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Abstract

An asset owner designs an asset-backed security and a signal about its value.
After experiencing a liquidity shock and privately observing the signal, he sells
the security to a monopolistic buyer. Within double-monotone securites, asset
sale is uniquely optimal, which corresponds to the most informationally sensi-
tive security. Debt is a constrained optimum under external regulatory liquidity
requirements on securities. Thus, the “folk intuition” behind optimality of debt
due to its low informational sensitivity holds only under additional restrictions
on security or information design. Within monotone securities, a live-or-die se-
curity is optimal, whereas additional-tier-1 debt is optimal under the regulatory
liquidity requirements.
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1 Introduction

Corporations routinely raise funds by selling assets and asset-backed securities when
experiencing liquidity needs. Asymmetric information is a major impediment to such
sales: at the time of sale, the issuer of the security knows more about it than the
liquidity supplier, thereby limiting the scope of trade. A central question in corporate
finance is how to optimally design securities in such a situation?

Starting from Leland and Pyle (1977), Myers and Majluf (1984), and Myers (1984),
the classical corporate finance literature (reviewed below) assumes that the issuer’s
private information comes from an exogenous signal and focuses on how to optimally
design the security payout. Two classical results obtain in this environment. First,
retention of cash flows by the issuer is necessary in mitigating the information asym-
metry. Second, debt is an optimal form of retention, as its payout is least sensitive
to the issuer’s private information.

In reality, an important dimension of design (alongside security payout design) is
information design – issuers can often control to a certain extent the degree of in-
formation asymmetry vis-a-vis the liquidity supplier. For example, security payouts
are only one part of financial contracts that generally include many clauses that can
curb or exacerbate information asymmetry. To give a specific example, convertible
bonds convert into equity when the stock price reaches a specific threshold. Yet, they
often include other conversion clauses, such as whether the company made large div-
idend payments recently or is a takeover target. Such clauses exacerbate information
asymmetry, as the management of the company is generally better informed about
the likelihood of a takeover or upcoming changes in the dividend policy. Similar logic
applies to other financial securities, such as warrants or preferred shares, that often
contain clauses about changes in the corporate policy.

Information design can be a part of the asset creation process itself. In the case
of mortgage-backed securities (MBS), the issuer can strategically select the under-
lying pool of mortgages and through this create a greater informational advantage
about the pool’s performance. This can be done by selecting mortgages from the
geographical region or the market segment in which the issuer specializes as a mort-
gage originator. Alternatively, the issuer can minimize his informational advantage
by creating a diverse pool of mortgages or by designing an overly complex MBS that
is equally hard for the issuer and outside investors to value. The same idea applies to
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even more complex collateralized debt obligations and securities backed by credit-card
receivables, car loans, and student loans.

Information design can be done through organization design. Consider, for in-
stance, a multi-divisional company divesting one of its divisions. The general man-
agement can take a hands-off approach and give the division management lots of
autonomy. At the other extreme, the division can be incorporated into the core of
the company’s business with its operations closely monitored. Different organiza-
tion structures imply different levels of awareness of the general management about
the division prospects, and hence, the extent of information asymmetry during the
divestiture. Another example is the sale of stakes by limited partners (LPs) in pri-
vate equity funds. Even though LPs receive updates about the fund’s strategy and
performance, they are not directly involved in investment decisions (partially due to
lack of sophistication) that are fully delegated to general partners. This organization
structure curbs LP’s informational advantage vis-a-vis outsiders and allows them to
sell their stake in the fund early if they experience a liquidity shock.

Information design can stem from limited information acquisition/processing re-
sources. Corporations have accounting and risk management systems in place that
commit them to learn granular information about risks. When resources are scarce,
this means that they learn more noisy information about the upside potential, which
is also by its nature harder to refine beyond a certain level. For instance, mutual and
hedge funds can assume a passive shareholder role in numerous companies, which
commits them to have only limited private information about each particular holding
and focus their expertise in managing the risk exposure of the portfolio as a whole.
At the other extreme, they can adopt concentrated positions and engage in activist
campaigns, which exacerbates their informational advantage vis-a-vis outsiders.

All these examples share a common feature: the issuer’s ability to influence the
level of future asymmetric information. This paper raises the normative question of
what is the optimal way for the issuer to jointly design information and securities
to raise liquidity? Additionally, it prompts an examination of whether the securities
commonly used in practice align with the optimum. This paper addresses these
questions and provides answers.

The basic setup is that of DeMarzo and Duffie (1999) and Biais and Mariotti
(2005) with the joint information and security design occurring before the private
information is revealed to the issuer. This timing is motivated by the common practice
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of shelf-registration, which allows corporations to quickly react to changing economic
conditions by registering securities well in advance of their sale. It is also relevant
when the issuer is different from the seller of the security.

Formally, there are three stages: the ex-ante design stage, the trading stage, and
the final stage. At the design stage, before getting any private information, the
asset owner (the issuer) chooses both the distribution of the private signal about the
underlying cash flows from the asset that is revealed to the issuer at the trading
stage (information design) and the security payout contingent on the realization of
cash flows at the final stage (security design).. We are interested in the optimal joint
design of the security and information under weak restrictions on both dimensions
of the design. We suppose that the issuer can pick any security satisfying limited
liability and monotonicity/double monotonicity (commonly assumed in the security
design literature) and can costlessly choose any unbiased signal about the asset.

At the beginning of the trading stage, the issuer observes the signal realization.
Due to liquidity costs, he discounts future asset payoffs at a higher rate than the
liquidity supplier. This creates gains from trade of the security. However, efficient
trade might be impeded by asymmetric information. We suppose that there is a
monopolistic liquidity supplier endowed with all the bargaining power, who offers an
optimal screening mechanism to the issuer, which in our setting boils down to a posted
price. This assumption is realistic in applications where the security is designed to
raise liquidity in crisis times when the liquidity supply is scarce and liquidity suppliers
have significant market power.

Our analysis builds on two insights. First, we can think of the joint security and
information design problem as a sequential process: the issuer first decides on the
security, and then picks the signal about cash flows. In this interpretation, (i) the
signal about cash flows translates into the signal about the security value, which turns
out to be a sufficient statistic for agents’ payoffs, and (ii) the choice of the security
determines the set of admissible signals about the security value. Then, we can solve
this problem backwards. For a fixed security, the optimal signal choice boils down
to the information design with interdependent values analyzed in Kartik and Zhong
(2023). Their analysis implies that, for any security, any optimal signal distribution
satisfies two economic properties: it restricts the highest signal realization to a certain
value and ensuresthat the security is always sold. In other words, an optimal signal
reveals sufficiently noisy information about high cash flow realizations which mitigates
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the lemons problems and guarantees the sale of the security.
Our second insights is the novel benefit of informationally sensitive securities when

the issuer can flexibly design information. We say that security ϕ̃ is more informa-
tionally sensitive than security ϕ, if fixing the average security payoffs, ϕ̃ crosses ϕ
from below. We establish that, for monotone securities, a more informationally sen-
sitive security has a higher variability of payoffs, which tends to expand the set of
admissible signals about the security value thereby leading to better outcomes for the
issuer.

This result provides a powerful tool for determining optimal securities. We show
that, when the issuer can optimally design information in addition to security, within
the class of double monotone securities, it is strictly optimal for the issuer to simply
sell the asset rather than issue any security. In other words, any form of cash flow
retention is strictly suboptimal. This result is in contrast to the two classical results
that retention is generally optimal with exogenous private information, and debt
is an optimal form of retention. To see the reason for this, let us recall the folk
intuition behind the classical results. Roughly, informationally insensitive securities
are valuable because they serve as a commitment device for the issuer not to take
advantage of his future private information at the trading stage. A debt security
arises as optimal, as it is minimally sensitive to the issuer’s private information:
it promises a fixed amount (the face value) whenever possible and offers maximal
downside protection when cash flows are low. However, it comes at a cost as it limits
gains from trade by forcing the issuer to retain cash flows above the face value of
debt.

With the added flexibility of optimal information design, the issuer can already
curb his informational advantage by properly designing his private signal about the
security. In particular, as argued above, this allows him to achieve trade with proba-
bility one for any fixed security. Roughly, information design already achieves much of
what security design thrives to achieve in models with exogenous private information.
On the other hand, informationally sensitive securities hold value as they provide the
issuer with greater flexibility in information design. We leverage this intuition and
show that selling the asset, which corresponds to the most informationally sensitive
security, is strictly optimal.

How does the optimality of the asset sale square with common practices of raising
liquidity? Our result explains why in many markets, in which the adverse selection
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problem is potentially severe, issuers often simply liquidate assets to raise liquidity
rather than design complex asset-backed securities. In the examples described above,
multi-divisional firms sell entire periphery divisions in times of crisis; there is an active
market for limited partners’ stakes in private equity funds; and mutual and hedge
funds liquidate their holding when facing excessive redemptions. Our analysis stresses
that a proper information design – the ability to commit not to learn too positive
private information about the asset – is a necessary condition for the optimality of
the asset sale. As we argued above, such a commitment can be attained through
providing lots of autonomy to periphery divisions, the structure of decision making
in private equity funds, or by following passive investment strategies of funds.

At the same time, many securities, such as MBS and other asset-backed securities,
are structured as debt securities. The classical view is that this is the optimal way to
raise liquidity in the presence of exogenous asymmetric information. In contrast, our
result suggests that the prevalence of debt points to the presence of institutional or
technological restrictions either on the information or security design. In particular,
the existing literature imposes the extreme restriction that no information design is
possible.

To reconcile this phenomenon with our theory, we present an alternative expla-
nation for the prevalence of debt in specific markets. We examine the joint design of
securities and information while imposing additional external liquidity requirements,
where securities must be sold without a substantial discount on their maximum value.
These requirements may arise from regulations or shareholder oversight. For instance,
banks, pension funds, and insurance companies are mandated to hold sufficient high-
quality liquid assets that can be quickly liquidated without significant value loss.
Similarly, outside shareholders or boards of directors representing them may be con-
cerned about management selling securities at a significant discount and may block
such sales. For these reasons, the issuer may have a strong preference for designing
securities that satisfy these external liquidity requirements.

With these external liquidity requirements, we find that debt reemerges as the
optimal security within the class of double monotone securities. This implies that debt
is influenced by regulations or external oversight rather than being the unconstrained
optimal security for raising liquidity. This formalizes the viewpoint often expressed
by practitioners that debt arises due to "regulatory arbitrage," where institutional
investors demand debt because regulators perceive it as sufficiently safe and liquid.
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The underlying intuition for this finding is as follows: The optimal information design
restricts the issuer from learning about extremely high security values, resulting in
securities generally being sold at a discount to their maximum value. If this discount is
substantial, it can violate the liquidity requirements and disqualify certain securities,
particularly pure equity. In such a scenario, the informational insensitivity of debt
becomes valuable once again, leading to its optimality.

While we view double monotonicity as natural in many environments (and hardly
restrictive from the practical standpoint), relaxing this assumption and considering
monotone securities yields additional theoretical insights and predictions. We show
that, among monotone securities, a “live-or-die security” that pays all the cash flows
when they are above a certain level but pays zero when cash flows are below this
level is optimal. The reason for this is that, holding the average security payoff fixed,
live-or-die securities are most informationally sensitive among monotone securities,
which is a valuable property when the issuer can additionally design information.

If we additionally impose external liquidity requirements, then at additional tier-
1 (AT1) debt becomes optimal within the class of monotone securities. AT1 debt
recently became popular in the banks’ capital structure. It is structured as standard
debt in normal times, but becomes junior to other forms of debt and equity if a bank
fails to maintain adequate regulatory capital or asset liquidity. Hence, AT1 debt is
effectively a live-or-die security capped at the face value of debt. As we argued above,
the cap on the payoffs is valuable in the presence of external liquidity requirements,
while the high informational sensitivity of the live-or-die part expands the choice of
signals about the security value available to the issuer. Thus, it is natural that AT1
debt is optimal in such an environment.

Related Literature. Leland and Pyle (1977), Myers and Majluf (1984), and Myers
(1984) first established that in the world of asymmetric information about asset qual-
ities, cash flow retention serves as a credible signal of asset quality and debt arises as
optimal among many other securities. The folk intuition is that debt is advantageous,
as it is the least sensitive to the issuer’s private information. This work started an
extensive literature on optimal security design under adverse selection. Most closely
related to our paper are DeMarzo and Duffie (1999) and Biais and Mariotti (2005)
who study security design at the ex-ante stage with an exogenous distribution of
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issuer’s private information.1 Both papers show optimality of debt under general
conditions and weak restrictions on the class of securities. Selling the asset is optimal
but only as a corner optimum (i.e., debt with face value equal to the highest cash flow
realization) when the information asymmetry is not too severe. Other papers show-
ing optimality properties of debt include Nachman and Noe (1994), DeMarzo (2005),
DeMarzo et al. (2005), Dang et al. (2013), Daley et al. (2020), Li (2022), Asriyan and
Vanasco (Forthcoming), Inostroza and Figueroa (2023) among many others.

We contribute to this literature by solving the joint problem of information and
security design in the by now canonical setup of DeMarzo and Duffie (1999) and Biais
and Mariotti (2005). We show that, within the class of monotone securities, generally
the issuer prefers more informationally sensitive securities, because they provide more
flexibility in information design. In contrast to these benchmarks, within the class
of double monotone securities, selling the asset is uniquely optimal and retention is
strictly suboptimal. We further obtain debt as a constrained solution to the joint
design problem, when the security must satisfy external liquidity requirements, and
solve this problem in the class of monotone securities.

