

The figure illustrates MPK dispersion, aggregate productivity, and investment rate dispersion for both
young and mature firms in the baseline and counterfactual models. In order to facilitate presentation and
comparisons, the values in the baseline model are normalized to 1. The left panel displays the interquartile
range (IQR) for MPK and the aggregate productivity level. The aggregate productivity level is computed as
a Solow residual, obtained by subtracting (1 − α) times the total capital from the total output produced by
all firms. On the right panel, the investment rate IQR is displayed separately for young and mature firms.
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cation in the literature, where firms with low MPK are deemed to have too much capital

relative to their more productive high MPK counterparts. We, therefore, investigate the

extent to which cross-sectional dispersion in MPKs would be reduced in the counterfactual

scenario where firms cease “investing in misallocation” compared to the baseline model. Fig-

ure 2 illustrates that the interquartile range of MPK is 16.4% lower in the counterfactual

model. This reduction indicates a convergence of MPK values among firms. Additionally,

the investment rates of firms also exhibit convergence, leading to a lower cross-sectional

dispersion, particularly among young firms.

The 16.4% reduction in overall MPK dispersion may initially appear modest, but this

figure fails to capture the heterogeneous effects on the cross-section of firms. A more nuanced

understanding of this reduction emerges when examining MPK dispersion within portfolios

categorized as above- and below-median I/K, as illustrated in Table 8. In the data, we ob-

serve significant MPK variation across portfolios independently sorted based on MPK within

high and low investment groups. Notably, the baseline model generates approximately half
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of the dispersion in MPK observed in the data.21 Interestingly, this variation is entirely elim-

inated in the counterfactual model due to the near-perfect correlation between investment

and MPK. Therefore, MPK dispersion is not reduced randomly when jumps are ignored in

investment policy. The unique feature of our model implies that it is the MPK dispersion

associated with the misalignment of investment and MPK in the cross-section that is elimi-

nated in the counterfactual case. Similarly, while the no-jump model generates substantial

overall MPK dispersion, as presented in the last two columns of Table 8, it also completely

misses the mark in capturing the MPK dispersion within high and low investment firms.

What does our model reveal about the aggregate impact of eliminating our mechanism?

Specifically, does the reduction in MPK dispersion in the counterfactual scenario have a

positive or negative impact on overall efficiency? To address this question, we compute the

aggregate Total Factor Productivity (TFP) in both the baseline and counterfactual models.22

Figure 2 illustrates a striking 40% reduction in aggregate TFP when firms cease “investing in

misallocation” and the associated reductions in MPK and investment dispersions take place.

In the baseline model, there are two opposing forces that influence TFP. On one hand,

high-type firms invest in anticipation of jumps, resulting in higher capital relative to their

current productivity, which suggests lower TFP. On the other hand, the infrequent realization

of anticipated jumps leads to substantial increases in productivity when they do occur,
21Both in the data and the model, we measure MPK dispersions using realized MPK values, which is

consistent with the existing literature. However, it is important to highlight that the median MPKs of
portfolios in the model display a high degree of persistence, particularly for the off-diagonal portfolios.
Consequently, the dispersion in both realized MPK and the expected MPK one period ahead across portfolios
shows a similar magnitude, indicating that MPK dispersion is not primarily driven by realized shocks. So,
why do firms in the (I/K2, MPK1) portfolio continue to make substantial investments despite the current
low MPK and the expectation of similarly low MPK in the next period? The answer lies in the endogenous
growth feature of the model, where a high-type firm benefits from a considerably high present value of one
unit of investment. This is attributed to the cumulative effect of investment on increasing the probability
of future jumps beyond the next period, as well as the lasting impact of such jumps on future output.
Consequently, capital is expected to remain elevated relative to productivity, even though the likelihood of
a jump occurring in any given period may be relatively small.

22We compute the aggregate TFP in the model as a Solow residual, obtained by subtracting (1 − α) times
total capital from the total output produced by all firms.
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Table 8: Model-Generated MPK Dispersion across Portfolios

This table compares the median MPK for I/K and MPK Sorted Portfolios using both empirical data and
model-simulated data. Column 1 displays the median industry-adjusted MPK values for the portfolios, along
with the MPK dispersion for the low and high investment groups. Columns 2 to 5 present the same statistics
obtained from simulations of different models. Column 2 represents the Baseline model, Column 3 represents
the counterfactual model, and Columns 4 and 5 represent two versions of the no-jump model.

Data Baseline Counterfactual No Jump No Jump
Targeting A Targeting A & B

(I/K1, MPK1) −0.40 −0.28 −0.22 −0.33 −0.32
(I/K1, MPK2) 0.35 0.15 n/a n/a n/a

Difference 0.75 0.43 n/a n/a n/a

(I/K2, MPK1) −0.36 −0.27 n/a n/a n/a
(I/K2, MPK2) 0.44 0.40 0.23 0.31 0.30

Difference 0.80 0.67 n/a n/a n/a

ultimately contributing to an overall rise in TFP. According to our model, higher investment

driven by jump anticipation is justified by the expected gains from jumps, therefore such

investment is expected to enhance overall productivity in the economy. In this sense, our

mechanism generates favorable cross-sectional dispersion in MPK and investment, aligning

with our interpretation of jumps as sources of innovation or other activities that foster future

growth, despite their limited immediate impact on output. Therefore, a reduction in this

beneficial dispersion implies diminished productivity in the economy, even though it stems

from avoiding temporarily low-productivity firms whose investments may superficially appear

as misallocation. In Section 5.3, we present empirical evidence that supports the notion that

“investments in misallocation” have a net positive effect on aggregate productivity.

It is worth noting that our mechanism is distinct from the theme in the literature that

relates misallocation to distortions such as adjustment costs or financial constraints (e.g.,

Hsieh and Klenow, 2009). In this literature, financially constrained firms cannot invest

as much as they efficiently should, leading to persistent underinvestment and high MPK.
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Removing financial constraints results in increased allocation of capital to high MPK firms,

reduced cross-sectional dispersion in MPK, higher output due to increased capital allocation

to more productive firms, and generally does not affect individual firm productivity (Bau

and Matray, 2023). Similarly, investment frictions typically lead to sluggish adjustment

in capital, favoring the allocation of more capital to high MPK firms when frictions are

eliminated (David and Venkateswaran, 2019).

