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Abstract

We propose a theory of payments that highlights a conflict between the roles of medium

of exchange and store of value. We posit that payments must involve the reciprocal transfer

of a scarce reserve good, which holds value for other non-payment purposes. The theory

demonstrates that agents make payments only when reserves are abundant enough and when

the conflict is low. Otherwise, history-dependent equilibria arise in which an agent’s payment

decision depends on the payment history of other agents within an equilibrium. The theory

explains why payments frequently encounter delays and interruptions. Improving payment

technologies may not reduce such fragility when reserves remain scarce and valuable for non-

payment functions. The theory helps explain the evolution of money and payment systems,

encompassing metallic payments before fiat money, modern bank payments, cross-border

payments, and contemporary digital payment systems.
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1 Introduction

Money and payments play a crucial role in economic transactions, an idea widely acknowledged

since Fisher (1911), Baumol (1952), and Tobin (1956). Throughout history, humans have devel-

oped various means of payment from wheat to shells to metal coins. Modern payments are based

on fiat money and intermediated by banks, and the economic scale is huge.1 Recently, payment

systems have undergone significant digitization with the emergence of fast payment platforms,

cryptocurrencies, and central bank digital currencies (CBDCs) (e.g., Duffie, 2019, Brunnermeier,

James and Landau, 2019, Brunnermeier and Payne, 2022). Economists have long focused on

technology and the ability to maintain stable prices when assessing the efficiency of money and

payments. Across generations of evolution, it becomes evident that the payment systems that

have thrived are indeed the ones that embrace superior technologies while maintaining stable

inflation levels (Friedman and Schwartz, 1963, Hayek, 1976, Steinsson, 2023a,b).

In this paper, we argue that another equally crucial but often overlooked factor shapes the evo-

lution of money and payment systems: financial fragility. Payments are inherently fragile, sus-

ceptible to delays and interruptions even without a fundamental shock. Historical records show

frequent disruptions in payment systems, particularly in transactions involving small amounts,

famously known as the “big problem for small change” (Sargent and Velde, 2001, Steinsson,

2023a). Despite technological advancements, modern bank payments encounter significant vol-

untary delays and interruptions during both normal and crisis times (McAndrews and Potter,

2002, Afonso and Shin, 2011, Copeland, Duffie and Yang, 2020, Afonso, Duffie, Rigon and

Shin, 2022).2 A notable recent example is the unprecedented spike in Treasury repo rates by

over 1,000 basis points in September 2019 (Afonso, Cipriani, Copeland, Kovner, La Spada and

Martin, 2020, Correa, Du and Liao, 2020), where dysfunctional bank payments played a key role

(Copeland, Duffie and Yang, 2020, Afonso, Duffie, Rigon and Shin, 2022).3 Understanding the

root causes of such fragility is vital for comprehending the development and evolution of payment

methods, and the reciprocal nature of payments naturally necessitates a dynamic model.

1For example, the Fedwire, the real-time gross settlement funds transfer system for financial institutions operated
by the U.S. Federal Reserve Banks, sees a daily volume of more than $4.2 U.S. trillion in 2022. Payments per se
also generate huge revenues for the financial institutions that handle them: global payments revenues totaled $2.2
U.S. trillion in 2021, roughly 3% of global GDP.

2The interbank lending markets, which rely on short-term credits to facilitate interbank payments, also constantly
experience disruptions (e.g., Ashcraft and Duffie, 2007, Afonso, Kovner and Schoar, 2011, Ashcraft, McAndrews
and Skeie, 2011, Acharya and Merrouche, 2013, Craig and Ma, 2021).

3Indeed, when testified before the House Financial Services Committee on June 21, 2023, Federal Reserve Chair
Jerome Powell admitted that future interest hikes should avoid a repeat of the 2019 repo market and interbank
payment crisis. See “Powell Haunted by Repo Crisis as Fed Aims to Cut Balance Sheet,” Bloomberg, July 9, 2023.
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This paper builds a new framework to understand the fragility of payments. We posit that set-

tling any payment must involve the transfer of a reserve good, which has limited supply and holds

value for other non-payment functions (e.g., store of value). We show that these two natural as-

sumptions of reserve scarcity and multi-functionality go a long way: they imply that payments are

intrinsically fragile, and advancements in payment technologies cannot eliminate this fragility.