There is a literature showing that informationally sensitive securities can become
optimal when informational sensitivity has additional benefits to the issuer, e.g., it
incentivizes information acquisition by investors (Boot and Thakor 1993, Fulghieri
and Lukin 2001, Yang and Zeng 2019), it enables the aggregation of information
about the optimal scale of project from informed investors (Axelson 2007), or it is
complementary to public signals about the asset and allows the issuer to economize
on retention (Daley et al. 2023). Our mechanism is different and to the best of our
knowledge novel to the literature: informationally sensitive securities are beneficial,
because they relax the constraints on the issuer’s information design.

Several papers study security design with endogenous information. Yang and Zeng
(2018), Yang (2020) allow for flexible information acquisition by the liquidity supplier.
In Azarmsa and Cong (2020), Szydlowski (2021), the issuer additionally designs public
disclosures to investors. Similarly to ours, these papers impose minimal restrictions
on admissible information acquisition or disclosure policies. In contrast to our paper,
the optimal security is indeterminate without either positive information acquisition
costs or further financing frictions. It is debt when information acquisition is costly in

1We discuss in details the relationship to these papers after we present our main results (see in
particular Remarks 2 and 4)
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Design stage, t = 0 Trading stage, t = 1 Final stage, t = 2

Issuer designs security ϕ
and signal S about X

Issuer observes S Liquidity supplier offers p Issuer accepts/rejects

Cash flows X and payoffs are realized

Figure 1: Timeline

Yang (2020) and depends on the kind of additional contracting frictions in Szydlowski
(2021) and Azarmsa and Cong (2020). Our study of joint information and security
design by the issuer is complementary to this literature.

Our paper is related to the literature on optimal information design in the mo-
nopolist screening problem (Bergemann et al. 2015, Roesler and Szentes 2017, Glode
et al. 2018).2 Most closely related is Kartik and Zhong (2023) who study information
design with interdependent values. We build on their result to analyze the joint infor-
mation and security design, and characterize optimal securities that arise in different
environments.

The paper is organized as follows. Section 2 presents the model. Section 3 con-
ducts preliminary analysis. Section 4 solves the joint security and information design
problem. Section 5 solves the problem under external liquidity requirements. Section
6 considers imperfectly competitive liquidity suppliers. Section 7 discusses positive
implications. All omitted proofs are relegated to the Appendix and the Online Ap-
pendix.

2 The Model

The basic setup is that of DeMarzo and Duffie (1999) and Biais and Mariotti (2005)
with the addition of information design. Figure 1 depicts the timeline. There are
three stages t ∈ {0, 1, 2}. There is an issuer (he) owning an asset and a liquidity
supplier (she). Both parties are risk-neutral. The asset generates cash flows X at the
final stage t = 2 distributed according to a CDF H on positive support X with x > 0

and x <∞ being the minimal and maximal elements in X .
At the trading stage t = 1, the liquidity supplier’s discount factor is normalized to

1 and she values cash flows at X. The issuer discounts future cash flows at a higher
2Less related to our paper, Barron et al. (2020), Mahzoon et al. (2022) study interaction of

information and contract design in the moral hazard setting.
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rate and values them at δX, δ ∈ (0, 1). This captures the issuer’s desire to free-up
capital to invest in alternative assets/projects, improve his liquidity position in crisis
times, raise liquidity to cover redemptions (for investment funds), or focus financial
resources on the core business (for multi-divisional companies). There are gains from
trade: the liquidity supplier is the efficient asset owner.

At the ex-ante design stage t = 0, before receiving any private information, the
issuer designs a security to be traded at t = 1 and a signal about cash flows to be
revealed to him privately at t = 1 (before trading). The security payoff F = ϕ (X)

is contingent on the realization of X. It is distributed according to the CDF Hϕ ≡
H ◦ ϕ−1 supported on [ϕ (x) , ϕ (x)].3 Let µϕ ≡ EHϕ [F ] be the average payoff of
F = ϕ (X). The ex-ante design of securities is commonly observed in practice during
the shelf-registration, a practice that allows the issuer to register securities in advance
to avoid lengthy delays and promtly attend to his liquidity needs.

We assume throughout the paper that security ϕ (X) satisfies limited liability :
ϕ (X) ∈ [0, X]. Security ϕ is monotone, if it is right-continuous and weakly increas-
ing in X, and it is double monotone if in addition X−ϕ (X) is weakly increasing in X.
In the security design literature, double monotonicity is often motivated by the “sabo-
tage” argument: if it fails, the party whose payout is non-monotone in X can increase
its payout by sabotaging and partially destroying cash flows. An additional justifi-
cation for monotone securities is that, for non-monotone securities, the issuer profits
from artificially boosting cash flows X by either contributing his own funds or bor-
rowing short-term from the market, and this way, reducing the payout to the security
holders. Realism of these justifications depends on the application in consideration.
We consider a general problem not tailored to any particular application, and so we
simply motivate these assumptions by the fact that they are barely restrictive from
the practical point, as almost all securities observed in practice, including debt, call
options, preferred shares, convertible securities, satisfy double monotonicity. Denote
by Φ1 and Φ2 the sets of monotone and double-monotone securities, respectively.

At t = 0, the issuer can costlessly design any signal S about X. A signal S is
described by the probability space (X × S,X ×S , νX,S), where S is a sufficiently
rich Polish space of possible signal realizations (in particular, X ⊆ S), and νX,S is the
probability measure on the product of Borel σ-algebras, X ×S , with the marginal
distribution on X coinciding with the prior distribution of X, H.

3We specify ϕ−1 (f) ≡ sup {x : ϕ(x) ≤ f} as the right-continuous inverse function.
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Let Z = E [ϕ(X)|S] be the expected security value conditional on signal S with
the CDF denoted by Gϕ. We call Gϕ admissible for ϕ if it is generated by some
signal S about X, and let Gϕ be the set of all admissible distributions. By Strassen
theorem, Gϕ is admissible if and only if Gϕ is a mean-preserving contraction of Hϕ

(see Lemma 5 in Appendix).4 That is, EGϕ [Z] = EHϕ [F ], and Gϕ second-order
stochastically dominates Hϕ:

∫ y
−∞H

ϕ (f) df ≥
∫ y
−∞G

ϕ (z) dz for all y.5 As we show
shortly, the issuer’s information design problem boils down to choosing Gϕ ∈ Gϕ.

At the trading stage t = 1, the issuer observes a realization s of signal S and
updates his valuation of security to Z = E [ϕ(X)|S = s]. The issuer can obtain liq-
uidity from the liquidity supplier by selling to her the security ϕ (X). We assume a
monopolistic liquidity supplier. This assumption is relevant for issuers who have in
mind future circumstances in which they sell securities in periods of scarce liquidity
when liquidity suppliers have significant monopoly power (e.g., during crisis times) or
issuers who anticipate urgent liquidity needs in the future that do not leave sufficient
time to solicit competitive bids for their securities. In Section 6, we relax this as-
sumption and show how our results are modified in the extension where the liquidity
supplier is competitive in “normal” times, but monopolistic in crisis times.6

At t = 1, the liquidity supplier offers a posted price p at which she is willing to buy
the security, which the issuer accepts or rejects. By Proposition 1 in Biais and Mariotti
(2005), posting a price is optimal for the monopolistic liquidity supplier within the
general class of incentive-compatible and individually rational mechanisms specifying
the quantity of the security traded and the corresponding transfer to the issuer.7

Conditional on observing signal S, δE [X|S]−δE [ϕ(X)|S]+p is the issuer’s expected
4A somewhat delicate point here is that the set of admissible distributions, Gϕ, is generated by

signals S about X rather than by signals Z about ϕ (X) (distributed according to Hϕ). The Strassen
theorem implies that the latter set consists of all mean-preserving contractions of Hϕ. We show in
Lemma 5 that the two sets in fact coincide.

5All integrals in this paper are Lebesgue-Stieltjes integrals for which the integration by parts
formula obtains (see Lemma 6 in the Online Appendix).

6We believe our insights are applicable in the general setup with a number of imperfectly com-
petitive liquidity suppliers. We leave this extension for future research.

7Posted prices need not be optimal when the liquidity supplier is allowed to condition quantities
and transfers on the future realization of X. Such mechanisms would clash with the ex-ante security
design by the issuer (studied in this paper), as they effectively would give power to the liquidity
supplier who can override payoffs ϕ (X) with appropriate quantities and transfers contingent on
X. In reality, substantial changes in the security requested by the buyer on the spot require a
new registration with the SEC, which defies the whole purpose of the shelf-registration of avoiding
regulatory delays in issuance.
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payoff from accepting p and δE [X|S] form rejecting it. Hence, Z = E [ϕ(X)|S] is the
sufficient statistic for the issuer’s optimal decision, which we call the issuer type.

Given the distribution of Z, Gϕ, the liquidity supplier chooses p to maximize her
expected profit

π (p|Gϕ) ≡
∫ p/δ

ϕ(x)

(z − p) dGϕ(z).

There is a standard adverse selection problem: only issuer types with expected values
below p (i.e., z ≤ p/δ) accept the price offer, while higher types hold on to the asset.
Let P (Gϕ) ≡ arg maxp π (p|Gϕ) be the set of optimal posted prices and Π (Gϕ) ≡
maxp π (p|Gϕ) – the maximal profit. We suppose that, when indifferent between
several p ∈ P (Gϕ), the liquidity supplier chooses the most preferred price for the
issuer, p (Gϕ), which is the highest price in P (Gϕ). Then, given distribution Gϕ, the
issuer’s ex-ante expected payoff equals

E [δE [X|S] + max {p (Gϕ)− δZ, 0}] = δE [X] + v (p (Gϕ)|Gϕ) ,

where the equality is by the law of iterated expectations and v (p|Gϕ) ≡
∫ p/δ
ϕ(x)

(p− δz) dGϕ(z)

is the issuer’s information rents given price p and distribution Gϕ. We denote
V (Gϕ) ≡ v (p (Gϕ)|Gϕ).

At the design stage t = 0, the issuer optimally chooses a signal S about X and
the security design ϕ. The distribution of S and security design ϕ enter the issuer’s
and the liquidity supplier’s objective functions V and Π only through the distribution
Gϕ of Z, which is a signal about ϕ (X). Hence, it is without loss of generality, to
suppose that the issuer directly chooses the distribution Gϕ ∈ Gϕ. With a little abuse
of terminology, henceforth, we refer to Z (rather than S) as the signal. For a given
security design ϕ, the issuer’s optimal information design problem is

V (ϕ) ≡ max
Gϕ∈Gϕ

V (Gϕ) . (1)

For Φ ∈ {Φ1,Φ2}, the optimal joint security and information design problem is

max
ϕ∈Φ

V (ϕ) = max
ϕ∈Φ,Gϕ∈Gϕ

V (Gϕ) . (2)

Therefore, the optimal choice of a security ϕ(X) and a signal S about X can be
reinterpreted as a sequential choice of, first, the security ϕ (X) that determines the
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X = x X = x

B τ/2 0

G (1− τ) 2 1/2

(a) Signal SI

X = x X = x

B 1/2 (1− τ)/2

G 0 τ/2

(b) Signal SII

Table 1: Signal distributions
Tables describe joint distributions of signals SI , SII and cash flows X. Parameter τ controls the precision of signals

with τ = 0 corresponding to uninformative signals and τ = 1 corresponding to perfectly revealing signals.

set of admissible distributions Gϕ, from which the issuer picks the optimal signal
distribution Gϕ. For brevity, we refer to (2) as the security design problem, and it is
implicit that the signal distribution is also chosen optimally.

3 Preliminary Analysis

Simple Example. We start with an illustration of our results in a simple example.
Suppose δ = 3/4 and X takes two equally likely values x = 1 and x = 3. We impose
further restrictions that are not part of our model. First, we focus on debt securities
ϕ (X) = min {X,D}, D ∈ [x, x]. Second, we consider one of two binary signals with
values G and B described in Table 1. For both signals, we can derive the ex-ante
optimal debt face value D and the signal precision τ .

Signal SI “perfectly reveals bad news:” signal realization B reveals that the cash
flows are low, X = x, while G leads to the posterior probability of x equal to 1/(2−τ).

Symmetrically, signal SII “perfectly reveals good news:” signal realization G reveals
that X = x, and B leads to the posterior probability of x equal to 1/(2 − τ). Here,
τ captures the signal precision with τ = 0 corresponding to an uninformative signal,
and τ = 1 – to a perfectly revealing signal. We can easily find optimal securities for
both signals. Under SI , the issuer’s maximal payoff is ≈ 0.41 attained by selling the
whole asset and setting τ ∗ ≈ 0.71. Under SII , the issuer’s maximal payoff is 0.1875

attained by issuing debt D∗ ≈ 1.5 and τ ∗ = 1.
This example hints at two of our main insights. First, when the issuer learns

noisy information about high cash flows (signal SI), retention is suboptimal and it
is optimal to simply sell the asset (within the class of debt securities). Second, debt
becomes optimal when the issuer learns more granular information about high cash
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flows (signal SII). Third, the issuer prefers the former signal (SI) to the latter (SII).
At the same time, this example leaves open the central question of our paper – what
is the best way to jointly design security and information.

Information Design. Building on Kartik and Zhong (2023), we first solve the
information design problem (1) for a fixed security ϕ. They introduce incentive com-
patible distributions (henceforth, ICDs) with CDFs Gu,µ parametrized by the upper
support boundary u and the mean µ as follows

Gu,µ (z) =


0 , z < l,

(z/u)δ/(1−δ) , z ∈ [l, u] , where l =
(
µ−δu
1−δ

)1−δ
uδ.

1 , z > u,

(3)

The next result follows from Theorem 2 and Proposition 2 in Kartik and Zhong
(2023). Denote by u (Gϕ) the highest signal realization under distribution Gϕ.