Our mechanism complements the conventional view of misallocation by pointing out that

allocating more resources to low MPK firms is not necessarily inefficient, considering their

future prospects in terms of productivity, innovation, and growth. Therefore, our results

suggest exercising caution when interpreting increased capital allocation to high MPK firms

as the only efficient outcome, such as when financing constraints are lifted. Indeed, our

mechanism suggests that allocating capital to high-type firms increases overall productivity

while also allowing for the presence of low MPK firms. In summary, the patterns identified

in our work and our model mechanism caution against labeling capital investment in low

MPK firms as misallocation relative to high MPK firms.

5.3 Implications for firm growth and aggregate productivity

The analysis presented in Figure 2 highlights the potential for lower aggregate productivity,

despite reduced MPK dispersion, if firms cease investing in anticipation of jumps. How-

ever, our simple framework assumes independence among firms and thus overlooks potential

spillover effects. In reality, there may exist both positive and negative spillovers resulting

from firms’ investments and outcomes, which can have diverse impacts on other firms. As

a result, the overall impact of our proposed channel, which clarifies the factors driving high

investment among low MPK firms, on aggregate outcomes remains uncertain. For instance,

investments in innovation can push the technology frontier, generating benefits for all firms.
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Conversely, investments aimed at expanding market share might adversely affect the growth

prospects of other firms, or technologies developed by one firm could render the technologies

of rival firms obsolete.

To empirically investigate this question, we explore the predictive relationship between

firms’ future growth and their current own investment, as well as the investment of their

competitors. To this end, we employ the following regression model:

log Yi,t+5

Yi,t

= α0 + α1 I/Ki,t +
∑

p=1,2

∑
q=1,2

αpq I/Kcomp ∈ (I/Kp,MP Kq),t + ηi + ϵi,t+5, (17)

where log Yi,t+5
Yi,t

represents the 5-year log growth rate in sales, capital, gross profits, or total

factor productivity (TFP)23 of firm i from year t to t+5, I/Ki,t denotes the investment rate of

the firm i in year t, I/Kcomp ∈ (I/Kp,MP Kq),t refers to the median investment rate of competitor

firms operating in the same industry as firm i and belonging to the portfolio (I/Kp, MPKq),

and ηi represents a firm fixed effect, capturing unobserved heterogeneity specific to each

firm. Hence, the regression model employs time-series variation to estimate the effect of a

firm’s own investment on its future growth (α1) and the impact of its industry competitors’

investments, depending on their position within the joint distribution of investment and

marginal product of capital (MPK) (αpq).24

Table 9 reveals significant positive effects of firms’ own investment on sales growth, capi-

tal growth, profit growth, and a higher ranking in the future total factor productivity (TFP)

distribution. Notably, the impact of competitors’ investment yields striking results. While

investments from other portfolios do not consistently predict firm growth, a higher median
23While sales, capital and profits reflect growth rates, TFP represents the level of TFP projected 5 years

ahead, rather than its growth rate. The firm level TFP estimates used in this analysis are obtained from
İmrohoroğlu and Tüzel (2014). These estimates are cross-sectional and should not be directly compared
across different years.

24This regression specification is similar to the approach taken by Kogan, Papanikolaou, Seru, and Stoffman
(2017), who examine the influence of firms’ own and competitors’ innovation activities on firm growth.
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investment by competitor firms in the (I/K2, MPK1) portfolio exhibits a significant nega-

tive relationship with growth and predicts a lower TFP ranking for the firm. These findings

align with the research conducted by Kogan, Papanikolaou, Seru, and Stoffman (2017) and

the empirical findings presented in Section 3, which indicate that firms in the (I/K2, MPK1)

portfolio tend to engage in a higher degree of innovative activities and make notable con-

tributions, as evidenced by patent values and citations. Interestingly, the use of a broad

measure of investment, rather than precise indicators of innovation, proves sufficient to cap-

ture the effect of competitors on firm growth. This further supports the notion that firms

in the (I/K2, MPK1) portfolio hold a distinct role in the economy compared to other firms.

Their observed high investment rates are motivated by future prospects, encompassing both

their own growth prospects and the displacement of competitors.

The negative effect of (I/K2, MPK1) portfolio investment on competitors can be at-

tributed to the dominance of competition and creative destruction channels, which outweigh

the potential benefits of technology spillovers that are not accounted for in our model. Con-

sequently, the TFP gains derived from our model’s perspective can be considered an upper

bound in quantitative terms. However, a crucial question remains as to whether the nega-

tive effect on competitors is significant enough to entirely offset the advantages of increased

investment stemming from the expectation of substantial improvements in a firm’s own pro-

ductivity.

To address this question, we analyze the relationship between firms’ investment rates in

portfolios sorted by I/K and MPK and future aggregate TFP growth. We utilize business

sector and utilization-adjusted TFP measures developed by Fernald (2014) and estimate the

following regression model:
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Table 9: Effect of Investment on Firm and Competitor Growth

This table presents the point estimates of Equation 17 for firm sales, total capital, gross profits, and TFP. The
analysis relates firm growth and productivity both to the firm’s own investment and the median investment
rate of firms in the same SIC2 industry within each portfolio. The regressions include firm fixed effects and
the corresponding t-statistics are reported in parentheses. The standard errors are clustered by firm and
year, and corrected for serial correlation using the Newey-West correction with 8 lags. Statistical significance
is denoted by one, two, or three stars, indicating significance at the 10%, 5%, and 1% levels, respectively.
The variable N represents the count of firm-year observations, while R2 indicates the adjusted R-squared
value.

(1) (2) (3) (4)
log Salet+5

Salet
log Kt+5

Kt
log P rofitt+5

P rofitt
logTFPt+5

I/Kfirm 0.408*** 0.627*** 0.361*** 0.060***
(10.44) (14.02) (7.21) (4.06)

I/Kcomp ∈(I/K1,MP K1) −0.285 1.312 0.097 0.083
(−0.33) (1.44) (0.09) (0.46)

I/Kcomp ∈(I/K1,MP K2) 0.553* 1.447*** 0.230 0.373***
(1.98) (5.97) (0.75) (3.57)

I/Kcomp ∈(I/K2,MP K1) −0.330** −0.401*** −0.301** −0.054***
(−2.43) (−3.40) (−2.21) (−3.99)

I/Kcomp ∈(I/K2,MP K2) 0.408 0.413 0.338 0.086
(1.65) (1.58) (1.22) (1.24)

Firm FE x x x x

R2 0.016 0.092 0.011 0.004
N 134,860 134,860 126,492 90,533

log TFPt+5

TFPt

= α0 +
∑

p=1,2

∑
q=1,2

αpq I/K(I/Kp,MP Kq) +
2∑

l=0
cl log TFPt−l + ϵi,t+5. (18)

Here, log T F Pt+5
T F Pt

represents the 5-year log growth rate in aggregate TFP, and I/K(I/Kp,MP Kq)

represents the median investment rate of firms belonging to the (I/Kp, MPKq) portfolio.