The core insight of our framework lies in uncovering a fundamental conflict between two

essential functions of the reserve good. On one hand, it serves as a medium of exchange for

payments, while on the other hand, it fulfills non-payment functions such as being a store of

value or delivering other service flows. This conflict introduces various opportunity costs when

the scarce reserve is transferred as a medium of exchange in the economy. This conflict results in a

trade-off in payments: while an agent may benefit from successfully transferring the reserve good

to another agent for transactional purposes, she risks losing the reserve for other non-payment

functions if reciprocal payments are not made in the future. The trade-off creates a dynamic

coordination motive in agents’ asynchronous and reciprocal payment decisions. An agent may

cease making payments if it expects other agents to do the same in the future, and past payment

histories endogenously arise as a coordination device even without a fundamental shock. Our

model thus explains the fragility observed in payment systems and the prevalence of delays and

history-dependent behaviors regardless of economic fundamentals and payment technologies.

The versatility of the reserve good concept allows us to capture many payment contexts:

• The reserve can be historically interpreted as a durable good, such as gold or silver, which

is physically scarce. Apart from being used as a medium of exchange, they are also used

as jewelry and conductors, as well as a store of value (Jermann, 2022).

• The reserve can be understood as central bank reserves in a fiat-based monetary system,

where their short-term supply is constrained by monetary policy implementations (e.g.,

Acharya and Rajan, 2022, Lopez-Salido and Vissing-Jorgensen, 2023). Every interbank

payment involves an irrevocable transfer of central bank reserves, which are also valuable

to banks in fulfilling reserve and regulatory requirements (e.g., Correa, Du and Liao, 2020).

• The reserve can be understood as commercial bank notes, that is, deposits, whose supply is

limited by banks’ reserve requirements and the money multiplier (Tobin, 1965). Deposits

are used by households and firms as means of payment (e.g., Diamond and Rajan, 2006, Gu,

Mattesini, Monnet, and Wright, 2013, Donaldson, Piacentino and Thakor, 2018, Parlour,
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Rajan and Walden, 2020), while they also serve as a store of value (e.g., Stein, 2012, Dang,

Gorton, Holmström, and Ordoñez, 2017) and may generate interest income for depositors.

• The reserve can represent a dominant currency like the U.S. dollar due to its extensive use

in global trades and payments (e.g., Gopinath and Stein, 2021, Coppola, Krishnamurthy

and Xu, 2023). Its supply is limited, and it is also valued as a global safe asset for stor-

ing value (e.g., He, Krishnamurthy and Milbradt, 2019, Jiang, Krishnamurthy and Lustig,

2021, Maggiori, Neiman and Schreger, 2021, Brunnermeier, Merkel and Sannikov, 2022)

beyond the use in payments.

• The reserve can be also interpreted as a digital currency such as stablecoins or central

bank digital currencies (CBDCs), whose supply is constrained by design. Beyond potential

payment functions, they deliver other non-payment functions. For example, stablecoins are

widely held by investors as collateral for speculating on other crypto-assets (Gorton, Klee,

Ross, Ross, and Vardoulakis, 2023).

At the same time, our model incorporates realistic aspects of different reserve goods and

the corresponding payment technologies, allowing us to make predictions regarding the relative

fragility of different payment systems and their evolution.

Our model shows that, when the conflict between payment and non-payment (e.g., store of

value) functions is low (high), the equilibrium is good (bad) in that agents always make (deny)

payments to each other, irrespective of past payment histories. These two equilibrium types serve

as benchmarks where the payment system functions or freezes. However, when the magnitude of

the conflict falls within an intermediate range, payment decisions become history-dependent due

to an endogenous asynchronous coordination motive. This can result in fragility even without

any fundamental shocks. Agents anticipate reciprocal payments from others based on historical

payment patterns within an equilibrium, which emerge as a coordination device. Even well-

funded agents may delay or halt payments if they observe delays or halts by others in the past.

These history-dependent payment behaviors and potential coordination failures contribute to the

fragility widely observed in payment systems.