Proposition 1. For any security ϕ (X), let uϕ be the solution to8

max {u : Gu,µϕ ∈ Gϕ} . (4)

Then, V (ϕ) = δ (uϕ − µϕ) and a distribution Gϕ ∈ Gϕ is optimal for ϕ if and only if
(i) u (Gϕ) = uϕ; (ii) trade occurs with probability one under Gϕ. Further, Guϕ,µϕ is an
optimal signal distribution for ϕ with support [lϕ, uϕ], where lϕ ≡

(
µϕ−δuϕ

1−δ

)1−δ
(uϕ)δ.

Kartik and Zhong (2023) show that in solving (1) it is without loss of optimality
to focus on admissible ICDs, Gu,µϕ ∈ Gϕ. ICDs Gu,µϕ are special in that the liquidity
supplier is indifferent between any posted price in the support of issuer’s expected
values of security, [δl, δu]. In particular, she weakly prefers to offer a pooling price
δu. This is the most preferred outcome for the issuer under Gu,µϕ that gives him
payoff of δ (u− µϕ). Hence, the problem (1) boils down to finding an admissible ICD,
Gu,µϕ ∈ Gϕ, that results in the maximal price δu.

For our purposes, Proposition 1 has two important implications. First, it allows us
to write the constraints of the information design problem in the following analytical
form.

8Since Gµϕ,µϕ ∈ Gϕ (uninformative signal), {u : Gu,µϕ ∈ Gϕ} is non-empty.
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Lemma 1. The constraint in (4) is equivalent to u ≤ ϕ (x) and

L (y|ϕ, u) ≡ ϕ (x)− δu− (1− δ)y
1

1−δu−
δ

1−δ −
∫ ϕ(x)

y

Hϕ (f) df ≥ 0, y ∈ [0, u] . (5)

Second, Proposition 1 implies that the issuer does not need full flexibility in choos-
ing signal distributions. Any signal distribution Gϕ is optimal for security ϕ (X) as
long as it satisfies two economic properties. It must ensure perfectly liquidity, that is,
the full issue of the security ϕ (X) is always sold to the liquidity supplier. Further,
the issuer prefers not to learn “too optimistic” information about the security value,
i.e., his signal Z is below certain uϕ, which is generally less than the highest payout
of the security, ϕ (x). Importantly, the ICD Guϕ,µϕ is only one optimal distribution,
but there are generally many other optimal signals. Practically, this means that the
commitment to some optimal signals might not be too demanding, and as we argue
in Section 7, in many situations such a commitment might already be in place due to
technological restrictions on signals or considerations other than liquidity needs.

Remark 1. Theorem 2 in Kartik and Zhong (2023) shows that under a natural equi-
librium refinement, signal distributions in Proposition 1 are optimal in a richer class
of information structures, where the liquidity supplier also gets a private signal that is
less informative than the issuer’s signal (in the sense that the issuer’s signal is a suf-
ficient statistic for the liquidity supplier’s signal with respect to the value of security).
In particular, this result implies that the issuer does not gain from publicly disclosing
information about the security value, and it is without loss of optimality to focus on
signals that the issuer privately learns.

4 Optimal Security Design

We first present our main tool for finding optimal securities. This result formal-
izes the idea that the issuer weakly prefers more informationally sensitive securities,
because they give him “more freedom” in information design. We say that secu-
rity ϕ̃ is more informationally sensitive than ϕ if there is x∗ ∈ [x, x] such that
ϕ̃ (x) − µϕ̃ ≤ ϕ (x) − µϕ for x < x∗ and ϕ̃ (x) − µϕ̃ ≥ ϕ (x) − µϕ for x > x∗. In
words, once we control for differences in means, ϕ̃ crosses ϕ from below at some x∗.
Thus, informational sensitivity captures differences in the shape of securities. For
example, holding the average security payoff fixed, convex securities like call option
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(i.e., ϕ(X) = max{X − K, 0}, K ∈ [0, x]) are more informationally sensitive than
standard equity (i.e., ϕ(X) = αX,α ∈ [0, 1]), which in turn is more informationally
sensitive than concave securities like debt.

DeMarzo et al. (2005) introduce the “crossing from below” property of security
payoffs to capture informational sensitivity of securities in the context of auctions
with securities. It is interesting that a similar notion of informational sensitivity plays
a key role in our problem of joint information and security design, even though its
application is quite different in the two setups. In particular, DeMarzo et al. (2005)
additionally imposes strict monotone likelihood ratio property on agents’ signals,
which is not compatible with flexible information design in our paper. In contrast,
our notion of information sensitivity does not impose any additional restrictions on
signal distributions, in particular, it is independent of the prior.

Theorem 1. Suppose that securities ϕ̃ and ϕ are monotone, ϕ̃ is more information-
ally sensitive than ϕ, and µϕ̃ = µϕ.

1. Then, Gϕ ⊆ Gϕ̃ and V (ϕ̃) ≥ V (ϕ).

2. If there is ε > 0 such that H ϕ̃ (f) > Hϕ (f) for y ∈ (ϕ̃ (x) , ϕ̃ (x) + ε) and
H ϕ̃ (f) < Hϕ (f) for y ∈ (ϕ̃ (x)− ε, ϕ̃ (x)), then Gϕ ⊂ Gϕ̃ and∫ y

−∞
H ϕ̃ (f) df >

∫ y

−∞
Hϕ (f) df for all y ∈ (ϕ̃ (x) , ϕ̃ (x)) . (6)

Further, if in addition [lϕ, uϕ] ⊂ (ϕ̃ (x) , ϕ̃ (x)), then V (ϕ̃) > V (ϕ).

Theorem 1 states that holding the average security payoff fixed, the issuer benefits
from offering more informationally sensitive securities, because they expand the set of
admissible signal distributions. It is related to Theorem 2 in Gershkov et al. (2023),
which shows that for any double-monotone ϕ, debt ϕD, and call option ϕC such that
µϕD = µϕC = µϕ, GϕD ⊆ Gϕ ⊆ GϕC . We generalize this result in two respects.
First, we introduce the relevant notion of informational sensitivity for monotone (not
necessarily double-monotone) securities, and show that, holding µϕ fixed, more infor-
mationally sensitive securities give weakly more freedom in information design, and
so, are weakly preferred by the issuer. Establishing this result for any monotone
securities (rather than debt or call option) is crucial for our analysis of the joint in-
formation and security design problem under different restrictions on available signals
and securities.
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Figure 2: Illustration for Theorem 1

Second, we provide sufficient conditions for the issuer to strictly prefer a more
informationally sensitive security ϕ̃. Roughly, this is the case when higher informa-
tional sensitivity expands the set of admissible ICDs. For ICDs, a more appealing
distribution has a wider support [l, u], hence, the conditions are on the values of H ϕ̃

close to the extreme security payoffs ϕ̃ (x) and ϕ̃ (x).
The proof of Theorem 1 is based on the observation that if ϕ̃ crosses from be-

low ϕ, its CDF H ϕ̃ crosses from above the CDF Hϕ (see Figure 2). This implies∫ y
−∞

(
H ϕ̃ (f)−Hϕ (f)

)
df ≥ 0 for all y’s up to the crossing point f ∗ of H ϕ̃ and Hϕ.

For y ∈ (f ∗, ϕ̃ (x)), integrating by parts,∫ y

−∞

(
H ϕ̃ (f)−Hϕ (f)

)
df =

∫ ϕ̃(x)

−∞

(
H ϕ̃ (f)−Hϕ (f)

)
df︸ ︷︷ ︸

=µϕ−µϕ̃=0

−
∫ ϕ̃(x)

y

(
H ϕ̃ (f)−Hϕ (f)

)︸ ︷︷ ︸
≤0

df ≥ 0.

Note that the conditions in part 2 of Theorem 1 are sufficient to ensure that all
inequalities in (6) are indeed strict, which implies that Gϕ̃ is strictly larger than Gϕ.

In our analysis, we will also use the following lemma.

Lemma 2. For any security ϕ ∈ Φ1 and ∆ > 0, if ϕ̃ (X) = ϕ (X) + ∆ ∈ [0, X] (i.e.,
satisfies limited liability), then ϕ̃ ∈ Φ1, V (ϕ̃) ≥ V (ϕ), and uϕ̃ ≥ uϕ + ∆.

Lemma 2 shows that adding safe debt is always weakly optimal. Analogous results
appear in the security design literature with exogenous private information (DeMarzo
and Duffie 1999, Biais and Mariotti 2005). There, pledging a safe payoff of ∆ does not
give the liquidity supplier extra incentives to screen the issuer. Hence, by switching to
security ϕ̃, the issuer gives up ∆ of future asset payoff, which he values at δ∆, but also
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increases the security price by δ∆. This intuition from models with exogenous private
information is carried to our model by noticing that if Gϕ ∈ Gϕ, then a translation of
Gϕ by ∆ belongs to Gϕ̃.

Optimality of Selling the Asset. We can now solve the security design problem
(2) for double-monotone securities Φ2.

Theorem 2. Selling the asset (i.e., ϕ (X) = X almost surely) is the unique optimal
security within the class of double-monotone securities Φ2.

Theorem 2 is in stark contrast to the classical results stressing the role of security
design in mitigating information asymmetry. The existing literature described in the
Introduction establishes optimality of cash flow retention by the issuer. This literature
often obtains debt as the optimal form of retention. Theorem 2 shows that, when
the issuer can optimally design his private signal about the security and is restricted
to double-monotone securities, security design is not necessary. In fact, any form of
retention is strictly suboptimal – the unique optimum is to simply sell the asset and
pick one of optimal signal distributions described in Proposition 1.

What is the reason for this difference in predictions? Let us recall the “folk”
intuition in models with exogenous private information. There, debt serves as a
commitment device for the issuer not to take advantage of his private information
when trading with the liquidity supplier. A debt security pays a fixed face value
whenever possible and offers maximal downside protection when cash flows are below
the face value. In other words, debt is not sensitive to the issuer’s private information
most of the times, and when it is, the liquidity supplier receives the maximal payout
feasible. This insensitivity of debt to private information is crucial in mitigating
the lemons’ problem and increasing its liquidity, when the private information is
exogenous. However, it comes at a cost as it limits gains from trade by forcing the
issuer to retain cash flows above the face value of debt.

In contrast, as shown in Proposition 1, the optimal information design already
commits the issuer not to learn too optimistic information about the security and
guarantees its perfect liquidity, making security design redundant for these purposes.
In turn, by Theorem 1, more informationally sensitive securities give the issuer more
freedom in information design. Selling the asset gives the liquidity supplier maximal
exposure to cash flows, and corresponds to the most informationally sensitive security
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Figure 3: Illustration for Theorem 2

within the class of double-monotone securities. Thus, the issuer prefers it to designing
any non-trivial double-monotone security. 9

More formally, the proof outline goes as follows. By Lemma 2, within the class of
double-monotone securities, it is without loss of optimality to consider securities that
include safe debt x, i.e., ϕ (x) = x. Consider security ϕk that combines a safe debt
x/2 and a call option with strike price k such that µϕ = µϕ̃. As illustrated in Figure 3,
ϕk is more informationally sensitive than ϕ. Further, the fact that, by construction,
ϕk (x) > ϕ (x) and ϕk (x) < ϕ (x) implies that the conditions for part 2 of Theorem
1 are satisfied, hence, V (ϕk) > V (ϕ). We then get the unique optimality of selling
the asset by noticing that only ϕ (X) = X is immune to such an improvement.

The positive implication of Theorem 1 is that raising liquidity with asset sales
should prevail in environments where the issuer can commit to learn noisy information
about high cash flow realizations and more granular information about lower cash flow
realizations (corresponding to optimal signal distributions in Proposition 1). This
prediction is in line with the reality that in many situations, corporations simply sell
assets to raise liquidity despite potential concern for a high degree of adverse selection.
In Section 7, we discuss several specific applications where this is the case and how
issuers can commit to an optimal signal distribution.

On the normative side, Theorem 2 provides a counter-point to the established
view in the literature that security design serves as a remedy for adverse selection.

9Incidentally, in our simple example in Section 3, selling the asset is optimal under the signal
technology SI that is not necessarily optimal but that, similarly to optimal signals, reveals noisy
information about high cash flows (we prove this in Proposition 4 in the Online Appendix). These
results in total suggest that the key property of the signal distribution making the asset sale optimal
is that the signal about high cash flows is sufficiently noisy. Formalizing this result is beyond the
scope of this paper and is left for future research.
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With sufficient flexibility in information design, it is strictly suboptimal to resort to
security design (within the class of double-monotone securities). Thus, security design
is relevant only when the issuer cannot for some reason design an optimal signal
about the asset. (Proposition 1 suggests that this is the case when the issuer cannot
commit not to learn granular information about high cash flows.) Taking Theorem 2
as a benchmark, a justification of a particular security observed in reality must start
from identifying what are the realistic restrictions on the information/security design
that make the security design relevant in the first place. As an illustration of this
approach, we study in the next section how our insights change with the introduction
of realistic external liquidity requirements on securities that the issuer can offer.

Remark 2. We can think of the classical literature as imposing the extreme assumption
of no information design. Biais and Mariotti (2005), which is the closest to our
framework, assume that the issuer perfectly observes X at t = 1 and obtain debt as
the optimal security for any distribution H.

Note that there is no contradiction between this result and Theorem 2. First, since
X is bounded, selling the asset is a special case of debt with face value x. Second, Biais
and Mariotti (2005) assume a very specific form of exogenous private information –
learning the cash flows. As Proposition 1 shows, perfectly learning the security payoff
is generally suboptimal. An optimal signal distribution instead produces a noisy signal
about high valuations.10 Relatedly, DeMarzo and Duffie (1999) show optimality of debt
under certain conditions on the issuer’s private information11 in the model where the
issuer signals to the competitive liquidity suppliers the security value by retaining a
fraction of it. We show in Section 6 that selling the asset is also optimal in our model
when the liquidity supplier is competitive.