Additionally, we incorporate controls for the three lagged values of log TFP .25

25A similar specification was used by Kogan, Papanikolaou, Seru, and Stoffman (2017) to examine the
impact of economy-wide innovation measures on aggregate growth.
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Table 10 presents the results of univariate regressions, showing that median investment

rates in low-investment portfolios (I/K1, MPK1) and (I/K1, MPK2) do not predict fu-

ture TFP growth. However, the investment rates of above-median investment portfolios

(I/K2, MPK1) and (I/K2, MPK2) positively predict future aggregate growth using both

TFP measures. Given the common element in investment rates across high-investment port-

folios, we perform a bivariate predictive regression using the median investment rates of

(I/K2, MPK1) and (I/K2, MPK2). The investment rate of the (I/K2, MPK1) portfolio

dominates that of (I/K2, MPK2) and remains a significant and positive predictor of ag-

gregate TFP. This finding suggests that the high investments made by low MPK firms in

the (I/K2, MPK1) portfolio contribute to overall productivity growth in the economy, and

the observed effect is economically significant: A one-standard deviation increase in the me-

dian investment rate of firms in the (I/K2, MPK1) portfolio corresponds to an additional

approximately one standard deviation increase in 5-year TFP growth.

The positive predictability of aggregate TFP by the investments of the (I/K2, MPK1)

portfolio indicates that the negative effect on competitors, as documented in Table 9, is

outweighed by the positive effect on firms’ own growth within the (I/K2, MPK1) portfolio.

In summary, while our previous sections focused on the impact of high investment-low MPK

firms’ investment on their own growth, the positive association between these firms’ invest-

ments and aggregate TFP provides qualitative support for our counterfactual calculation

in Figure 2, which suggests a reduction in aggregate TFP in the absence of “investing in

misallocation.”

6 Unpacking the (I/K2, MPK1) Portfolio

In this section, we delve deeper into the nature of firms that invest heavily despite having

a low MPK. The observation that these firms tend to be relatively young and focused on
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investing and growth aligns with the characteristics of growth firms. Empirical asset pricing

studies have suggested that growth firms and firms with high investment and low profits,

which are likely to overlap significantly with the high investment-low MPK portfolio, tend

to have lower expected equity returns (Hou, Xue, and Zhang, 2015; Fama and French, 2015).

However, we find that despite vastly different investment patterns, all four portfolios have

similar expected returns as shown in Table 2. This suggests that the high investment-low

MPK portfolio used in our empirical analysis and estimation does not correspond to high

investment-low profitability firms that typically have low expected returns.

We use linear factor models to explore the factors driving the average portfolio returns. In

particular, factor models take the form E[Re
t ] = α+β′Xt where β represents factor exposures

and Xt includes factors. A model that prices the portfolio returns well (i.e., α = 0) can

provide insight into the sources of expected portfolio returns and the characteristics of the

firms included in these portfolios.

Table 11 presents the results from two prominent factor models, the Fama-French 5-factor

model Fama and French (2015) and the q5 model of Hou, Mo, Xue, and Zhang (2021). Panel

A shows that firms in the (I/K2, MPK1) portfolio have substantial negative loadings on the

HML and RMW factors, indicating that they tend to be growth firms with low profitability.

However, two out of the four portfolios exhibit significant α estimates, with a positive α

observed for the (I/K2, MPK1) portfolio. This suggests that the model proposed by Fama

and French (2015) fails to capture the equal average returns of the I/K and MPK-sorted

portfolios.

Panel B of Table 11 presents the factor loadings and alphas obtained from the q5 model

proposed by Hou, Mo, Xue, and Zhang (2021). This model is based on the investment CAPM

framework and incorporates various factors aimed at capturing size, investment rate, and

profitability. Additionally, it introduces an extra factor referred to as “expected growth,”
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Table 10: Effect of Investment on Aggregate Productivity

This table presents the point estimates of Equation 18, which examines the relationship between future 5-year
aggregate productivity growth and the median investment rate in I/K and MPK-sorted portfolios. Panel A
measures aggregate productivity using business sector TFP, while Panel B utilizes utilization-adjusted TFP.
The regressions include controls for 3-lags of log TFP to account for the influence of past productivity levels.
The standard errors are corrected for serial correlation using the Newey-West correction with 8 lags. The
corresponding t-statistics are reported in parentheses, and statistical significance is indicated by one, two,
or three stars, representing significance at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4) (5)
Panel A: Business sector TFP

I/K(I/K1,MP K1) −0.013
(−0.07)

I/K(I/K1,MP K2) 0.091
(0.58)

I/K(I/K2,MP K1) 0.091*** 0.128***
(8.95) (4.28)

I/K(I/K2,MP K2) 0.092*** −0.047
(5.08) (−0.96)

Panel B: Utilization-adjusted TFP

I/K(I/K1,MP K1) 0.151
(0.63)

I/K(I/K1,MP K2) 0.263
(1.18)

I/K(I/K2,MP K1) 0.116*** 0.141***
(7.21) (3.36)

I/K(I/K2,MP K2) 0.124*** −0.032
(5.26) (−0.54)
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which predicts higher returns based on a dynamic q-theory model. Essentially, this implies

that firms currently making higher investments exhibit lower returns, while firms expected

to increase their investments in the future, all else equal, are associated with higher expected

returns. Firstly, we observe that all alphas are relatively smaller in magnitude and statisti-

cally insignificant, except for the marginally significant positive alpha for the (I/K2, MPK1)

portfolio. This implies that the q5 model is more effective in pricing double-sorted portfolios

based on I/K and MPK. Furthermore, examining the factor loadings provides insights into

the expected return sources for the high investment-low MPK portfolio. As hypothesized,

the portfolio return displays negative loadings on both the investment and profitability fac-

tors.26 However, this is counterbalanced by a positive and statistically significant loading

on the expected growth factor, which exhibits the highest average returns among all the q5

factors. This finding sheds some light on the elevated returns of the high investment-low

MPK portfolio. In our model, this portfolio consists of high-type firms that presently invest

with the expectation of rapid future growth, aligning with these firms displaying a negative

loading on the investment factor and a positive loading on the expected growth factor in the

data.