A methodological contribution of our paper is the development of a dynamic framework of

payments in which strategic complementarity endogenously arises and payment fragility happens

within an equilibrium.4 Whenever multiple equilibria arise, we can further characterize the wel-

4In doing so, we adapt a technique in the literature of repeated games with imperfect public monitoring (e.g.,
Abreu, Pearce, and Stacchetti, 1990) to stochastic dynamic games. While this technique has been applied in in-
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fare outcomes of all equilibria in closed form. Thus, our model and the solution method may also

inform future studies that focus on asynchronous coordination in dynamic contexts.

Overall, our framework provides a new perspective for evaluating the historical and future

evolution of payments, highlighting the fundamental conflict between the reserve good’s pay-

ment and non-payment functions. Under our framework, “the big problem of small change” and

the various payment crises under the metallic system (e.g., Sargent and Velde, 2001, Steinsson,

2023a) arise precisely due to the reserve good’s non-payment functions outweighing its payment

function. Our model provides one complementary explanation for the decline of the gold stan-

dard, and further suggests that money should possess no intrinsic value to mitigate the conflict

between its payment and non-payment functions. By the same token, our model suggests that it

is optimal to set payment deposits’ interest rate to zero, providing an alternative explanation for

why commercial banks exert market power on the deposit markets (e.g., Drechsler, Savov and

Schnabl, 2017). Regarding interbank payment and repo market disruptions in 2019 and 2020,

our framework attributes them to increasing bank balance sheet costs and “quantitative tight-

ening” in recent years, which contribute to reserve scarcity and the conflict between reserves’

payment and non-payment functions. This explanation is consistent with recent empirical work

such as Afonso, Duffie, Rigon and Shin (2022) and Lopez-Salido and Vissing-Jorgensen (2023)

that show a strong relationship between the amount of central bank reserves and payment mar-

ket efficiency. Furthermore, our framework suggests that advancements in payment technologies

through digitalization may not necessarily reduce payment fragility when the underlying reserves

remain scarce and useful for other non-payment functions. Instead, we predict that the winning

means of payment for the next generation is likely to be those that not only provide superior

technologies to improve the payment function but also reduce the demand of holding reserves for

other non-payment functions.

Related Literature. Our paper contributes to several branches of the literature on banking,

money, and payments. First, our paper is closely related to the theoretical literature on banking,

coordination, and financial stability (Diamond and Dybvig, 1983, Allen and Gale, 2000, Diamond

and Rajan, 2005, Goldstein and Pauzner, 2005). The most closely related paper is Diamond and

Rajan (2006), who analyze the conflict between money’s payment function and its “fiscal” func-

tion, that is, its use for paying taxes. They demonstrate how this conflict can lead to bank fragility

dustrial organization (e.g., Athey, Bagwell and Sanchirico, 2004), contract economics (Levin, 2003, Halac, 2012),
and policy designs (Chang, 1998, Phelan and Stacchetti, 2001, Athey, Atkeson, and Kehoe, 2005), it has not been
explored in the contexts of banking, finance, and payments. Notably, our work makes progress by analytically
characterizing the set of equilibrium welfare outcomes, in contrast to the existing literature that heavily relies on
numerical methods.
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when the demand for payments is high, as depositors are incentivized to store money in banks

for fiscal purposes but also need to withdraw it for payments. Complementary to their insights,

we introduce the notion of reserve scarcity arising from the conflict between reserves’ payment

and all non-payment functions, and explore the implications on payment fragility. Also relatedly,

Freixas, Parigi and Rochet (2000), Donaldson, Piacentino and Thakor (2018), Bolton, Li, Wang,

and Yang (2020), Parlour, Rajan and Walden (2020), and Li and Li (2021) show that payment

risks lead to inefficient and unstable bank lending through banks’ liquidity management.5 The

empirical literature has also widely documented the coordination and history-dependent natures

of interbank payments and explored its consequences on financial fragility (e.g., McAndrews and

Potter, 2002, Bech and Garratt, 2003, Afonso and Shin, 2011, Copeland, Duffie and Yang, 2020,

Afonso, Duffie, Rigon and Shin, 2022). Our key contribution is to uncover a root of the emer-

gence of fragility in the payment context: reserve scarcity. Our message is general: the history-

dependence of payments and the resulting fragility may happen regardless of the actual forms

(e.g., whether they are intermediated by banks) as long as payments involve transfers of a scarce

reserve good that also holds value for non-payment functions. Notably, strategic complementar-

ity endogenously arises in our model even if the stage game does not feature coordination, and

fragility may arise within an equilibrium (rather than requiring the switch or selection between

multiple equilibria). Therefore, our framework differs not only from static coordination problems

(e.g., Diamond and Dybvig, 1983, Morris and Shin, 1998, Goldstein and Pauzner, 2005), but also

from Frankel and Pauzner (2000) and He and Xiong (2012) in which fundamental shocks serve

as a coordination device to select an equilibrium.