Optimality of Live-or-Die Security. While we view double-monotonicity as a
natural restriction of securities that captures relevant agency frictions that are not
explicitly modeled, relaxing it provides interesting theoretical insights that we present
next. We solve (2) for monotone securities (Φ = Φ1). Let us call securities of the
form ϕ (X) = 1 {X ≥ L}X live-or-die securities – they pay all cash flows above L,
but pay nothing (“die” ) if cash flows fall short of L.

10To the best of our knowledge, it is an open question whether in Biais and Mariotti (2005), debt
is optimal for more general distributions of exogenous signals about X.

11Specifically, the existence of the “uniform worst case” – a condition slightly weaker than the
monotone likelihood ratio property.
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Theorem 3. Suppose H admits a density on X . A live-or-die security ϕ∗ (X) =

1 {X ≥ L∗}X is optimal within the class of monotone securities Φ1. Further, ϕ∗

strictly dominates selling the asset (in particular, L∗ > x) and gives a payoff of 0 to
the liquidity supplier.

Theorem 3 implies that, for continuous distributions of cash flows, relaxing the
double monotonicity assumption in Theorem 2 strictly increases the issuer’s payoff:
a live-or-die security ϕ∗ that retains cash flows below L∗ is optimal among monotone
securities. Live-or-die securities are not observed in practice, which suggests that the
sabotage incentives of the issuer (or other justifications for double monotonicity) are
strong enough to prevent the issuer from selling securities failing double monotonicity.
Yet, Theorem 3 reveals interesting theoretical insights about the optimal joint use of
information and security design.

In conjunction with Theorem 2, Theorem 3 shows how using the joint security and
information design we expand the set of equilibrium payoffs compared to those at-
tainable in the two benchmarks where the issuer either (i) sells the asset and only uses
information design (Kartik and Zhong 2023), or (ii)only uses security design (Biais
and Mariotti 2005). By Theorem 2, the expansion of equilibrium payoffs compared to
only security design is obtained already within the class of double-monotone securi-
ties. Further, Kartik and Zhong (2023) show that by selling the asset in combination
with an optimal information design, the issuer can attain a payoff of δ

(
uX − µX

)
(where we denote by X the security ϕ (X) = X). This outcome also minimizes the
liquidity supplier’s payoff across all signal distributions, which equals µX − δuX . In
this outcome, the asset is always sold, and so, there is no tension between maximiza-
tion of information rents and efficiency.

Theorem 2 shows that, within the class of double monotone securities, no further
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increase of his payoff is possible despite the added flexibility to design the security.
However, by Theorem 3, this is an artifact of the double monotonicity assumption.
The optimal live-or-die security allows the issuer to attain a strictly higher payoff
of δ

(
uϕ

∗ − µϕ∗). This outcome also lowers the minimal equilibrium payoff of the
liquidity supplier, who is up against her individual rationality constraint (and gets 0)
despite having all the bargaining power.12 In contrast to Kartik and Zhong (2023), in
order to attain this outcome, the issuer needs to sacrifice efficiency – he retains asset
cash flows in bad states of the world when X < L∗.

The retention that is optimal with information design is the opposite of the optimal
retention with exogenous private information. As we discussed above, in the latter
case, debt is generally optimal, which makes the issuer retain cash flows in high states
when X exceeds the debt face value. With optimal information design, retention of
low cash flows increases the information sensitivity of the security, which according
to Theorem 1 tends to increase the issuer’s freedom in information design. In fact,
holding the average payoff fixed, live-or-die securities are the most informationally
sensitive monotone securities as illustrated in Figure 4. This implies that there is a
live-or-die security that is optimal among all monotone securities.

Theorem 3 shows a stronger result that retention of low cash flows (up to L∗)
strictly dominates selling the asset (which is a special case of a live-or-die security
with L = x). This result is subtle, because while the retention at the bottom increases
the issuer’s flexibility in information design, a reduction in the average payoff of
the security reduces the gains from trade and may restrict information design. The
following lemma establishes that the former effect dominates whenever µX−δuX > 0,
i.e., the liquidity supplier’s profit is positive when trading the whole asset. In fact,
this result holds more generally for any security (which we use in proving Theorem 5
in Section 5).

Lemma 3. Suppose H admits density on X . For any ϕ ∈ Φ1 satisfying µϕ−δuϕ > 0,
there is a security ϕ̃ (X) = ϕ (X)1

{
X ≥ L̃

}
for some L̃ > x such that V (ϕ̃) >

V (ϕ).

Lemma 1 follows from inspection of the constraint L (y|ϕ, uϕ) ≥ 0, y ∈ [0, uϕ] , of
the information design program explicitly stated in (5). Observe that L (y|ϕ, uϕ) is

12In other words, combining the information and security design expands the Pareto frontier of
attainable equilibrium payoffs compared to those attainable with only information design in Kartik
and Zhong (2023).
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affected by the right tail of Hϕ. Since ϕ̃ (x) = ϕ (x)1
{
x ≥ L̃

}
coincides with ϕ (x)

above L̃, it is immediate that L (y|ϕ̃, uϕ) ≥ 0 for y ≥ ϕ
(
L̃
)
. Since ϕ̃ (x) = 0 for

x < L̃, H ϕ̃ (f) = Hϕ
(
ϕ
(
L̃
))

for f < ϕ
(
L̃
)
, and so,

L (y|ϕ̃, u) = ϕ (x)− δu− (1− δ)y
1

1−δu−
δ

1−δ −
∫ ϕ(x)

ϕ(L̃)
Hϕ (f) df −H

(
L̃
)(

ϕ
(
L̃
)
− y
)

is a strictly concave function on
[
0, ϕ

(
L̃
)]

. Thus, L (y|ϕ̃, uϕ) attains its minimum

at y = ϕ
(
L̃
)
(which we know is non-negative by the argument above for y ≥ ϕ

(
L̃
)
)

or at y = 0. In turn, L (0|ϕ̃, uϕ) ≥ 0 is equivalent to µϕ̃ − δuϕ ≥ 0, which indeed
holds for some L̃ > x by µϕ − δuϕ > 0.13

Intuitively, Lemma 3 shows that for any security ϕ leaving a strictly positive payoff
to the liquidity supplier, the issuer can always retain cash flows at the bottom and
preserve the optimal price δuϕ offered by the liquidity supplier. This is profitable for
the issuer who receives the same price but retains a larger fraction of the security’s
cash flows. At the optimum, the issuer retains as much cash flows at the bottom as
possible while respecting the liquidity supplier’s individual rationality constraint.

The existence of density of H is important in Theorem 3, as it ensures continuity
of µϕ in L for live-or-die securities ϕ(X) = X1 {X ≥ L}, which in turn guarantees
that focusing on them is without loss of optimality. When this assumption fails,
live-or-die securities need not be optimal. For instance, selling the asset is strictly
optimal in the example in Section 3. However, the intuition that retaining cash flows
in low states might be optimal is robust even for discrete distributions. To see this,
consider the model with two cash flow realizations: X = x with probability γ ∈ (0, 1)

and X = x with probability 1− γ. Let uX be the solution to (4) for ϕ (X) = X and

lX =
(
µX/uX−δ

1−δ

)1−δ
uX . The following proposition (proven in the Online Appendix)

provides a sufficient condition for the optimality of cash flow retention in state x.14

Proposition 2. In the model with two cash flow realizations, if lX > x, then there is
a uniquely optimal ϕ within Φ1 such that ϕ (x) = x and ϕ (x) < x.

13Here is where we use that H admits density on X to ensure continuity of µϕ̃ in L̃.
14This condition is necessary but not sufficient. For example, for parameter values δ = 3/4, x = 1,

x = 3/2, and γ = 0.3, the uniquely optimal security is given by ϕ (x) ≈ 0.85 < x and ϕ (x) = x,
which retains cash flows in the low state, yet, lX = x.
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5 External Liquidity Requirements

Theorem 2 offers a new perspective on the security design literature. With sufficient
flexibility in information design, the issuer does not need to resort to security design
at all (at least within the commonly used class of double monotone securities). Thus,
a theoretical justification of a particular security should begin with a question: which
restrictions on the information design make the security design relevant in the first
place. In this section, we take this approach to provide a new microfoundation for
the prevalence of debt in practice.

We impose the following restrictions that we call external liquidity requirements
(or simply, liquidity requirements) on the securities that the issuer can offer: (i) the
whole security is always sold at t = 1; (ii) for a fixed ρ, the security price satisfies
p ≥ ρϕ (x). Since ρ > δ is not sustainable,15 we suppose ρ ∈ [0, δ].

Liquidity requirements of this form are often encountered in practice. For ex-
ample, they naturally arise in the design of mortgage-backed securities (MBSs) or
collateralized loan obligations (CLOs). To better fit this application, let us modify
the model and make the issuer and the seller of the security separate entities. At
t = 0, the issuer designs the security and the information that will be privately re-
vealed to the security holder at t = 1. He then sells the security to one of many
competitive institutional investors that we call for concreteness banks (alternatively,
they can be pension funds, insurance companies, or other institutional investors sub-
ject to strict regulation on the liquidity of their assets). At t = 1, the bank who
bought the security observes signal Z about its value and, if hit by a liquidity shock,
sells it to the liquidity supplier. Since banks are competitive and there is no infor-
mation asymmetry at t = 0, the issuer extracts all information rents, V (ϕ), from the
bank buying the security.

In the context of MBSs and CLOs, the issuer is the underwriter who securitizes
mortgages/loans after the origination and sells these securities to competitive in-
stitutional investors. Investors in MBSs and CLOs receive proprietary information
about the asset pool and its performance from the asset-pool manager and the un-
derwriter.16 The underwriter specifies what information is contained in these private

15Indeed, both δϕ (x) and p > δϕ (x) are always accepted, and so, the liquidity supplier strictly
prefers δϕ (x) to p

16Under Regulation AB, the SEC imposes disclosure requirements for asset-backed securities of-
ferings (e.g., see https://www.sec.gov/corpfin/divisionscorpfinguidanceregulation-ab-interpshtm).
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disclosures when he designs securities, which justifies flexibility of information design
at the ex-ante stage. Due to regulatory requirements, institutional investors might
have a strong preference for securities satisfying liquidity requirements of the form
specified above. For example, Basel III qualifies securities as “high-quality liquid” if
they can be liquidated within a short period of time with no significant loss of value.
Say, banks should be able to liquidate level-2 assets over a 30-day period with a max-
imal decline in price of 10%. In the context of our model, this translates into the
ability to always sell the security (irrespective of the realization of Z) and ρ = 90%.17

Similarly, external liquidity requirements on securities sold by the corporation can
also arise due to shareholders’ oversight. The corporation’s shareholders (or board
members representing them) can be concerned that insiders sell securities at a large
discount. If they believe that the security price is much lower than the true value,
say below ρϕ(x), they might block the sale. If shareholders do not have the insiders’
private information, they can impose the floor on the price ρϕ (x), which guarantees
that the security is never sold below a fraction ρ of its true value.

Optimality of Debt. Let us solve the security design problem under the liquidity
requirements. We first show that the liquidity requirements impose non-trivial joint
restrictions on the joint security and information design.

Lemma 4. Security ϕ satisfies liquidity requirements if and only if uϕ ≥ (ρ/δ)ϕ (x).

Thus, the security design program under liquidity requirements becomes

max
ϕ∈Φ

V (ϕ) s.t. uϕ ≥ (ρ/δ)ϕ (x) . (7)

Theorem 4. A debt security ϕ̂ (X) ≡ min {X,D∗} for some D∗ solves the program
(7) for Φ = Φ2. If in addition ρ < δ, then ϕ̂ is uniquely optimal.

Many securities, such as MBSs and CLOs, are structured as debt securities. As
discussed in the Introduction, the classical theory posits that debt is the optimal way
to share the liquidity risk under exogenous information. An alternative viewpoint is
that debt arises from the “regulatory arbitrage:” regulators view debt as adequately

17Requiring p ≥ ρϕ (x) is an informationally robust way to ensure compliance. In particular, this
guarantees that the maximal haircut on the true value of the security is at most 1 − ρ without
the regulator knowing the bank’s private information about the security or having to trust bank’s
reporting.
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Figure 5: Illustration for Theorem 4

liquid, hence, institutional investors demand it. These two explanations are often
presented as contradictory to each other. Theorem 4 reconciles these view points.
Similarly to the classical theory, debt is optimal but only under additional constaints
imposed by external liquidity requirements. These requirements arise from regulatory
(or shareholder) oversight over the securities holders and are similar in nature to the
prudential regulation of banks, pension funds, and insurance companies. Importantly
and similarly to how they are formulated in practice, our liquidity requirements do
not restrict the class of securities, but rather require that adequately liquid securities
are sold in a short time without a significant loss of value. That the optimal security
is debt comes as a result, not an assumption. In the context of the application to
MBS described above, institutional investors who are subject to regulation demand
assets that qualify as sufficiently liquid by regulatory standards. The underwriter
issues debt because it is the optimal security among those that comply with these
regulatory standards.

At the same time, Theorem 4 formalizes the regulatory-arbitrage viewpoint: debt
allows financial institutions to optimally address their liquidity needs while complying
with regulatory requirements. This result aligns with the fact that MBSs and CLOs
are often marketed and held by heavily regulated entities such as banks, insurance
companies, and pension funds. In contrast and in line with Theorem 2, less regulated
financial institutions, like investment funds, prefer to sell assets to generate liquidity.