While portfolios in the data have varying exposures to risk factors, we prioritize simplic-

ity in developing our model by abstracting from aggregate risk. We incorporate empirical

evidence of minimal variation in the average discount rates across portfolios suggesting that

our portfolio level results are not driven by the relation between discount rates, investment,

and MPK. Therefore, we assume a constant discount rate in our simple model that can

capture the empirical relationship between firms’ investment, MPK, and the growth of their

cash flows in the absence of a discount rate channel.
26The investment factor is long low and short high investment firms, the profitability factor is long high

and short low profitability firms, and the expected growth factor is long high and short low expected growth
firms.
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Table 11: Portfolio Factor Regressions

This table displays the regression results of value-weighted excess returns for I/K and MPK-sorted portfolios
on Fama-French and q5-factor returns. Panel A presents the results for Fama-French factors, while Panel B
presents the results for q5 factors. The excess returns are measured on a monthly basis, covering the period
from July 1976 to June 2021. The t-statistics for the coefficient estimates are presented in parentheses

(I/K1, MPK1) (I/K1, MPK2) (I/K2, MPK1) (I/K2, MPK2)
Panel A: Fama-French factors

MKTRF 0.979*** 0.983*** 1.018*** 1.060***
(87.23) (66.57) (57.56) (86.94)

SMB 0.005 0.010 0.047* 0.105***
(0.31) (0.42) (1.72) (5.55)

HML −0.045** −0.085*** −0.299*** −0.205***
(−2.21) (−3.15) (−9.28) (−9.25)

RMW 0.143*** 0.201*** −0.396*** 0.032
(6.34) (6.76) (−11.15) (1.32)

CMA 0.298*** 0.136*** −0.041 −0.181***
(9.11) (3.17) (−0.80) (−5.11)

α −0.114** −0.061 0.230*** 0.079
(−2.42) (−0.99) (3.10) (1.54)

Panel B: q5 factors
rMkt 0.962*** 0.969*** 1.039*** 1.074***

(77.53) (63.68) (51.13) (76.62)
rMe −0.023 −0.035 0.076*** 0.079***

(−1.30) (−1.61) (2.65) (3.98)
rI/A 0.201*** 0.041 −0.465*** −0.394***

(7.56) (1.25) (−10.67) (−13.10)
rRoe 0.002 0.198*** −0.381*** −0.005

(0.10) (7.20) (−10.34) (−0.20)
rEg 0.042 −0.113*** 0.218*** 0.045

(1.33) (−2.95) (4.28) (1.29)
α −0.079 0.008 0.174* 0.078

(−1.45) (0.12) (1.93) (1.26)
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7 Conclusion

This paper presents a novel empirical finding within Compustat firms: around 20% of these

firms demonstrate above-median investment rates despite having below-median marginal

product of capital. Within the conventional neoclassical framework, which views differ-

ences in MPK as indicators of misallocation to be avoided, these firms can be identified as

misallocating resources. We argue that such “investing in misallocation” is not necessarily

inefficient and is geared towards future growth. In particular, these firms possess distinct

characteristics, such as being relatively young, and a small proportion (around 4%) experi-

ence significant jumps in their sales and MPK in the subsequent year, a rarity among other

firms.

To capture the dynamics of heterogeneous firms, we propose and estimate a simple en-

dogenous firm growth model. This model incorporates the idea that high-type firms’ in-

vestments increase the likelihood of large upward moves in productivity. It aligns well with

the observed data, explaining the high investment levels exhibited by firms despite their low

MPK. Importantly, this model allows us to conduct counterfactual analyses by simulating a

scenario in which firms are unable to invest in anticipation of such jumps. In this counter-

factual scenario, we observe a better alignment between investment and MPK, resulting in a

reduction in “misallocation.” However, this adjustment also leads to a decrease in aggregate

productivity.

Our contribution deviates from previous literature on misallocation in several aspects.

While prior studies primarily focus on examining distortions and frictions such as adjustment

costs, information asymmetries, and financial constraints that lead to misallocation, we take

a distinct approach by considering the role of firms’ investments in shaping their future

productivity and show that some of the measured misallocation may be attributed to an

overlooked aspect of optimal investment policy.
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Furthermore, our analysis employs the Compustat sample, which consists of publicly

traded firms with access to public capital markets. This distinguishes our study from

earlier research that often concentrates on smaller private firms, frequently from emerging

economies, (e.g., Midrigan and Xu, 2014; Bau and Matray, 2023). By examining publicly

traded firms, which tend to be larger in scale, we mitigate the potential impact of financial

constraints that can be more pronounced among smaller private firms. In fact, Farre-Mensa

and Ljungqvist (2016) have documented that publicly traded firms typically face minimal

financial constraints.

In summary, our paper offers a fresh perspective on the interpretation of MPK dispersion

as an indicator of misallocation. Through our empirical analysis and the utilization of the

Compustat sample, we provide new insights into the investment behavior and productivity

dynamics of firms, contributing to a deeper understanding of resource allocation in the

economy.
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Appendix

A Investment and q in the illustrative model

The firm problem in (1) can be written as

Vi0 + Di0 = max
Ii0,Ki1,Zi1

E0

∞∑
t=0

1
Rt

[f(Zit, Kit) − Iit − qit(Kit+1 − (1 − δ)Kit − Iit)

− ηit+1(Zit+1 − g(Zit, Kit+1, ϵit+1))],
(A.1)

where qit is the Lagrange multiplier on capital accumulation and ηit+1 is the Lagrange mul-

tiplier on the law of motion for productivity. The optimality conditions are given by

−1 + qit = 0, (A.2)

and

−qit + Et

[
ηit+1

∂git+1

∂Kit+1

]
+ Et

[
∂fit+1

∂Kit+1
+ (1 − δ)qit+1

]
1
R

= 0, (A.3)

which jointly result in (6).

The marginal value of capital at optimum is given by ∂Vit/∂Kit+1 = −∂Dit/∂Kit+1 =

qit which is equal to one (equation (A.2)) regardless of whether ∂git+1/∂Kit+1 > 0 or

∂git+1/∂Kit+1 = 0.