Our paper also contributes to the literature of money and payments (see Kahn and Roberds,

2009, for an early review). Macroeconomic models have increasingly and explicitly incorporated

the payment role of money and payment risks, demonstrating their significant impact on macroe-

conomic outcomes and optimal policy design (e.g., Lagos and Wright, 2005, Lagos and Zhang,

2020, Bianchi and Bigio, 2021, Piazzesi, Rogers and Schneider, 2021, Piazzesi and Schneider,

2021, Bigio, 2022, Bigio and Sannikov, 2023). On the microeconomic side, this literature has ex-

perienced a recent revival thanks to the fast development of new payment technologies in the last

decade,6 and a growing literature has explored the potential of next-generation payment systems

5Another related literature focuses on bank liquidity management due to uncertainty, asymmetric information,
or counterparty risks (e.g., Caballero and Krishnamurthy, 2008, Allen, Carletti and Gale, 2009, Acharya and Skeie,
2011, Gale and Yorulmazer, 2013, Heider, Hoerova and Holthausen, 2015).

6Recent empirical literature shows that new payment technologies improve economic efficiencies in consump-
tion, investment, and lending decisions (e.g. Jack and Suri, 2014, Muralidharan, Niehaus, and Sukhtankar, 2016,
Higgins, 2020, Ghosh, Vallee, and Zeng, 2022) without examining the financial stability implications.
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including stablecoins and CBDCs (see, e.g., Duffie, 2019, Auer, Frost, Gambacorta, Monnet,

Rice and Shin, 2022, Brunnermeier and Payne, 2022, for surveys). Complementing this litera-

ture, we highlight an intrinsic yet understudied friction in payments: the scarcity of reserves and

the conflict between their payment and non-payment functions. We stress that improvements in

payment technology may not necessarily reduce payment fragility if reserves remain scarce and

valuable for other non-payment functions.

Our paper also joins a literature that studies the implications of monetary policy tightening on

financial stability. Since Fisher (1933) and Friedman and Schwartz (1963), it has been recognized

that aggregate reserve scarcity may lead to deflation and economic depression, and Brunnermeier

and Sannikov (2016) formulate that idea in a model with financial intermediation and different

forms of money. Instead of focusing on price levels and money’s store of value function, we take

a complementary view and show that reserve scarcity has direct financial fragility implications

when reserves are used as a medium of exchange. Recently, Acharya and Rajan (2022) argue

that the effect of reserves on liquidity provision should be understood in conjunction with banks’

endogenous reserve-holding behaviors, which our model highlights. Lopez-Salido and Vissing-

Jorgensen (2023) study the effects of quantitative tightening and show that deposit-adjusted re-

serves play a key role in determining important financial market rates such as the federal funds

rate and repo rates. Our framework also complements a fast-growing literature that explores the

causes and consequences of the disruptions in interbank payments in September 2019.7

Our framework is also inspired by the large literature that highlights the endogenous emer-

gence of money as a means of payment (e.g., Kiyotaki and Wright, 1989, Kocherlakota, 1998,

Lagos, Rocheteau and Wright, 2017). We instead analyze the conflict between the payment and

non-payment functions of money, rather than to explain why some goods may endogenously

emerge as means of payment. Relatedly, we draw inspiration from the literature on credits, mar-

ket participation, and commitment (e.g., Kehoe and Levine, 1993, Kocherlakota, 1996, Alvarez

and Jermann, 2000). To focus on the inalienable role of money and reserves in settling pay-

ments, our model deliberately abstracts away from credits. An interesting question is how the

co-existence of reserves and credits (as modeled in Townsend, 1989, Gu, Mattesini, and Wright,

2016, etc.) may affect payment fragility, which we leave for future research.