The intuition for the optimality of debt under liquidity requirements goes as fol-
lows. By Proposition 1, optimal signals for security ϕ restrict the issuer not to learn
too positive information about the security value. In particular, the highest signal uϕ

for an optimal signal distribution is generally below the highest security payoff ϕ (x).
By Lemma 4, the liquidity requirements act in the opposite direction and “force” the
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issuer to learn granular information about high values of the security. Intuitively,
they put a floor on the security price, and to make this price optimal for the liquidity
supplier, it is necessary that the issuer learns information about sufficiently high val-
ues of the security. Because of this tension between the optimal information design
and the liquidity requirements, certain securities might be disqualified, particularly
selling the asset might not be possible. Theorem 4 establishes that, when facing such
restrictions on the information design, the issuer finds it optimal to take advantage
of the informational insensitivity of debt.

Remark 3. Biais and Mariotti (2005) show optimality of debt, when the issuer learns
X perfectly at t = 1. In this case, since the signal is perfect, the issuer is forced to learn
high values of the security (in particular, ϕ (x)) whenever they occur. Similarly, in the
example in Section 3, the signal technology SII , which makes debt optimal, perfectly
reveals high cash flows x with positive probability. This suggests a general insight that
informational insensitivity of debt is valuable when the private information is more
granular about high cash flow realizations.

More formally, the proof sketch proceeds as follows. Observe that if ϕ (X) sat-
isfies the liquidity requirements so does ϕ (X) + ∆,∆ > 0. Hence, by Lemma 2,
it is without loss of optimality in (7) to focus on securities satisfying ϕ (x) = x.
Fix any such ϕ satisfying the liquidity requirements. Consider security ϕk,f (X) =

min
{
f,max {0, X − k}

}
, where f = ϕ (x) and k is such that µϕk,f̄ = µϕ.18 Security

ϕk,f modifies the call option with strike price k by capping its payout at f (see Figure
5). Since security ϕk,f̄ is more informationally sensitive than ϕ, V

(
ϕk,f̄

)
≥ V (ϕ)

(by Theorem 1), and so, uϕk,f̄ ≥ uϕ. At the same time, the cap f on the payout
ensures that ϕk,f̄ also satisfies the liquidity requirements. Hence, it is without loss of
optimality in (7) to restrict attention to ϕk,f̄ and vary parameters k and f . Observing
that ϕ0,f̄ is a debt security and also the only such security with ϕ (x) = x, we get
that a debt security is optimal.

Note that debt with face value x is equivalent to selling the asset, and so, there
is no contradiction between Theorems 2 and 4. Debt is optimal when the liquidity
requirements are sufficiently stringent (ρ is high), and selling the asset is optimal
when they do not bind. As an illustration, Figure 6 depicts the optimal security for
different ρ’s in the uniform example. For high ρ’s, the constraint uϕ ≥ (ρ/δ)ϕ (x) is
binding and the optimal security is debt with face value Dρ that is weakly decreasing

18Such a k exists by continuity of µϕk,f̄ in k and the intermediate value theorem.
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Figure 6: Optimal debt face value D∗ and corresponding u∗ as functions of ρ
Note: The distribution of cash flows is H (x) = x− 1, x ∈ [1, 2] and δ = 0.85.

in ρ. For low ρ’s, the constraint is not binding, and it is optimal to sell the asset
(that is, Dρ = x).

Remark 4. Optimal debt in Theorem 4 is generally larger than the optimal debt in
Biais and Mariotti (2005)’s model where the issuer learns X at t = 1. Indeed, Biais
and Mariotti (2005) show that the optimal debt DBM in their model is also perfectly
liquid, that is, it is traded at price δDBM . Hence, debt DBM satisfies the liquidity
requirements in (7), and so, D∗ ≥ DBM and V ∗ ≥ V BM . Thus, despite the restric-
tions imposed by the liquidity requirements, the issuer still gains from the possibility
of choosing the signal distribution optimally, which is generally more complex than
simply learning cash flows.

Additionally, our predictions about investors’ private information about debt se-
curities differ from Biais and Mariotti (2005). In their paper, the issuer perfectly
learn cash flows. That is, he believes that debt is risk-free in most scenarios (when
X ≥ DBM). In contrast, optimal signals described in Proposition 1 reveal to the issuer
an expected debt value consistently lower than its face value, resulting in a generally
positive credit spread recorded by investors. This prediction aligns with the industry’s
standard practice of marking securities to market value, rather than valuing them at
face value on the balance sheet.

Optimality of AT1 Debt. We next relax the double-monotonicity assumption.
Let us call securities of the form ϕ(x) = 1 {X ≥ L}min {X,D} AT1 (additional tier-
1) debt securities. AT1 debt is a fairly new type of security that has become popular
in recent years among European banks. In normal times, it is a debt security that
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promises a fixed payment. Yet, unlike debt, in distress times, it is junior to other
debt but also to equity under certain circumstances (in particular, when the bank is
taken over by regulators due to inadequate capital or liquidity). Security of the form
ϕ(x) = 1 {X ≥ L}min {X,D} captures this by specifying a threshold L above which
ϕ coincides with debt D and below L the security is junior to all other claims and
pays 0.

Theorem 5. Suppose H admits a density on X . An AT1 debt security ϕD∗,L∗ (X) ≡
min {X,D∗}1 {X ≥ L∗} for some D∗ and L∗ solves the program (7) for Φ = Φ1.
Further, ϕD∗,L∗ strictly dominates standard debt (i.e., L∗ > x) and gives a payoff of
0 to the liquidity supplier.

AT1 debt was introduced as a quick way to deleverage banks that suffer losses.
This is done through write-downs of the principal at regulators’ discretion. Theorem
5 provides a complementary liquidity-based microfoundation for AT1 debt. It is
optimal in environments where buyers of securities have demand for securities that
satisfy external liquidity requirement and the issuer can offer any monotone security.
The latter assumption is particularly realistic for banks issuing AT1 debt: due to
regulators’ scrutiny, banks are less likely to engage in cash flow destruction, and the
sabotage argument justifying double-monotone securities is less applicable to them.

The proof of Theorem 5 combines the insights developed in Theorems 3 and
4. Live-or-die securities are optimal among monotone securities due to their high
informational sensitivity, while a cap on the security payout allows the issuer to
comply with the external liquidity requirements. Taken together, these insights result
in optimality of AT1 debt, which is a combination of debt (at high cash flows) and
live-or-die security (at low cash flows).

6 Imperfectly Competitive Liquidity Suppliers

In this section, we relax the assumption of a monopolistic liquidity supplier. Suppose
there are two states of the world: high-liquidity state ωH and low-liquidity state
ωL. We suppose that both security and information design can be conditioned on
ω, that is, the issuer chooses at t = 0 two securities and two signal distributions,
(ϕH , G

ϕH ) and (ϕL, G
ϕL). In state ωL, the liquidity supply is scarce and there is a

single monopolistic liquidity supplier as in the baseline model. In state ωH , there are
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competitive liquidity suppliers and the issuer chooses the security price to maximize
his payoff subject to liquidity suppliers breaking even.19 Formally, he offers price p
in state ωH solving

max
p

∫ p/δ

ϕH(x)

(p− δz) dGϕH (z) s.t. π (p|GϕH ) ≥ 0. (8)

The analysis is unchanged in the low-liquidity state. In state ωH , the maximal
surplus from trading security ϕH is (1− δ)µϕH . If the issuer chooses to be uninformed
about the security value and offers price µϕH , then the liquidity supplier gets payoff
of 0, and so, it satisfies the constraint in (8). This allows the issuer to extract the
whole surplus from trade of any security. Therefore, in state ωH , it is optimal for the
issuer to sell the asset and trade it at price µX , hence, fully extracting trade surplus.

Proposition 3. It is optimal to sell the asset in both states ωH and ωL. It is optimal
for the issuer to choose the signal distribution described in Proposition 1 in state ωL
and to receive no information in state ωH . The security price is δuX in state ωL and
µX in state ωH .

While the issuer sells the asset in both high- and low-liquidity states, the signal
distribution differs across states. In the high-liquidity state, the issuer chooses to be
ignorant and has no informational advantage over liquidity suppliers. As a result,
the liquidity suppliers bid the price up to the ex-ante value of the asset, µX , and the
issuer captures the whole trade surplus. In the low-liquidity state, the issuer chooses
a non-trivial signal distribution, which allows him to capture part of the gains from
trade as information rents even though the liquidity supplier has monopolistic power.
This result is in contrast to Biais and Mariotti (2005) showing that, when the issuer
learns X at t = 1, debt is optimal in both competitive and monopolistic setting and
the face value of debt is sensitive to the degree of competition.

Proposition 3 establish a connection between the competitive environment and the
presence of private information. When liquidity is abundant and liquidity suppliers
are competitive, issuers have no incentive to possess private information, as it would
hinder liquidity without benefiting them. However, in periods of scarce liquidity when
liquidity suppliers hold significant market power, issuers acquire private information

19We can also allow cash flow distribution H (·|ω) to vary across states, which would not change
the result.

30



about the downside of securities, which allows them to capture some information rents
while preserving the liquidity of their securities. In essence, it is optimal to remain
“ignorant” about asset quality during booms but gain sufficient private information
during downturns to maintain market liquidity. As a result, our theory predicts a
counter-cyclical pattern of private information among financial institutions.

This prediction aligns with previous theoretical studies that highlight a negative
relationship between economic activity and the extent of asymmetric information
(e.g., Gorton and Ordonez 2014, Fishman and Parker 2015). Nonetheless, our find-
ings diverge by attributing the correlation to shifts in investors’ bargaining power
prompted by fluctuations in economic activity, rather than external shocks impacting
asset quality.

7 Discussion

In this paper, we address a normative question: how the issuer can best jointly design
his private information about cash flows and securities to raise liquidity in crisis times?
In this section, we discuss positive implications of our theory.

Our theory predicts two most common ways of raising liquidity in practice –
selling assets (as an unconstrained optimum) and debt (as a constrained optimum
under the external liquidity requirements).20 Our microfoundation for these securities
differs from that in the classical literature which suggests that retaining assets’ cash
flows serves as a credible signal of quality in markets with significant information
asymmetry. In models with exogenous information, debt is considered the optimal
security, and selling the entire asset occurs only in cases when information asymmetry
is relatively mild.

However, with optimal information design, retention is generally unnecessary, and
selling the entire asset is strictly optimal. As a result, our novel empirical predic-
tion is that, even in environments where information asymmetry is a major concern,
investors can raise liquidity by selling assets rather than issuing more complex secu-
rities. This requires the seller to commit to having noisy private information about
high security valuations and more detailed information about low valuations. In turn,

20Here, we discuss positive implications of results under the double-monotonicity assumption.
As we discussed above, this assumption is common in the security design literature, captures in
reduced form unmodelled agency frictions, and is fairly weak as it encompasses most securities used
in practice (and many more).
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optimal information design can conflict with external liquidity requirements imposed
by regulators or shareholders. In environments with high degree of regulatory or
shareholder oversight, we predict that institutions will use debt securities instead of
asset sales to raise liquidity. This result explains why MBSs or CLOs that are held
by heavily regulated institutional investors are structured as debt securities.

As we discussed in the Introduction, the commitment to an optimal information
design can take many forms in practice. For financial securities, the issuer can mod-
ulate his informational advantage by adding clauses into the contract describing the
security that are more sensitive to his future private information (e.g., the insider’s
superior knowledge about the future financial/corporate policy of the company). The
structure of the underlying asset, such as the pool of mortgages or business loans,
can also affect the extent of asymmetric information, and in this way, is a tool of
information design. We next discuss several other examples of commitment to the
information design. Consistent with our theory, asset sales are common in these
examples despite a potentially high degree of information asymmetry.

Commitment through Organization Structure One way to commit to an in-
formation design is through the organization structure. Let us give two examples.

First, multidivisional firms generally consist of core and periphery divisions. Un-
der this organization structure, periphery divisions receive a great deal of autonomy
in both daily operations and short and medium-term strategic planning. The firm’s
general management maintains a hands-off approach and only launches thorough in-
vestigations when a crisis occurs. This organization design commits the management
not to learn granular information about periphery divisions and be more aware of
negative news.

Consistent with our theory, despite the potentially high degree of asymmetric
information vis-a-vis outsiders, liquidity-constrained multidivisional firms often divest
entire divisions to raise funds (Lang, Poulsen and Stulz 1995, Officer 2007) rather than
issue securities backed by division cash flows. Further, Kaplan and Weisbach (1992)
and Maksimovic and Phillips (2001) find that parent units usually divest periphery,
non-core divisions. A key insight of our analysis is that by not monitoring too closely
periphery divisions, firms can maintain the liquidity of these assets. Consistent with
this prediction, Schlingemann et al. (2002) find that multidivisional firms divest their
divisions in highly-liquid markets, and that, perhaps surprisingly, firms are less likely
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to divest their worst-performing units but rather tend to divest their most liquid
divisions.21

Another example is private equity funds, where general partners (GPs) oversee
investments and secure capital from limited partners (LPs). Despite LPs having
access to internal performance reports, their ability to evaluate investment strategies
and their involvement in decisions is limited, leading them to delegate decisions to
GPs. Our theory suggests that the passive role of LPs enables them to raise liquidity
by selling their stakes, whereas GPs face more constraints in this regard. This aligns
with the existence of an active secondary-market for LP stakes, where buyers, often
funds of funds, provide liquidity to selling LPs impacted by unexpected liquidity
needs (Nadauld et al. 2019). Interestingly, there is a segment of collateralized fund
obligations issuing highly-rated bonds backed by pools of stakes in private equity
funds, but its size remains relatively small. This indicates that the secondary markets
for LP stakes are adequately liquid.22

Limited Information Acquisition/Processing Resources. An optimal infor-
mation design can be attained by committing resources to learning about certain
aspects of underlying cash flows but not others. The qualitative properties of opti-
mal information designs in Proposition 1 – specifically, the focus on downside risks
rather than the upside potential – are in line with accounting principles and risk-
management practices. Accounting standard-setters, such as GAAP, recommend the
conservatism principle that is widely adopted by investment funds. According to the
dictum, financial institutions should record losses as soon as they learn about them,
whereas gains are not supposed to be recorded until they are realized (see Ruch and
Taylor 2015). Further, standard risk management involves keeping track of market
and credit risk exposures of the investment portfolio and the likelihood of potential

21Robot maker Boston Dynamics provides an interesting case study. It was bought by Google
in 2013 that sold it to Softbank in 2017. In turn, Softbank sold it to Hyundai in 2021 partially in
response to a liquidity shock caused by losses in its investment portfolio. Throughout the years,
Boston Dynamics maintained a high degree of autonomy by keeping the headquarters in Boston and
maintaining its own research team. Because of this autonomy (and in line with our theory), the head
companies were able to easily raise liquidity by selling it. Importantly, despite the complex nature of
the business, the sale did not involve designing complex securities backed by Boston Dynamics’ cash
flows. Heater, Brian. 2021. “Hyundai completes deal for controlling interest in Boston Dynamics.”
Tech Crunch, June 21. https://techcrunch.com/2021/06/21/hyundai-completes-deal-for-controlling-
interest-in-boston-dynamics/.