Furthermore, the optimality condition with respect to Zit+1 is given by

Et

[
−ηit+1 + 1

R

(
∂fit+1

∂Zit+1
+ ηit+2

∂git+2

∂Zit+1

)]
= 0. (A.4)
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We can add adjustment costs ϕ(Iit, Kit) to the problem in (A.1) as follows:

Vi0 + Di0 = max
Ii0,Ki1,Zi1

E0

∞∑
t=0

1
Rt

[f(Zit, Kit) − Iit − ϕ(Iit, Kit)

− qit(Kit+1 − (1 − δ)Kit − Iit)

− ηit+1(Zit+1 − g(Zit, Kit+1, ϵit+1))].

(A.5)

The optimality conditions are now given by

−1 − ∂ϕit

∂Iit

+ qit = 0, (A.6)

and

−qit + Et

[
ηit+1

∂git+1

∂Kit+1

]
+ Et

[
∂fit+1

∂Kit+1
− ∂ϕit+1

∂Kit+1
+ (1 − δ)qit+1

]
1
R

= 0, (A.7)

which can be written as

R − (1 − δ) = Et

[
∂fit+1

∂Kit+1

]
+ Et

[
Rηit+1

∂git+1

∂Kit+1

]

+ Et

[
−R

∂ϕit

∂Iit

+ (1 − δ)∂ϕit+1

∂Iit+1
− ∂ϕit+1

∂Kit+1

]
.

(A.8)

In sum, the intuition from equation (6) is preserved with adjustment costs. Keeping the

terms in the second line of (A.8) constant, a firm with endogenous growth prospects has

lower expected MPK. Consider two firms with identical investment policies. The last term

in (A.8) is therefore identical across these firms. As a result, the firm with lower expected

MPK, Et

[
∂fit+1
∂Kit+1

]
, must have a larger endogenous growth benefit from investing, given by

Et

[
ηit+1

∂git+1
∂Kit+1

]
. While both firms have observationally equivalent investment policies, one’s

investment is largely due to expected MPK while the other’s is driven by endogenous growth.
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B Data and measurement

B.1 Sample and variable construction

Our sample includes all Compustat firms except regulated utilities (SIC codes between

4900 and 4999), financial firms (SIC codes between 6000 and 6999), and firms categorized

as public service, international affairs, or nonoperating establishments (SIC codes 9000+).

We also exclude firms with missing or non-positive book value of assets (AT), sales (SALE)

and physical capital (PPEGT). As in Peters and Taylor (2017), our sample starts in 1975,

because this is the first year that the Federal Accounting Standards Board (FASB) requires

firms to report R&D. We utilize Compustat data up to 2021, and winsorize all regression

variables at the 0.5% level to reduce the impact of outliers.

We measure physical investment as the difference between capital expenditures and

property sales, CAPX-SPPE; and physical capital from plant, property, and equipment

(PPEGT). For measurements of intangible investment and capital we adopt Peters and Tay-

lor (2017)’s definitions. Intangible investment is measured from R&D (XRD) and SG&A

expenses (XSGA-XRD) as R&D + (0.3 × SG&A).27 This definition assumes 30% of SG&A

represents investment in intangible capital. Intangible capital is calculated by applying the

perpetual inventory method to intangible investment and obtained from Peters and Taylor

(2017). We define a firm’s total investment and capital as the sum of its physical and intan-

gible components, as in Peters and Taylor (2017). When data for CAPX, SPPE, XRD, or

XSGA are missing, they are imputed as zero. The investment-to-capital ratios are computed

by dividing the total investment in year t by the capital in year t-1.

In a broader measure of capital, we incorporate both inventories and leased capital, in

addition to the physical and intangible capital definitions provided earlier. Inventories are
27Compustat data item XSGA includes R&D expense reported in XRD. In order to isolate SG&A we

subtract XRD from XSGA as in Peters and Taylor (2017).
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measured as total inventories (INVT). Leased capital is calculated as eight times the rental

expense (XRENT), as outlined in Li and Xu (2021). Investments in inventories and leased

capital are determined by the changes in these capital levels over two consecutive periods.

In cases where data for INVT or XRENT are unavailable, they are imputed as zero.

Following David, Schmid, and Zeke (2022), we measure firm’s marginal product of capital,

MPK, in logs (up to an additive constant) as the difference between log sales and capital.

All empirical results are based on a sample of firms for which we can compute both the MPK

and investment-to-capital ratio (I/K).

We define firm jumps as situations where a firm experiences a doubling of sales, accom-

panied by a larger than 50% increase (40 log points) in its marginal product of capital.

To reduce the impact of noise, we measure jumps over a two-year period. Specifically, we

calculate current sales and MPK by averaging sales and MPK in years t-1 and t, and future

sales and MPK by taking the averages of years t+1 and t+2. Instances where growth from

current to future values exceeds our threshold values are considered as jumps.

We made several adjustments to our definition of jumps in order to minimize errors caused

by M&A activity and double counting. First, we exclude jump instances that coincide with

a significant merger activity (Compustat sales footnote SALE_FN=AB) in the years t, t+1,

or t+2. Additionally, to account for the impact of smaller mergers on sales growth, we adjust

sales for AQS (Acquisitions/Sales Contribution) by adding AQSt/2 + AQSt+1 + AQSt+2 to

current sales, and AQSt+2/2 to future sales before calculating the growth rate. Finally, we

eliminate cases where two consecutive years of jumps overlap due to the use of two-year

averages. While the probability of jumps may differ depending on the criteria applied, we

have conducted tests to confirm the robustness of our results to modifying the jump cutoffs

for sales and MPK growth. Appendix Table A.3 reproduces the findings from Table 1 using

lower and higher jump thresholds. Furthermore, we have validated that the corrections made
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to address mergers and double counting do not substantially affect the outcomes.

Firm age is defined as the number of years since the firm was included in the Compustat

database, FYEAR-YEAR1. Firms that have been in operation for less than 10 years are

classified as “young firms,” while companies that have been in operation for 10 years or

more are classified as “mature firms,” following the classification of Haltiwanger, Jarmin, and

Miranda (2013). This classification results in approximately half of the firm-year observations

being categorized as young firms.