7As discussed above, Copeland, Duffie and Yang (2020), Correa, Du and Liao (2020), and Afonso, Duffie,
Rigon and Shin (2022) empirically document and explore how the scarcity in reserves leads to delays in interbank
payments as well as the disruptions in repo funding markets. Theoretically, d’Avernas and Vandeweyer (2020) and
Yang (2021) build dynamic asset pricing models of repos to explain such empirical patterns, highlighting intraday
liquidity management and bank regulations.
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2 The Model

We build a stochastic, dynamic model of payments. We present two versions of the model which

generate identical analytical results but admit different interpretations, helping broaden the appli-

cations of the model. Appendix A contains all proofs.

2.1 Baseline model setup

Setup. Consider a discrete-time, infinite-horizon economy, t = 0, 1, 2, ..., with two risk-neutral

agents, 1 and 2, which we sometimes also call “banks” when interpreting the model. Agents have

a common discount factor δ ∈ (0, 1), which captures their time preference.

There are two types of goods: a single unit of indivisible reserve and potentially many re-

wards. At t = 0, only one agent is endowed with the reserve while the other is not. No agents

have any rewards at t = 0, but rewards can be created when agents make payments by transferring

the reserve to each other, as we detail below.

Payment shock Payment Technology shock Reward/Cost

t t+ 1

Figure 1: Timeline of the baseline setup

This figure shows the timeline of actions, events, and shocks in the baseline model setup. Both the reward and cost
are accrued at the end of time t before the economy continues to time t+ 1.

The timeline of the economy is illustrated in Figure 1. At any time t ≥ 0, the agent who holds

the reserve, suppose agent i, is subject to a private payment shock: with probability λ ∈ (0, 1]

agent i is supposed to transfer the reserve to agent j. Denote by a ∈ {0, 1} agent i’s possible

private actions: a = 1 means she sends the reserve, whereas a = 0 means not and she keeps

the reserve. When agent i sends the reserve, the potential transfer is subject to another private

technology shock: with probability µ ∈ (0, 1] the transfer goes through to agent j, whereas with

probability 1−µ the transfer fails and the reserve remains with agent i. Any payment outcome is

publicly observable, and we denote by k = 1 a successful transfer of the reserve good and k = 0

otherwise. If the reserve is successfully transferred to the other agent j, the initially reserve-

holding agent i will get z > 0 rewards at the end of time t, where z is a parameter. Rewards

are perishable so will have to be consumed immediately by agent i at t, and the consumption

value of one unit of rewards is normalized to 1. Finally, at the end of any time t ≥ 0, the agent

who does not hold the reserve suffers a per period cost of c, where c > 0 is a parameter. In
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reality, c parsimoniously captures the various opportunity costs incurred from not holding the

reserve, which arise from the reserve’s non-payment functions. The economy then moves to t+1

regardless of whether the payment is made or not.

To highlight the conflict between the reserve’s payment and non-payment functions, it is

important to note that the reserve good has an effective present value of κ = c/(1 − δ) if not

used for payments. In other words, permanently losing it would effectively incur a present cost

of κ to the current reserve-holding agent. Given that the supply of the reserve is normalized to

one, κ thus captures the scarcity of the reserve: a higher present value of κ for non-payment

functions suggests that the reserve good is more scarce for the payment function. Economically,

this observation also implies that our notion of reserve scarcity fundamentally arises from the

conflict between the reserve good’s payment and non-payment functions. Suppose a hypothetical

reserve good is completely useless for other non-payment functions but still accepted as a medium

of exchange, it is then not scarce under our framework. Formally, we define:

Definition 1. The reserve good’s scarcity is captured by the present value of the opportunity costs

of transferring it: κ = c/(1− δ). The reserve good is more (less) scarce if κ is higher (lower).

Equilibrium concept. To focus on to what extent current payment decisions depend on past

payment histories, we adopt the equilibrium concept of Perfect Public Equilibrium (PPE), in

which agents’ optimal strategies are allowed to depend on the public history of past outcomes.

Once a PPE exists, we can examine under what conditions agents’ optimal payment strategies

indeed depend on their past payment outcomes, and if yes, to what extent, and whether there are

multiple equilibria.