22Wiggins, Kaye. 2022. “Collateralised fund obligations: how private equity securitised itself.” Fi-
nancial Times, November 22. https://www.ft.com/content/e4c4fd61-341e-4f5b-9a46-796fc3bdcb03

33



losses.
Corporations allocate substantial resources into compliance with accounting stan-

dards and a proper risk management to avert catastrophic outcomes or costly law-
suits. In a world where resources for information acquisition/processing are limited,
this means fewer resources being directed toward refining the upside projections that
are by their nature more challenging to precisely gauge. Thus, the combination of
limited resources and the priority of risk management and sound accounting practices
leads corporations to have more refined information about risks than the upside po-
tential. Our theory suggests that this combination allows them to also better protect
themselves from the liquidity risk by enhancing the liquidity of their assets.

As another illustration, mutual and hedge funds can face large redemptions, which
can lead to the liquidation of less liquid assets like private equity or large blocks of
public shares in decentralized markets. Although these funds usually hold liquid secu-
rities as a safeguard, severe shocks during crises can disrupt this buffer. In such times,
buyers in decentralized markets wield considerable market power due to limited liq-
uidity and heightened demand. Except for activist funds with concentrated positions,
fund managers oversee numerous firms and have limited knowledge and capabilities
to provide effective governance for each company in its portfolio. Consequently, the
majority of investment funds tend to be passive, prioritizing liquidity needs in the
face of shocks. Consistent with our theory, these funds do not issue securities backed
by their holdings, opting instead to raise liquidity through portfolio liquidation.

Reputation Mechanisms. Commitment to an optimal information design can be
done through reputation. For example, VCs specialize in early-stage financing of
startups with a typical finite life-span of12 years after which the fund must return
money to investors. Due to the growth of private equity markets and a recent cool-
ing down of the IPO market, VC-backed startups often prefer to stay private for
longer time. This shift makes conventional exit strategies of IPOs or mergers and
acquisitions more challenging, leading VCs to liquidate their stakes in startups in an
illiquid market for early-stage private equity (Nigro and Stahl 2021, Bian et al. 2022).
Given the significant information asymmetry between VCs and external investors, it
is somewhat surprising, according to classical theory, that VCs simply sell their entire
stakes without developing more intricate securities structures.

Nevertheless, this aligns with our theory that stresses the role of information
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design. VCs often restrict themselves either contractually or through reputational
mechanisms to take a hands-off approach, wherein they provide financial and oper-
ational support to the startup but refrain from interference unless the startup fails
to meet predetermined milestones. This approach allows VCs to gain more detailed
information when the firm performs poorly, prompting them to investigate the under-
lying causes. Conversely, as long as the startup remains on track, VCs have limited
insight into its potential and day-to-day progress, ensuring that they do not set un-
realistically high valuation expectations. This hands-off approach, which contrasts
with the governance approach involving intensive monitoring of startups, has become
prominent in recent years, with many leading VCs maintaining a founder-friendly
reputation (Ewens et al. 2018, Lerner and Nanda 2020).

Further, our prediction that cash flow retention can play a limited role squares
with recent evidence on the market for syndicated loans. Blickle et al. (2020) report
that lead arrangers for syndicated loans, who are arguably the most informed investors
in loans due to their prominent role in the underwriting process, often sell their entire
loan stake to other investors, e.g., collateralized loan obligations, loan mutual funds,
insurance companies, pension funds. They also show that reputational concerns seem
to be important: lead arrangers of loans that turned sour tend to subsequently lose
the market share. While this evidence contradicts the standard theory that highlights
retention by the underwriter as a credible signaling device (e.g., Leland and Pyle
1977), it is consistent with our model. Maintaining reputation for focusing on the
downside risk in their due diligence rather than the upside potential enables lead
arrangers to offload completely their loan stake to institutional investors.
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Appendix: Omitted Proofs

Lemma 5. Gϕ ∈ Gϕ if and only if EGϕ [Z] = EHϕ [F ], and
∫ y
−∞H

ϕ (f) df ≥
∫ y
−∞G

ϕ (z) dz for all y.

Proof of Lemma 5. Consider a signal Z about F = ϕ (X) described by the probability
space (F × Z,F × Z , νF,Z). Here, F is the set of possible payoffs of security F (i.e.,
F ≡ ϕ (X )), Z is a sufficiently rich Polish space of possible signal realizations (in partic-
ular, F ⊆ Z), and (Z,F ) is distributed according to the probability measure νF,Z (f, z)

on the product of Borel σ-algebras, F × Z , such that the marginal distribution of νF,Z
on F coincides with the prior distribution of F , Hϕ. Let J ϕ be the set of all pos-
sible distributions of unbiased signals Z about F (for which Z = E [ϕ (X) |Z] almost
surely). By the Strassen theorem (see Theorem 7.A.1 in Shaked and Shanthikumar 2007),
Gϕ ∈ J ϕ if and only if EGϕ [Z] = EHϕ [F ] ≡ µϕ, and Gϕ second-order stochastically domi-
nates Hϕ:

∫ y
−∞H

ϕ (f) df ≥
∫ y
−∞G

ϕ (z) dz for all y. To prove the lemma, we will show that
J ϕ = Gϕ.

To show Gϕ ⊆ J ϕ, consider any Gϕ ∈ Gϕ and a corresponding signal S about X
described by the probability space (X×S,X ×S , νX,S). Let Z = E [ϕ (X) |S]. Then, (X,Z)

is distributed according to the joint distribution νX,Z on the probability space (X ×Z,X ×
Z , νX,Z) with Z ≡ E [X|S] and νX,Z (X ≤ x, Z ≤ z) ≡ νX,S (X ≤ x,E [ϕ (X) |S] ≤ z) for
all x and z. By the law of iterated expectations, E [ϕ (X) |Z] = E [E [ϕ (X) |S] |Z] = Z

almost surely. Hence, Z is an unbiased signal about F described by the probability space
(F × Z,F × Z , νF,Z), where νF,Z (BF , BZ) ≡ νX,Z

(
ϕ−1 (BF ) , BZ

)
for any (BF , BZ) ∈

F ×Z . Thus, Gϕ ∈ J ϕ.
To show J ϕ ⊆ Gϕ, consider any Gϕ ∈ J ϕ and a corresponding signal Z about F

described by the probability space (F × Z,F × Z , νF,Z) such that the marginal distri-
bution of νF,Z on Z coincides with Gϕ. Let S = Z and S = Z . For any x such
that [x, x] ∈ ϕ−1 (F ) and any BZ ∈ Z , define νX,Z ([x, x], BZ) ≡ νF,Z (ϕ ([x, x]) , BZ).
Next, consider any x such that [x, x] /∈ ϕ−1 (F ), which is the case when ϕ is flat in
some neighborhood of x. Let [x̌, x̂] be the largest interval on which ϕ is constant and
equals ϕ (x). Then, [x, x̌] ∈ ϕ−1 (F ) and [x̌, x̂] ∈ ϕ−1 (F ). For any BZ ∈ Z , define
νX,Z ([x, x], BZ) ≡ νF,Z (ϕ ([x, x̌]) , BZ)+νF,Z (ϕ ([x̌, x̂]) , BZ)PH (X ∈ [x, x]|X ∈ [x̌, x̂]). We
specified a signal Z about X described by (X × Z,X ×Z , νX,Z). Thus, J ϕ ∈ Gϕ, which
completes the proof of J ϕ = Gϕ.

Proof of Proposition 1. By Proposition 2 in Kartik and Zhong (2023), Guϕ,µϕ minimizes
the liquidity supplier’s profit over all Gϕ ∈ Gϕ, which equals Π (Gϕ) = µϕ − δuϕ. By
Theorem 2 in Kartik and Zhong (2023), for any Gϕ ∈ Gϕ, V (Gϕ) ≤ (1− δ)µϕ − Π (Gϕ) =

δ (uϕ − µϕ). Since Guϕ,µϕ attains this upper bound, V (ϕ) = δ (uϕ − µϕ). For any Gϕ
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satisfying (i) and (ii) in the statement of the proposition, V (Gϕ) = V (ϕ), and so, Gϕ is
optimal for ϕ. Conversely, if Gϕ is optimal, then V (Gϕ) = δ (uϕ − µϕ), and so, inequality
V (Gϕ) ≤ (1− δ)µϕ − Π (Gϕ) cannot be strict, which implies that trade always happens
under Gϕ. This in turn implies that u (Gϕ) = uϕ, otherwise, we get a contradiction to
optimality of either Gϕ or Guϕ,µϕ .

Proof of Lemma 1. The constraint in (4) is
∫ y
−∞ (Hϕ(z)−Gu,µϕ(z)) dz ≥ 0, which given

equation (3) for Gu,µϕ and l =
(
µϕ/u−δ

1−δ

)1−δ
u, is equivalent to L (y|ϕ, u) ≥ 0, y ∈ [l, u] ,

u ≤ ϕ (x), and l ≥ ϕ (x) (the latter is equivalent to L (ϕ (x) |ϕ, u) ≥ 0). Inequalities
L (y|ϕ, u) ≥ 0, y ∈ {ϕ (x)} ∪ [l, u] imply that for y ∈ [0, l),

L (y|ϕ, uϕ) = µϕ − δuϕ − (1− δ) y1/(1−δ) (uϕ)−δ/(1−δ) +

∫ y

−∞
Hϕ (x) dx

> µϕ − δuϕ − (1− δ) l1/(1−δ) (uϕ)−δ/(1−δ) +

∫ y

−∞
Hϕ (x) dx =

∫ y

−∞
Hϕ (x) dx ≥ 0,

where the first inequality is by y < l; the first equality is by integration by parts; the second

equality is by l =
(
µϕ/uϕ−δ

1−δ

)1−δ
uϕ. Thus, the constraint in (4) is also equivalent to (5) and

u ≤ ϕ (x), which is the desired conclusion.

Proof of Theorem 1. 1) Since ϕ̃ is more informationally sensitive than ϕ, there is x∗ ∈
[x, x̄] such that ϕ̃(x) ≤ ϕ(x) for x < x∗ and ϕ̃(x) ≥ ϕ(x) for x > x∗. Let f∗ ≡ ϕ(x∗) and
f∗ ≡ limx↑x∗ ϕ(x). By monotonicity of securities, we can choose x∗ such that f∗ = ϕ(x∗) ≤
ϕ̃(x∗). Since µϕ̃ = µϕ and [ϕ (x) , ϕ (x)] ⊆ [ϕ̃ (x) , ϕ̃ (x)],

∫ y
−∞

(
H ϕ̃ (f)−Hϕ (f)

)
df = 0 for

y ≤ ϕ̃ (x) and y ≥ ϕ̃ (x). Since Hϕ = H ◦ ϕ−1,

H ϕ̃(f) = H (sup {x : ϕ̃ (x) ≤ f}) ≥ H (sup {x : ϕ (x) ≤ f}) = Hϕ(f),f ∈ (ϕ̃ (x) , f∗) ; (9)

H ϕ̃(f) = H (sup {x : ϕ̃ (x) ≤ f}) = H (sup {x : ϕ (x) ≤ f}) = Hϕ(f),f ∈ [f∗, f
∗) ; (10)

H ϕ̃(f) = H (sup {x : ϕ̃ (x) ≤ f}) ≤ H (sup {x : ϕ (x) ≤ f}) = Hϕ(f),f ∈ [f∗, ϕ̃ (x)) . (11)

Hence, for y ∈ (ϕ̃ (x) , f∗],
∫ y
−∞

(
H ϕ̃ (f)−Hϕ (f)

)
df ≥ 0. For y ∈ (f∗, ϕ̃ (x)),

∫ y

−∞
H ϕ̃ (f) df =ϕ̃ (x)− µϕ̃︸︷︷︸

=µϕ

−
∫ ϕ̃(x)

y
H ϕ̃ (f)︸ ︷︷ ︸
≤Hϕ(f)

df

≥ϕ̃ (x)− µϕ −
∫ ϕ̃(x)

y
Hϕ (f) df

=ϕ (x)− µϕ −
∫ ϕ(x)

y
Hϕ (f) df =

∫ y

−∞
Hϕ (f) df.

(12)
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Thus,
∫ y
−∞

(
H ϕ̃ (f)−Hϕ (f)

)
df ≥ 0 for all y, and so, Gϕ ⊆ Gϕ̃ and V (ϕ̃) ≥ V (ϕ).