Table 2 presents various statistics measuring innovative activity, productivity, financial

constraints, and total q. The information on patent counts, economic values (derived from

the stock market’s response to patent grants), and citations is sourced from Kogan, Pa-

panikolaou, Seru, and Stoffman (2017). To measure breakthrough innovation, we use the

counts for the patents with high novelty and impact, as defined and calculated by Kelly,

Papanikolaou, Seru, and Taddy (2021). Novelty is measured by a patent’s dissimilarity with

the existing patent stock at the time it was filed (backward similarity), and impact is mea-

sured by its similarity to the patents filed in the future (forward similarity), based on the

textual similarity between a given patent and previous or subsequent patents. The metrics

we use count the number of patents in the top 10%, measured over 5 and 10 year horizons.

Assessments of firm exposure to the Life1 stage (pertaining to product innovation) are based

on textual analysis of 10-K files and are acquired from Hoberg and Maksimovic (2022). All

patent-related measures are assigned to firms based on the year of patent filing. Firm-level

TFP estimates are sourced from İmrohoroğlu and Tüzel (2014). Financial constraints are

quantified using two metrics: The SA index, which is computed by considering firm size and

age coefficients as provided by Hadlock and Pierce (2010), and the LW equity index. The

LW equity index, obtained from Linn and Weagley (2023), is an equity-based measure of

financial constraints based on their full model that incorporates a union of accounting vari-
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ables used in constructing three influential constraint indices from the existing literature:

Kaplan and Zingales (1997), Whited and Wu (2006), and Hadlock and Pierce (2010). Total

q is obtained from Peters and Taylor (2017), and encompasses both physical and intangible

capital.

B.2 Target moments in the data

To quantify the cross-sectional dispersion in investment and output (sales), we employ the

interquartile range (IQR). We compute the IQR for each year and then average the results

for the period spanning 1975 to 2019. Details on the classification of young and mature firms

and the definition of I/K (investment-to-capital ratio) can be found in Section B.1. Prior to

calculating the IQR, the firm values are normalized to account for industry differences by

subtracting the 2-digit SIC industry median values of I/K and sales growth from the corre-

sponding firm values. The nonnegative investment share is the percentage of observations in

which I/K is nonnegative.

To calculate the moments associated with jump realizations, we limit our sample to

observations that exhibit jumps (as specified in Section B.1). We then determine the median

sales jump ( Salenext

Salecurrent
) and log MPK jump (log MP Knext

MP Kcurrent
), measured from the current period

(average of years t-1 and t) to the next period (average of years t+1 and t+2 ). Jump age

is defined as the firm’s age in year t.

To compute the moments associated with the (I/K2, MPK1) portfolio, we employ a

simultaneous sorting of Compustat firms based on I/K and MPK within each SIC2 industry

and year. We restrict our attention to the observations that are placed in the (I/K2, MPK1)

portfolio to calculate the portfolio share, which represents the percentage of all observations

in the portfolio, averaged over the years. Similarly, we calculate the portfolio share among

young firms by restricting our analysis to firms identified as young. The jump probability
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is the time series average percentage of (I/K2, MPK1) firms that experience a jump in a

given year. The industry-adjusted median I/K of (I/K2, MPK1) portfolio is computed by

calculating the median industry-adjusted investment rate every year and averaging it over

the years.

B.3 Exits in the data

We identify and categorize different types of firm exits (merger versus firm death) using

Compustat exit codes. Specifically, we rely on the DLRSN (“Research Company Reason for

Deletion”) variable for classification purposes. Our approach assigns a merger classification

to firms with exit codes 01 (Acquisition or merger), 04 (Reserve acquisition), 06 (Leveraged

buyout), and 09 (Now a private company). Conversely, we classify firms with exit codes 02

(Bankruptcy), 03 (Liquidation), 05 (No longer fits the original format), 07 (Other), and 09

(Other) as having experienced a firm death event.

To identify a firm exit event, we look at the DLRSN code for the fiscal year of the last

available data in Compustat (i.e., fyear=year2). We identify additional exit events (firm

deaths) if a firm is assigned to a portfolio in year t but not in subsequent years, regardless

of being officially delisted from Compustat in a different year. Based on these criteria, we

find that the annual merger rate is 4%, while the annual firm death rate is 3.1% during our

sample period.

Upon further analysis of the investment and MPK sorted portfolios, we observe that

the merger rate is fairly consistent across the different portfolios, ranging from 3.8% to 4%.

In contrast, the variation in firm death rates was more substantial, ranging from 1.9% for

firms in the (I/K2, MPK2) portfolio to 4.4% for firms in the (I/K1, MPK1) portfolio. For

firms in the (I/K1, MPK2) and (I/K2, MPK1) portfolios, the probability of a firm exiting

via firm death is 2.7% and 3.4%, respectively. Based on this analysis, we assume a death
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probability of 3.1% in the model. It is worth noting that a higher death probability would

have effects similar to increased capital depreciation in the model solution.

Mergers, on the other hand, do not impact the firm’s policy function, as investors receive

payment equal to the firm’s value at the time of the merger. However, mergers do alter the

composition of firms in the economy. Consequently, after solving the model, we incorporate

an additional 4% to the death probability in simulations to account for mergers. This ad-

justment ensures that the simulated data reflects the characteristics observed in Compustat

data.

C Model solution and estimation

For the estimation process, we generate simulated data using a sample of 4,813 firms over a

span of 47 years which correspond to average number of firms and the length of the sample

period in the data. We initiate the model at the steady-state value for k and then discard the

first 30 years of simulations before we start the 47-year sample period. Simulated annealing

is employed to minimize the criterion function described in equation (16). We start the

estimation procedure using the identity matrix as the weight matrix, and then iteratively

update the weight matrix based on the covariance matrix of simulated moments across

a large number of simulated panels. We continue this procedure until the weight matrix

and estimated parameters do not significantly change. To compute standard errors for the

parameters, we utilize numerical derivatives of the simulation moments with respect to each

parameter, using the final weight matrix.

The numerical solution for both types of firms’ maximization problems is obtained using

value function iteration. In this process, we define a grid of points for the state variable k

as k(i) = k(i − 1) + c1 exp(c2(i − 2)), where c1 and c2 are chosen to ensure that we have

200 grid points between the specified minimum and maximum values of k. Additionally, we
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discretize the Gaussian shock using ten grid points and investment using 1,500 grid points.

Once the grids are established, we compute conditional expectations through interpolation

and iteratively execute the value function maximization until there is no further change in

the investment policy and value function.