Formally, denote by st ∈ {0, 1} the state of the stochastic game at t: st = 1 means that agent

1 has the reserve and st = 0 means that agent 2 has it. Since payment outcomes are publicly

observable, a generic public history of states is given by st = (s0, s1, s2, · · ·, st−1) ∈ St, where

st+1 = (st, st) and St .= {0, 1}t. The public history at t thus fully summarizes all public signals

up to t. Denote by St = all possible public histories at t, and S =
⋃
t St. A public strategy is

then defined by a mapping σ : S →{0, 1}. Note that it is sufficient to let σ specify the strategy

for the reserve-holding agent but not the other agent because only the reserve-holding agent takes

action. For the same reason, it is sufficient to use σ to denote both a public strategy and a public

strategy profile. If a public strategy σ exhibits σ (st) = 1 for all st ∈ S (or σ (st) = 0 for all

st ∈ S), then we say σ is history-independent. Otherwise, it is history-dependent.
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Definition 2. A public strategy profile is a perfect public equilibrium (PPE) if for all t and all

st ∈ St, σ|st is a Nash equilibrium.

In words, a PPE specifies a sequential equilibrium that only involves public strategies and

which also constitutes a sequential equilibrium for the dynamic game from any date and any

history. This definition is a direct counterpart to the standard definition of PPE in a repeated

game.

We can immediately define whether a PPE is history-independent (or history-dependent)

based on the description of history-independent strategies.

Definition 3. A perfect public equilibrium (PPE) is history-independent if it involves only history-

independent public strategies; otherwise, it is history-dependent.

2.2 Alternative model setup

Our model can be set alternatively to accommodate aggregate shocks and particularly the store

of value function of money while keeping all the equilibrium outcomes the same. Consider

a discrete-time, infinite-horizon economy, t = 0, 1, 2, ..., with two risk-neutral agents, 1 and

2, which we also call “banks” when interpreting the model. There is no time discount, but

starting at the end of t = 0 the economy is subject to an aggregate shock every period: with

probability δ ∈ (0, 1) the economy continues to t+1, whereas with probability 1−δ the economy

discontinues. Note that the continuation probably δ maps to the discount factor in the baseline

model discussed above. The two types of goods, reserves, and rewards, are specified the same as

in the baseline model.

Payment shock Payment Technology shock Aggregate shock

t t+ 1

Figure 2: Timeline of the alternative setup

This figure shows the timeline of actions, events, and shocks in the baseline model setup. Both the reward and
consumption penalty are accrued at the end of time t before the economy potentially continues to time t+ 1.

The timeline of the economy is illustrated in Figure 2. At any time t ≥ 0, the agent who holds

the reserve, suppose agent i, is subject to a private payment shock: with probability λ ∈ (0, 1]

agent i is supposed to transfer the reserve to agent j. Denote by a ∈ {0, 1} agent i’s possible

private actions: a = 1 means she sends the reserve, whereas a = 0 means not and she keeps
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the reserve. When agent i sends the reserve, the potential transfer is subject to another private

technology shock: with probability µ ∈ (0, 1] the transfer goes through to agent j, whereas with

probability 1 − µ the transfer fails and the reserve remains with agent i. Any payment outcome

is publicly observable. If the reserve is successfully transferred to the other agent j, that is, a

payment is successfully made, agent i will get z > 0 rewards, where z is a parameter. Rewards

are perishable so will have to be consumed immediately by agent i at t, and the consumption

value of one unit of rewards is normalized to 1. If the economy continues at the end of time t,

then it moves to t + 1 regardless of whether the payment is made or not. Rather, if the economy

discontinues at the end of time t, the reserve-holding agent consumes the reserve itself. The

reserve-holding agent gets a normalized consumption value of 0, and the other who does not hold

the reserve gets−κ < 0, where κ > 0. Economically, because κ occurs only in the aggregate bad

state, it captures the store of value function of the reserve good. In other words, whoever holds

the reserve good in the aggregate bad state is protected by the reserve good from a consumption

loss. Note that the consumption penalty is analytically the same as the present value of the reserve

good in the baseline model. Therefore, κ similarly captures the value and scarcity of the reserve

good as in the baseline model.