2) Suppose there is ε > 0 such that H ϕ̃ (f) > Hϕ (f) for all y ∈ (ϕ̃ (x) , ϕ̃ (x) + ε) and
H ϕ̃ (f) < Hϕ (f) for all y ∈ (ϕ̃ (x)− ε, ϕ̃ (x)). Hence, for y ∈ (ϕ̃ (x) , f∗],∫ y

−∞

(
H ϕ̃ (f)−Hϕ (f)

)
df ≥

∫ min{y,ϕ̃(x)+ε}

ϕ̃(x)

(
H ϕ̃ (f)−Hϕ (f)

)
df > 0,

and for y ∈ (f∗, ϕ̃ (x)),∫ y

−∞
H ϕ̃ (f) df =ϕ̃ (x)− µϕ̃︸︷︷︸

=µϕ

−
∫ ϕ̃(x)

y
H ϕ̃ (f) df

≥ϕ̃ (x)− µϕ −
∫ max{ϕ̃(x)−ε,y}

y
H ϕ̃ (f)︸ ︷︷ ︸
≤Hϕ(f)

df −
∫ ϕ̃(x)

max{ϕ̃(x)−ε,y}
H ϕ̃ (f)︸ ︷︷ ︸
<Hϕ(f)

df

>ϕ̃ (x)− µϕ −
∫ ϕ̃(x)

y
Hϕ (f) df =

∫ y

−∞
Hϕ (f) df,

which proves (6). This together with µϕ̃ = µϕ and Guϕ,µϕ ∈ Gϕ implies
∫ y
−∞Guϕ,µϕ̃ (z) dz <∫ y

−∞H
ϕ̃ (f) df, y ∈ (ϕ̃ (x) , ϕ̃ (x)). If in addition [lϕ, uϕ] ⊂ (ϕ̃ (x) , ϕ̃ (x)), then there is ε > 0

such that, for uε = uϕ+ε and lε =
(
µϕ̃/uε−δ

1−δ

)1−δ
uε,
∫ y
−∞Guε,µϕ̃ (z) dz <

∫ y
−∞H

ϕ̃ (f) df, y ∈
(ϕ̃ (x) , ϕ̃ (x)) and [lε, uε] ⊂ (ϕ̃ (x) , ϕ̃ (x)). Thus, Guε,µϕ̃ ∈ Gϕ̃, and by Proposition 1,
V (ϕ̃) ≥ δ

(
uε − µϕ̃

)
> δ (uϕ − µϕ) = V (ϕ).

Proof of Lemma 2. By Proposition 1, there is an optimal signal distribution for security
ϕ, Gϕ, and under Gϕ, the liquidity supplier always trades at price δuϕ. Let Gϕ̃ (z) ≡
Gϕ (z −∆) for all z. Since Gϕ ∈ Gϕ, Gϕ̃ ∈ Gϕ̃. By Lemma 4 in Biais and Mariotti
(2005), under Gϕ̃, the liquidity supplier optimally chooses a screening cutoff type that is
weakly greater than uϕ + ∆ = u

(
Gϕ̃
)
. Hence, the liquidity supplier finds it optimal under

Gϕ̃ to offer δu
(
Gϕ̃
)

= δ (uϕ + ∆) and buy from all types. Thus, V (ϕ̃) ≥ V
(
Gϕ̃
)

=

δ
(
uϕ + ∆− µϕ̃

)
= δ (uϕ − µϕ) = V (Gϕ) = V (ϕ) . By Proposition 1, V (ϕ̃) = δ

(
uϕ̃ − µϕ̃

)
,

and so, uϕ̃ ≥ uϕ + ∆.

Proof of Theorem 2. Suppose ϕ solves (2) for Φ = Φ2. Suppose to contradiction that
µϕ < µX , where µX = EH [X]. The fact that ϕ ∈ Φ2 implies that ϕ is Lipschitz with
parameter K = 1. By Lemma 2, it is without loss of optimality within the class Φ2 to
focus on securities that include safe debt x: ϕ (x) = x. For any such ϕ, there is a security
ϕk (x) = x/2 + max {0, X − k} such that µϕ = µϕk and ϕk ∈ Φ2 (see Figure 3). This
follows from the continuity of EH [ϕk (X)] in k (indeed, EH [ϕk (X)− ϕk+ε (X)] ∈ [0, ε] for
any ε > 0) and ϕx (x) ≤ ϕ (x) ≤ ϕx/2 (x) for all x ∈ X . Since µϕ < µX , k > x/2, and so,
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Hϕk (f) > Hϕ (f) = 0 for f ∈ (x/2, x). This, in conjunction with µϕ = µϕk , implies that
ϕk (x) > ϕ (x), and so, Hϕk (f) < Hϕ (f) = 1 for f ∈ (ϕ (x) , ϕk (x)). By construction, ϕk it
is more informationally sensitive than ϕ. Further, [lϕ, uϕ] ⊆ [ϕ (x) , ϕ (x)] ⊂ (ϕk (x) , ϕk (x)).
ByTheorem 1, V (ϕk) > V (ϕ), which is a contradiction to optimality of ϕ. Therefore,
µϕ = µX .

Proof of Lemma 3. Let L be the maximal L ≥ x such that ϕ (X)1 {X ≤ L} = 0 with
probability 1. Since µϕ > δuϕ ≥ 0, L < x. By Lemma 1, for y ∈ [0, uϕ], L (y|ϕ, uϕ) = ϕ (x)−
δuϕ−(1− δ) y1/(1−δ) (uϕ)−δ/(1−δ)−

∫ ϕ(x)
y Hϕ (f) df ≥ 0. Consider ϕ̃ (X) = ϕ (X)1

{
X ≥ L̃

}
, L̃ >

L. By L̃ > L, H ϕ̃ (f) = Hϕ (f) for f ≥ ϕ
(
L̃
)
, and so, L (y|ϕ̃, uϕ) = L (y|ϕ, uϕ) ≥ 0 for

y ∈ [0, uϕ] ∩
[
ϕ
(
L̃
)
,∞
)
. For y ∈

[
0, ϕ

(
L̃
)]

, Ly (y|ϕ̃, uϕ) = − (y/uϕ)δ/(1−δ) + H
(
L̃
)
is

strictly decreasing in y. Hence, L (y|ϕ̃, uϕ) is strictly concave in y on
[
0, ϕ

(
L̃
)]

, and it

attains its minima on
[
0, L̃

]
at y = 0 or y = ϕ

(
L̃
)
. We showed that L

(
ϕ
(
L̃
)∣∣∣ϕ̃, uϕ) =

L
(
ϕ
(
L̃
)∣∣∣ϕ, uϕ) ≥ 0. Further, L (0|ϕ̃, uϕ) ≥ 0 is equivalent to µϕ̃ − δuϕ ≥ 0. Since H

admits a density h on X , EH [ϕ̃ (X)] =
∫ ϕ(x)

L̃
ϕ (x)h (x) dx is continuous in L̃. This to-

gether with µϕ − δuϕ > 0 implies that for L̃ sufficiently close to L, µϕ̃ − δuϕ ≥ 0, and so,
L (0|ϕ̃, uϕ) ≥ 0. Thus, for such L̃, L (y|ϕ̃, uϕ) ≥ 0 on y ∈ [0, uϕ]. By Lemma 1, uϕ̃ ≥ uϕ,
and so, V (ϕ̃) ≥ δ

(
uϕ − µϕ̃

)
> δ (uϕ − µϕ) = V (ϕ), which is the desired conclusion.

Proof of Theorem 3. Since H admits a density h on X , EH [X1 {X ≥ L}] =
∫ x
L xh (x) dx

is continuous in L and ranges from 0 (for L = x) to µX (for L = x). Hence, for any
µ ∈

[
0, µX

]
, there is L such that EH [1 {X ≥ L}X] = µ. Further, given the same average

payoff, a live-or-die security is more informationally sensitive than any other security in Φ1.
By Theorem 1, there is a live-or-die security that solves (2) for Φ = Φ1.

SinceH admits a density on X , Ly
(
x
∣∣X,uX) = −

(
x/uX

)1/(1−δ)
< 0, and so, L

(
x
∣∣X,uX) >

0, which implies that µX − δuX > 0. By Lemma 3, ϕ (X) = X(= X1 {X ≥ x}) cannot
be optimal, and so, in the optimum, L∗ > x. By Lemma 3, the optimal ϕ∗ must satisfy
µϕ

∗ − δuϕ∗
= 0.

Proof of Lemma 4. The “if” direction is trivial. To prove the “only if” statement, suppose
to contradiction that uϕ < (ρ/δ)ϕ (x) but security ϕ satisfies the liquidity requirements, that
is, it is always sold at price p ≥ ρϕ (x). The latter implies that the issuer’s expected payoff
equals p− δµϕ ≥ ρϕ (x)− δµϕ > δ(uϕ − µϕ), which contradicts Proposition 1.

Proof of Theorem 4. Consider securities ϕk,f (X) = min
{
f,max {0, X − k}

}
described

by two parameters k and f . For any k > 0 and ε > 0, 0 ≤ EH
[
ϕk,f̄ (X)− ϕk+ε,f̄ (X)

]
≤ ε.

Hence, EH
[
ϕk,f̄ (X)

]
is continuous in k and takes all values between 0 (for k = x) and
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EH
[
min

(
X, f

)]
(for k = 0). Thus, for any ϕ ∈ Φ2, there is k such that EH

[
ϕk,f (X)

]
= µϕ,

where f = ϕ (x). Let us argue that ϕk,f dominates ϕ. By Lemma 2, it is without loss of
generality to assume that ϕ (x) = x.23 Since ϕ (x) = x and ϕ ∈ Φ2, x − k > ϕ (x), and
so, ϕk,f (x) = f on x ∈

[
f + k, x

]
. Since ϕk,f is more informationally sensitive than ϕ,

Gϕ ⊆ Gϕk,f and V
(
ϕk,f

)
≥ V (ϕ) (by Theorem 1). Note that if uϕ ≥ (ρ/δ) f , then

(by Proposition 1 and ϕk,f (x) = f), uϕk,f ≥ uϕ ≥ (ρ/δ)ϕk,f (x). To summarize, for any ϕ
satisfying the constraint in (7), there is ϕk,f̄ that dominates ϕ and also satisfies it. By Lemma
2, ϕ̃ (X) = ϕk,f (X) + min {k, x} weakly dominates ϕk,f . By the argument in footnote 23, ϕ̃
satisfies the constraint in (7). If k ≤ x, then ϕ̃ is debt. Otherwise, µϕ̃ = µϕ+x. In this case,
we repeatedly apply the same argument to construct (ϕ̃i)

I
i=1 such that for all i, ϕ̃i weakly

dominates ϕ̃i−1 (where ϕ̃0 = ϕ̃) and ϕ̃i satisfies the constraint in (7). Since µϕ̃i = µϕ̃i−1 +x

and µϕ̃i ≤ µX , I is finite, and so, ϕ̃I must be debt.
To prove the second part, suppose in addition ρ < δ. Consider a non-debt security ϕ

satisfying the constraint in (7) and such that ϕ (x) = x, which is without loss of optimality by
Lemma 2. We will prove that there is ϕ̂ that strictly dominates ϕ and satisfies the constraint
in (7). Thus, the only solution to (7) is a debt security. By the argument above, ϕk,f weakly
dominates ϕ, where f = ϕ (x). Since ϕ is not debt, k > 0. Fix ∆ ∈ (0,min{k, x}). By
Lemma 2, ϕ̃ (X) = ϕk,f (X) + ∆, weakly dominates ϕk,f and uϕ̃ ≥ uϕ + ∆. By ρ < δ,

uϕ̃ ≥ uϕ + ∆ ≥ (ρ/δ)ϕ (x) + ∆ = (ρ/δ) ϕ̃ (X) + ∆ (1− ρ/δ) . (13)

For any ε ∈ (0,∆), consider security ϕ̂ε,K (X) = max {ϕ̃ (X)− ε,X −K}. Since 0 ≤
EH [ϕ̂ε,K (X)− ϕ̂ε,K+ε (X)] ≤ ε for ε > 0, EH [ϕ̂ε,K (X)] is continuous in K and it takes
values between µϕ̃ − ε (for K = x) and µX (for K = 0). Hence, there is K(ε) such that
EH
[
ϕ̂ε,K(ε) (X)

]
= µϕ̃. Further, ϕ̂ε,K(ε) converges point-wise to ϕ̃ as ε → 0. Hence, for

sufficiently small ε > 0, ϕ̂ε,K(ε) (x) < ϕ̃ (x) + ∆ (δ/ρ− 1), which combined with (13) implies
uϕ̃ ≥ (ρ/δ) ϕ̃ (X) + ∆ (1− ρ/δ) ≥ (ρ/δ) ϕ̂ε,K(ε) (x). Choose one such ε and let ϕ̂ = ϕ̂ε,K(ε).

By construction, ϕ̂ is more informationally sensitive than ϕ̃, and
[
lϕ̃, uϕ̃

]
⊆ [ϕ̃ (x) , ϕ̃ (x)].

Further, ϕ̃ (x) = f < x−K(ε) = ϕ̂ (x) for x in some left neighborhood of x, and ϕ̃ (x) = ∆ >

∆−ε = ϕ̂ (x) for x in some right neighborhood of x. Hence, there is ε > 0 such thatH ϕ̂ (f) <

1 = H ϕ̃ (f) for f ∈ (ϕ̂ (x)− ε, ϕ̂ (x)), H ϕ̂ (f) > 0 = H ϕ̃ (f) for f ∈ (ϕ̂ (x) , ϕ̂ (x) + ε), and[
lϕ̃, uϕ̃

]
⊆ [ϕ̃ (x) , ϕ̃ (x)] ⊂ (ϕ̂ (x) , ϕ̂ (x)). By Theorem 1, V (ϕ̂) > V (ϕ̃), which given the

same mean payoffs means that uϕ̂ > uϕ̃. As we argued above, uϕ̃ ≥ (ρ/δ) ϕ̂ (x), and so, ϕ̂
satisfies the constraint in (7) and strictly dominates ϕ̃, which is the desired conclusion.