D Appendix Figures and Tables
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Figure A.1. (I/K2, MPK1) Portfolio share and jump probability (Physical invest-
ment and capital only)

The figure illustrates the portfolio share, jump probability, and median investment rate and MPK for firms
in the (I/K2, MPK1) portfolio. Investment rate, MPK, and jump measures are based solely on physical
investment and capital. Panel A presents the portfolio shares, Panel B displays the jump probabilities, and
Panel C shows the industry-adjusted median investment rate and log MPK. All variables are presented as
3-year moving averages.
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Figure A.2. (I/K2, MPK1) Portfolio share and jump probability (Comprehensive
investment and capital, including leased capital and inventories)

The figure illustrates the portfolio share, jump probability, and median investment rate and MPK for firms
in the (I/K2, MPK1) portfolio. Investment rate, MPK, and jump measures are based on comprehensive
investment and capital (physical, intangible, leased, and inventories). Panel A presents the portfolio shares,
Panel B displays the jump probabilities, and Panel C shows the industry-adjusted median investment rate
and log MPK. All variables are presented as 3-year moving averages.
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Table A.1: Physical I/K and MPK Sorted Portfolios

To construct the four portfolios, all firms are annually sorted into below and above median physical I/K and MPK groups. The resulting
portfolio statistics are presented in columns 1 to 4, while columns 5 and 6 display the differences between firms in the (I/K2, MPK1) group
and the entire sample and their t−statistics. For each variable, the statistics are initially computed for all firms within each portfolio and then
averaged across years. Appendix B provides a detailed explanation of variable definitions and sources. To account for industry differences,
physical I/K, log MPK, and log TFP are normalized by subtracting the median values of their respective 2-digit SIC industries, the median
SA and LW index are normalized to be 0 each year to increase readability. Excess future stock returns (r − rf ) are measured from July of
year t + 1 to June of year t + 2. Most variables are reported as portfolio medians, except for TFP where the 90th percentile is also presented.
Excess returns (r − rf ) are calculated as value-weighted averages, while patent-based variables are reported as means due to the highly
skewed nature of patenting activity.

(I/K1, MP K1) (I/K1, MP K2) (I/K2, MP K1) (I/K2, MP K2) (I/K2, MP K1)–All
Difference t–stat

Panel A: Portfolio properties

N 1381.5 1040.7 1052.5 1338.5

Physical I/K (median, ind. adj.) -0.053 -0.050 0.086 0.10

Log MPK (median, ind. adj.) -0.51 0.48 -0.43 0.57

Portfolio share 0.29 0.22 0.22 0.28

Portfolio share among young firms (≤ 10 years) 0.22 0.19 0.25 0.34

Age (median) 14.8 13.3 10.8 10.0 -1.39** -2.09

Jump probability (%) 1.58 0.92 2.93 1.21 1.31*** 5.79

Panel B: Innovative activity and product development

Patents/K (mean) 9.88 9.63 18.9 19.6 4.36** 2.21

Patent Value/K (mean) 27.6 23.0 82.3 94.1 24.7** 2.18

Patent Citations/K (mean) 310.5 280.9 813.8 717.9 284.5** 2.27

Top 10% Patents/K - 5 yr (mean) 1.18 1.03 3.12 2.67 1.12** 2.28

Top 10% Patents/K - 10 yr (mean) 1.30 1.02 3.40 2.75 1.28** 2.31

Exposure to Life1 Stage (median) 0.21 0.21 0.25 0.26 0.016*** 3.01

Panel C: Productivity, returns, financial constraints

Log TFP (median) -0.43 -0.38 -0.26 -0.19 0.051*** 9.45

Log TFP (90th pctile) -0.014 0.045 0.19 0.33 0.032 1.47

Log Future TFP (5yr later, median) -0.38 -0.35 -0.29 -0.28 0.032*** 4.51

Log Future TFP (5yr later, 90th pctile) 0.054 0.082 0.21 0.24 0.050** 2.17

Excess future stock returns (VW mean, annual, %) 9.04 8.77 9.14 9.41 0.24 0.063

Total q (median) 0.42 0.40 0.85 0.87 0.25*** 4.80

SA index (median) -0.10 0.083 -0.085 0.092 -0.085*** -5.14

LW equity index (median) 0.0013 -0.066 0.086 -0.0064 0.086*** 7.86

66



Table A.2: I/K and MPK Sorted Portfolios Using a More Comprehensive Measure of Capital

Comprehensive capital is measured as the sum of physical capital, intangible capital, inventories and leased capital. To construct the four
portfolios, all firms are annually sorted into below and above median I/K and MPK groups. The resulting portfolio statistics are presented
in columns 1 to 4, while columns 5 and 6 display the differences between firms in the (I/K2, MPK1) group and the entire sample and
their t−statistics. For each variable, the statistics are initially computed for all firms within each portfolio and then averaged across years.
Appendix B provides a detailed explanation of variable definitions and sources. To account for industry differences, I/K, log MPK, and
log TFP are normalized by subtracting the median values of their respective 2-digit SIC industries, and the median SA and LW index are
normalized to be 0 each year to increase readability. Excess future stock returns (r − rf ) are measured from July of year t + 1 to June of year
t + 2. Most variables are reported as portfolio medians, except for TFP where the 90th percentile is also presented. Excess returns (r − rf )
are calculated as value-weighted averages, while patent-based variables are reported as means due to the highly skewed nature of patenting
activity.

(I/K1, MP K1) (I/K1, MP K2) (I/K2, MP K1) (I/K2, MP K2) (I/K2, MP K1)–All
Difference t–stat