An important observation is that the alternative economy is observationally equivalent to the

baseline economy in terms of equilibrium profiles. In other words, if a strategy profile is a PPE

in the baseline economy, it is then also a PPE in the alternative economy, and vice versa. This

important feature allows us to interpret the equilibrium flexibly and map it to many rich economic

applications.

2.3 Mapping the model to realistic payment applications

Our model is parsimonious but general enough to accommodate many economically relevant

applications of payments. Below, we discuss some of the key elements of the model to illustrate

how it covers the essence of various payment applications.

Infinite-horizon economy with patient agents in the baseline setup. We set up an infinite-

horizon dynamic economy to capture the general notion that payment activities are dynamic and

reciprocal, and they involve long-term interactions among agents in most applications. Payment

activities create value by solving the lack of double coincidence of wants, captured by the creation

of rewards. However, payment activities are also costly and risky because making an outbound

payment means a transfer of the reserve good to the other agent. A successful payment means

a drawdown on the paying agent’s reserve holdings that are potentially useful for other non-
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payment functions. In our model, it is captured by that the reserve-holding agent will have

not maintained the reserve good after making a payment, incurring a cost. It is also uncertain

whether other agents will make reciprocal payments back in the future. This implies that the

reserve-holding agent may incur prolonged periods of opportunity costs going forward. The

reserve-holding agent thus trades off the current benefit against future costs when making the

payment decision, which is in turn affected by her time preference.

Infinite-horizon economy with an aggregate shock in the alternative setup. In the alter-

native model setup, making an outbound payment particularly means transferring a store of value

in the aggregate bad state. The aggregate shock of the game ending, naturally representing a bad

aggregate state and all agents having to consume in that bad state, thus helps us parsimoniously

capture the idea of reserves being not only a medium of exchange but also a store of value in

many applications.

Reserves and rewards. We view the essence of any payment as the transfer of a scarce

reserve good that is valuable for other non-payment functions. In the model, we take a fixed unit

supply with a flexible present value to capture the notion of scarcity and its magnitude. That is,

a reserve good with a higher present value is relatively more scarce given the fixed unit supply.

This setting of a fixed unit supply greatly helps uncover the economic mechanism at play while

keeping the model tractable. In reality, the net supply of means of payment is unlikely to be

completely fixed in the long run. But as long as its supply is relatively inelastic in the short

run, it is scarce compared to the demand of transaction needs and the quality of the payment

technology. Assuming a fixed unit supply of reserves implies that our model does not directly

generate quantitative predictions concerning the amount of reserves. However, the ability to

use the reserve good’s present value to capture the magnitude of scarcity still allows the model

to capture rich relationships between reserve scarcity and payment activities. And in exchange

for this simplification, we provide a fairly general characterization of the equilibrium without

sacrificing the delivery of the underlying economics.

The scarcity of the reserve good naturally implies an imperfect substitutability between it and

other consumption goods, which is the reason we separately model the reserve and reward goods.

It is natural that successful payments generate economic value from resolving the lack of double

coincidence of wants, which is captured by the creation of rewards. The assumption that rewards

are perishable and thus have to be immediately consumed is not crucial. What is crucial in this

assumption is that agents cannot generate more reserves by accumulating the rewards in the short

run, which, again, fundamentally reflects the scarcity of the reserve.
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To be more specific, in what follows we separately describe a number of payment applica-

tions and illustrate what are the reserves and rewards, why the reserve has a limited supply and

is imperfectly substitutable with the reward, and in what sense the payment and non-payment

functions of the reserve good co-exist but can be separated:

• Metallic payments. Metallic payments have dominated the payment system for about four

millenniums. Silver and gold are the main forms of reserves, whose supply is limited due

to physical mint constraints. Around 2000 B.C., the use of metallic coins for payments first

appears in ancient Greece and Rome for trading consumption commodities and services –

rewards – that are not substitutable with reserves. Greeks employ the Attic silver standard,

which becomes the predominant weight standard for coins in the Eastern Mediterranean.

The Roman Empire use the Denarius, which has a fixed weight and value, as the basic silver

coin. At the same time, high-value trade of consumption goods and services are settled

through gold minted in Byzantine or Muslim. The global supply of gold has remained low

and stable, only until the 20th century due to vast gold fields being discovered in South

Africa and the development of the so-called cyanide process to extract gold from the low-

grade ore in these gold fields (Redish, 2000).