23Indeed, our argument applies to ϕ̃(X) = ϕ(X)+x−ϕ(x), which by Lemma 2 weakly dominates
ϕ. Further, uϕ ≥ (ρ/δ)ϕ (x) implies uϕ̃ ≥ uϕ + x− ϕ(x) ≥ (ρ/δ)ϕ (x) + x− ϕ(x) ≥ (ρ/δ) ϕ̃ (x).
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Proof of Theorem 5. Consider AT1 debt ϕD,L described by L and D. For a fixed D ∈
[0, x], sinceH admits a density h on X , EH [ϕD,L (X)] =

∫ x
L min {x,D}h (x) dx is continuous

in L and ranges from 0 (for L = x) to µD = EH [min {X,D}] (for L = x). Hence, for any
µ ∈

[
0, µD

]
, there is L such that EH [ϕD,L (X)] = µ. Further, given the same average payoff,

an AT1 debt is more informationally sensitive than any other security ϕ ∈ Φ1 satisfying
ϕ (x) = D. By Theorem 1, there is a live-or-die security that solves (7) for Φ = Φ1. The
proof of L∗ > x and π (ϕD∗,L∗) = 0 follows from the same argument as in Theorem 3.
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Online Appendix (Not for Publication)

Auxiliary Results

In the paper, we use the following integration by parts formula for Lebesgue-Stieltjes inte-
grals.

Lemma 6 (Integration by parts). Suppose F is distributed according to the c.d.f. H with
support

[
f, f

]
. Then, for any y ∈

[
f, f

]
,
∫ y
f fdH (f) = yH (y)−

∫ y
f H (f) df.

Proof. Let H− (f) be the left-continuous regularization of H with the convention that
H−

(
f
)

= 0. Then,
∫ y
f fdH (f) = yH (y) −

∫ y
f H

− (f) df = yH (y) −
∫ y
f H (f) df, where

the first equality is by Theorem VI.90 in Dellacherie and Meyer (1982), and the second
equality is by the fact that a monotone function can have at most a countable number of
discontinuities, and so, H− (f) = H (f) almost everywhere.

Proof of Proposition 2. We first argue that for any ϕ ∈ Φ1 with ϕ(x) < x, there is
ϕ̃ ∈ Φ1 with ϕ̃(x) = x such that V (ϕ̃) > V (ϕ). By Lemma 2, if ϕ(x) < x, then there is
ε > 0 such that ϕ(X)+ε and V (ϕ+ ε) ≥ V (ϕ). Hence, without loss of generality, suppose
that ϕ(x) < x. Consider ϕ̃ such that ϕ̃(x) = ϕ(x) + ε and ϕ̃(x) = ϕ(x)− ε for some ε, ε > 0

such that ϕ̃ ∈ Φ1 and γε = (1− γ)ε. By construction, µϕ̃ = µϕ, ϕ̃ is more informationally
sensitive than ϕ, H ϕ̃ (f) = 1 − γ > 0 = Hϕ (f) for y ∈ (ϕ̃ (x) , ϕ̃ (x) + ε) and H ϕ̃ (f) =

1−γ < 1 = Hϕ (f) for all y ∈ (ϕ̃ (x)− ε, ϕ̃ (x)), and [lϕ, uϕ] ⊆ [ϕ (x) , ϕ (x)] ⊂ (ϕ̃ (x) , ϕ̃ (x)).
By Theorem 1, V (ϕ̃) > V (ϕ), and so, any optimal security satisfies ϕ(x) = x.

By Lemma 1 and X taking only two values, for any ϕ ∈ Φ1, uϕ is the largest u ≤ ϕ (x)

satisfying

L (y|ϕ, u) = µϕ − δu− (1− δ)y1/(1−δ)u−δ/(1−δ) + max {0, y − ϕ (x)} (1− γ) ≥ 0, y ∈ [0, u] .

Note that it is sufficient that this inequality holds for y ∈ [ϕ (x) , u]. Since Ly (y|ϕ, u) =

1 − γ − (y/u)δ/(1−δ), L (y|ϕ, u) is strictly concave in y, hence, it attains its minimum at
y = u or y = ϕ (x). We have that L (u|ϕ, u) ≥ 0 follows from u ≤ ϕ (x). Thus,

uϕ = max
{
u ∈ [ϕ (x) , ϕ (x)] : L (ϕ (x)|ϕ, u) = µϕ − δu− (1− δ)ϕ (x)

1
1−δ u−

δ
1−δ ≥ 0

}
.

(14)
For ϕ that is not a safe debt (with µϕ > ϕ (x)), uϕ > ϕ (x). Since ∂

∂uL (ϕ (x)|ϕ, u) =

−δ
(

1− (ϕ (x) /u)1/(1−δ)
)
< 0 for u > ϕ (x), if lϕ > ϕ (x) (equivalently, L (ϕ (x)|ϕ, uϕ) > 0),

then uϕ = ϕ (x).
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X = x X = x

B τ I(1− γ) 0
G

(
1− τ I

)
(1− γ) γ

(a) Signal SI

X = x X = x

B 1− γ (1− τ II)γ
G 0 τ IIγ

(b) Signal SII

Table 2: Signal distributions
Tables describe joint distributions of signals SI , SII and cash flows X. Parameter τ controls the precision of signals

with τ = 0 corresponding to uninformative signals and τ = 1 corresponding to perfectly revealing signals.

Suppose lX > x. We will show that ϕ(X) = X is suboptimal. By the argument
above, if lX > ϕ (x), then L

(
ϕ (x)

∣∣ϕ, uX) > 0 and uX = ϕ (x). Consider ϕ̃ with ϕ̃ (x) =

x and ϕ̃ (x) = x − ε for some ε > 0 such that L
(
ϕ̃ (x)

∣∣ϕ̃, uX) > 0, which exists by
L
(
ϕ (x)

∣∣ϕ, uX) > 0. Thus, uϕ̃ = uX . By construction, µϕ̃ < µϕ. Therefore, V (ϕ̃) =

δ
(
uX − µϕ̃

)
> δ

(
uX − µϕ

)
= V (ϕ).

.1 Model with Two States and Two Signals

Consider the model with two states: X = x with probability 1 − γ and X = x with
probability γ ∈ (0, 1). We assume that

(1− δ)x(1− γ) > γx+ (1− γ)x− δx (15)

so that if the issuer perfectly learns X, the liquidity supplier prefers to screen and offers
δx rather than making the pooling offer δx. Consider the two binary signals SI and SII

in Table 2. Signal distribution SI in Table 2a perfectly reveals “bad news” that X = x

when SI = B, while signal SI = G leads to the posterior probability of x equal to γ
1−(1−γ)τ .

In turn, signal SII in Table 1b perfectly reveals “good news” that X = x when SII = G,
whereas signal SII = B leads to the posterior probability of x equal to (1−τ)γ

(1−τ)γ+1−γ . The
precision of the signal distributions is parameterized by τ i ∈ [0, 1], i ∈ {I, II}. We solve for
the optimal security ϕi ∈ Φ2 and precision τ i ∈ [0, 1] for each type of signals i ∈ {I, II}.
By Lemma 2, it is without loss to assume that ϕi (x) = x, i ∈ {I, II}. Thus, the issuer’s
problem in each case boils down to finding

(
ϕi (x) , τ i

)
to maximize his expected payoff.

Proposition 4. Suppose that inequality (15) holds. Then,

1. ϕI (x) = x, τ I = 1
1−γ

(
1− 2δ

(
1 +

√
1 + 4δ(1−δ)x

γ(x−x)

)−1
)
;

2. ϕII (x) = δx (1− γ) / (δ − γ), τ II = 1.
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Proof. We solve each case separately.
Perfectly revealing bad news: We first fix the value of ϕI (x) and solve for τ I . The

issuer gets positive information rents only if the liquidity supplier prefers the pooling offer
p = δE [ϕ (X) |G] to the screening offer p = δx that is only accepted by B-type (with
probability τ I(1− γ)). Thus, it is necessary that

(1− δ)xτ I(1− γ) ≤ µϕI − δE
[
ϕI (X) |G

]
. (16)

In this case, the issuer’s expected payoff equals δ
(
E
[
ϕI (X) |G

]
− µϕI

)
. Since E

[
ϕI (X) |G

]
=

x +
(
ϕI (x)− x

) γ
1−(1−γ)τI

, making signal SI more precise (by increasing τ I) increases the
issuer’s expected payoff but tightens the constraint (16). Thus, the optimal value τ I is the
highest value that makes (16) bind (unless τ I = 1). Given E

[
ϕI (X) |G

]
= x + γ(ϕI(x)−x)

1−(1−γ)τI

and µϕI = ϕI (x) γ + x(1− γ), we can re-write (16) as

0 ≤ (ϕI (x)− x)

(
γ − γδ

1− (1− γ)τ I

)
+ x(1− δ)

(
1− (1− γ)τ I

)
,

or equivalently,

(
ϕI (x)− x

)( γδ

(1− (1− γ)τ I)2 −
γ

1− (1− γ)τ I

)
− x(1− δ) ≤ 0.

Let us denote a =
γ(ϕI(x)−x)
1−(1−γ)τI

. Then,

δ

γ(ϕI (x)− x)
a2 − a− x(1− δ) ≤ 0.

The monotonicity of ϕI implies that the last inequality holds for all a ∈
[
0, a∗

(
ϕI (x)

)]
,

where

a∗
(
ϕI (x)

)
≡ γ

(
ϕI (x)− x

) 1 +
√

1 + 4δ(1−δ)x
γ(ϕI(x)−x)

2δ
.

Thus, whenever τ I < 1,

τ I =
1

1− γ

1− 2δ

(
1 +

√
1 +

4δ(1− δ)x
γ (ϕI (x)− x)

)−1
 . (17)
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Then, the requirement τ I < 1 is equivalent to

1 +

√
1 +

4δ(1− δ)x
γ (ϕI (x)− x)

<
2δ

γ

or given that δ > γ,
ϕI (x)

x
>
δ (1− γ)

δ − γ
.

Note that this condition holds for ϕI (x) = x by (15).
Given the optimal signal precision in (??), the issuer’s expected payoff equals

δ
(
E
[
ϕI (X) |G

]
− µϕ

)
=δ

(
x+

γ(ϕI (x)− x)

1− (1− γ)τ I
− (1− γ)x− γϕI (x)

)
=δγ(ϕI (x)− x)

(1− γ)τ I

1− (1− γ)τ I

=δγ

1− 2δ

1 +
√

1 + 4δ(1−δ)x
γ(ϕI(x)−x)

1 +
√

1 + 4δ(1−δ)x
γ(ϕI(x)−x)

2δ

(ϕI (x)− x
)

=γ

(
1− 2δ +

√
1 +

4δ(1− δ)x
γ (ϕI (x)− x)

)(
ϕI (x)− x

2

)
.

The derivative of this function with respect to ϕI (x)− x equals:

γ

2

1− 2δ +

√
1 +

4δ(1− δ)x
γ (ϕI (x)− x)

−
4δ(1−δ)x
γ(ϕI(x)−x)

2
√

1 + 4δ(1−δ)x
γ(ϕI(x)−x)


=
γ

2

1− 2δ +
2 + 2 4δ(1−δ)x

γ(ϕI(x)−x)
− 4δ(1−δ)x

γ(ϕI(x)−x)

2
√

1 + 4δ(1−δ)x
γ(ϕI(x)−x)


=
γ

2

1− 2δ +
2 + 4δ(1−δ)x

γ(ϕI(x)−x)

2
√

1 + 4δ(1−δ)x
γ(ϕI(x)−x)



=
γ

4

2 (1− 2δ) +

√
1 +

4δ(1− δ)x
γ (ϕI (x)− x)

+
1√

1 + 4δ(1−δ)x
γ(ϕI(x)−x)︸ ︷︷ ︸

≥2


≥γ (1− δ) .

Thus, optimal ϕI (x) = x.
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Perfectly revealing good news: Consider now the signal distribution in Table 1b. We first
fix the value of ϕII (x) and solve for τ II . First, note that the issuer gets positive information
rents only if the liquidity supplier makes a pooling offer p = δϕII (x) equal to the security
value for type G. The liquidity supplier prefers to do so rather than make screening offer
E
[
ϕII (X) |B

]
accepted with probability 1− γ +

(
1− τ II

)
γ if and only if

(1− δ)E
[
ϕII (X) |B

] (
1− γ +

(
1− τ II

)
γ
)
≤ µϕII − δϕII (x) . (18)

Then, the issuer’s expected payoff is δ
(
ϕII (x)− µϕII

)
= δ

(
ϕII (x)− x

)
(1 − γ) and is

independent of the signal precision τ II . Increasing informativeness of signal τ II decreases
the payoff from making a screening offer E

[
ϕII (X) |B

]
, as it lowers both E

[
ϕII (X) |B

]
and the probability of its acceptance. Hence, τ II = 1 is optimal for any ϕII , that is,
the issuer perfectly learns the value of security. Plugging it into (18), we get ϕII (x) ≤
δx (1− γ) / (δ − γ). Thus, the issuer optimally sets ϕII (x) = δx (1− γ) / (δ − γ) and τ II =

1. Further, inequality (15) implies that ϕII (x) < x which means that under the SII the
issuer strictly benefits from using retentions.
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