Panel A: Portfolio properties

N 1260.5 982.9 986.8 1225.8

Comprehensive I/K (median, ind. adj.) -0.057 -0.050 0.081 0.089

Log MPK (median, ind. adj.) -0.35 0.31 -0.31 0.34

Portfolio share 0.28 0.22 0.22 0.27

Portfolio share among young firms (≤ 10 years) 0.22 0.16 0.28 0.34

Age (median) 15.0 16.9 10.6 11.1 -2.50*** -3.82

Jump probability (%) 1.19 0.41 3.36 0.70 2.03*** 8.97

Panel B: Innovative activity and product development

Patents/K (mean) 8.41 6.92 20.5 13.3 8.37*** 5.61

Patent Value/K (mean) 23.5 25.1 78.2 97.5 21.8** 2.10

Patent Citations/K (mean) 285.7 155.1 853.5 472.4 418.7*** 3.62

Top 10% Patents/K -5 yr (mean) 1.21 0.56 3.37 1.87 1.64*** 3.40

Top 10% Patents/K - 10 yr (mean) 1.32 0.56 3.65 1.94 1.81*** 3.14

Exposure to Life1 Stage (median) 0.22 0.19 0.29 0.25 0.055*** 13.9

Panel C: Productivity, returns, financial constraints

Log TFP (median) -0.40 -0.35 -0.30 -0.22 0.014** 2.16

Log TFP (90th pctile) 0.066 0.053 0.18 0.30 0.014 0.65

Log Future TFP (5yr later, median) -0.35 -0.34 -0.31 -0.29 0.015** 2.05

Log Future TFP (5yr later, 90th pctile) 0.12 0.056 0.22 0.21 0.066*** 2.72

Excess future stock returns (VW mean, annual, %) 9.30 9.12 9.28 9.85 0.039 0.010

Total q (median) 0.40 0.43 0.77 0.87 0.19*** 4.12

SA index (median) 0.014 -0.23 0.15 0.055 0.15*** 9.18

LW equity index (median) 0.058 -0.15 0.21 -0.041 0.21*** 15.3
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Table A.3: Determinants of Firm Jumps with Alternative Jump Thresholds

This table presents coefficient estimates obtained from linear probability models analyzing realized jumps
with alternative jump definitions. The dependent variable is the jump dummy, which takes a value of 1
when a jump occurs from the current period to the next period. Panel A presents results with a lower
jump threshold, where jumps are defined as cases where sales increase by at least 50% and MPK rises by
30 log points. Panel B presents results with a higher jump threshold, where jumps are defined as cases
where sales increase by at least 150% and MPK rises by 50 log points. For a comprehensive explanation
and the definition of explanatory variables, please refer to Appendix B. The regressions incorporate 2-digit
SIC industry-year fixed effects. The corresponding t-statistics are presented in parentheses, and standard
errors are clustered at the firm-year level. Statistical significance levels are indicated by one, two, and three
stars, denoting significance at the 10%, 5%, and 1% levels, respectively. The variable N denotes the count
of firm-year observations, while R2 represents the adjusted R-squared value.

Panel A: Lower jump threshold

(1) (2) (3) (4) (5)

Physical I/K 0.023*** 0.023***
(11.31) (12.36)

Intangible I/K 0.023*** 0.035***
(5.98) (9.15)

Total I/K 0.053*** 0.035***
(14.66) (8.98)

Log MPK −0.034*** −0.036*** −0.036*** −0.036***
(−22.35) (−25.08) (−24.55) (−24.91)

Log age −0.017***
(−21.64)

Ind × Year FE x x x x x

R2 0.049 0.035 0.056 0.055 0.059
N 203,280 203,081 203,081 203,280 203,280

Panel B: Higher jump threshold

(1) (2) (3) (4) (5)

Physical I/K 0.018*** 0.017***
(10.88) (12.08)

Intangible I/K 0.016*** 0.023***
(5.91) (8.74)

Total I/K 0.042*** 0.034***
(13.71) (11.05)

Log MPK −0.020*** −0.021*** −0.021*** −0.021***
(−15.87) (−17.97) (−17.93) (−18.18)

Log age −0.007***
(−15.05)

Ind × Year FE x x x x x

R2 0.041 0.029 0.053 0.052 0.055
N 203,242 203,043 203,043 203,242 203,242
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Table A.4: 1-year Transition Matrix for Total I/K and MPK Sorted Portfolios

(I/K1, MP K1) (I/K1, MP K2) (I/K2, MP K1) (I/K2, MP K2) Death Merger

(I/K1, MP K1) .732 .073 .105 .018 .032 .041
(I/K1, MP K2) .086 .657 .025 .172 .02 .041
(I/K2, MP K1) .239 .029 .591 .077 .024 .039
(I/K2, MP K2) .025 .133 .092 .696 .015 .039
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Table A.5: Jump Probabilities by Industry

This table presents the annual frequency of jumps observed in each 2-digit SIC industry that comprises at
least 10 firms in the sample annually.

Jump Probability
%

Agricultural Production - Crops 1.58
Amusement and Recreation Services 1.71
Apparel and Accessory Stores 0
Apparel, Finished Products from Fabrics & Similar Materials 0.39
Automotive Dealers and Gasoline Service Stations 1.04
Automotive Repair, Services and Parking 0
Building Materials, Hardware, Garden Supplies & Mobile Homes 0.15
Business Services 1.81
Chemicals and Allied Products 4.84
Coal Mining 0.89
Communications 1.60
Construction - General Contractors & Operative Builders 1.97
Construction - Special Trade Contractors 1.62
Eating and Drinking Places 0.50
Educational Services 1.16
Electronic & Other Electrical Equipment & Components 1.48
Engineering, Accounting, Research, and Management Services 1.45
Fabricated Metal Products 0.68
Food Stores 0.16
Food and Kindred Products 0.55
Furniture and Fixtures 0.19
General Merchandise Stores 0.15
Health Services 1.95
Heavy Construction, Except Building Construction, Contractor 1.08
Home Furniture, Furnishings and Equipment Stores 0.45
Hotels, Rooming Houses, Camps, and Other Lodging Places 1.34
Industrial and Commercial Machinery and Computer Equipment 1.32
Leather and Leather Products 0.90
Lumber and Wood Products, Except Furniture 0.91
Measuring, Photographic, Medical, & Optical Goods, & Clocks 2.20
Metal Mining 3.24
Mining and Quarrying of Nonmetallic Minerals, Except Fuels 1.21
Miscellaneous Manufacturing Industries 1.15
Miscellaneous Retail 1.12
Motion Pictures 1.82
Motor Freight Transportation 0.17
Oil and Gas Extraction 3.19
Paper and Allied Products 0.12
Personal Services 0.43
Petroleum Refining and Related Industries 1.33
Primary Metal Industries 1.04
Printing, Publishing and Allied Industries 0.41
Railroad Transportation 0.45
Rubber and Miscellaneous Plastic Products 0.62
Stone, Clay, Glass, and Concrete Products 0.63
Textile Mill Products 0.41
Transportation Equipment 0.87
Transportation Services 1.69
Transportation by Air 0.75
Water Transportation 2.18
Wholesale Trade - Durable Goods 1.12
Wholesale Trade - Nondurable Goods 1.59
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