Although silver and gold are used as a medium of exchange, they have high intrinsic value

as jewelry and conductors, used on a daily basis. More importantly, they are historically

pursued and held by consumers and investors as a store of value in times of low or negative

real interest rates and economic crises (Jermann, 2022).

• Modern interbank payments. Today, real-time gross settlement (RTGS) interbank pay-

ment systems play the leading role in large-size payments. As an example, the Fedwire, the

RTGS funds transfer system for financial institutions operated by the U.S. Federal Reserve

(Fed) Banks, sees a daily volume of more than $4.2 U.S. trillion in 2022. By construction,

Fedwire is open to banks that have accounts at the Fed, and each interbank payment in-

volves the transfer of central bank reserves from one bank to another. Successful payments

allow the paying bank to collect fees – rewards – from its clients in the form of lendable

cash and deposits, which can be in turn immediately lent out and thus imperfectly sub-

stitutable with central bank reserves. Indeed, Diamond, Jiang, and Ma (2022) show that

central bank reserves crowd out bank lending, further supporting the notion that lendable

funds and reserves are not perfectly substitutable. In addition, the supply of central bank

reserves in the U.S. is largely limited and inelastic in the short run, being subject to the
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Fed’s monetary implementation cycles (e.g., Copeland, Duffie and Yang, 2020, Acharya

and Rajan, 2022, Lopez-Salido and Vissing-Jorgensen, 2023).

Beyond the use in interbank payments, central bank reserves provide other non-payment

benefits and functions to banks. First, the Fed may use the interest rate on excess reserves

(IOER) as an additional monetary policy tool, allowing banks to directly earn interest in-

come by holding reserves. Second, holding excess reserves helps large banks to more

easily meet post-crisis regulatory and liquidity requirements (e.g., Duffie, 2019, Correa,

Du and Liao, 2020). Finally, holding excess reserves also saves banks from the stigma

of tapping the Fed’s discount window in volatile market times (e.g. Afonso, Kovner and

Schoar, 2011), thus providing a store of value to banks.

• Payments using bank deposits. Complementary to interbank payment systems, modern

mid- and small-size payments are also settled by commercial bank notes, that is, deposits,

within the same bank. The supply of bank deposits – reserve – is limited by banks’ reserve

requirements and the money multiplier (Tobin, 1965, Steinsson, 2023b) and thus only in-

elastic in the short run. Households and firms then use bank deposits to settle the purchases

of goods and services – rewards. Indeed, various theories and facts are provided (e.g., Di-

amond and Rajan, 2006, Gu, Mattesini, Monnet, and Wright, 2013, Donaldson, Piacentino

and Thakor, 2018, Parlour, Rajan and Walden, 2020) to justify why bank deposits emerge

as a medium of exchange. At the same time, they also serve as a store of value (e.g., Stein,

2012, Dang, Gorton, Holmström, and Ordoñez, 2017) and may generate interest income

for depositors.

• Cross-border payments. U.S. dollar is the dominant currency – reserve – for cross-border

payments today. According to the Society for Worldwide Interbank Financial Telecommu-

nication (SWIFT) system, the dollar accounts for 79.5% of payments in international trade

between 2010-2020. Additionally, over the period of 1999-2019, the dollar accounted for

96% and 74% of trade invoicing in the Americas and Asia-Pacific regions, respectively

(Gopinath and Stein, 2021), and is also predominantly used in settling the payments of

global financial contracts (e.g., Coppola, Krishnamurthy and Xu, 2023). The supply of

U.S. dollars is limited by the U.S.’s fiscal and monetary capacities, while non-U.S. banks

typically collect fees in local currencies after successful payments – rewards – which are

not directly substitutable with the U.S. dollar.

Beyond the use in global payments, the U.S. dollar is widely held by investors, commercial
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banks, and central banks as a global safe asset for a store of value (e.g., He, Krishna-

murthy and Milbradt, 2019, Jiang, Krishnamurthy and Lustig, 2021, Maggiori, Neiman

and Schreger, 2021, Brunnermeier, Merkel and Sannikov, 2022). Indeed, long before the

U.S. dollar become popular in cross-border payments, it has cemented its role as the global

reserve currency since the 1944 Bretton-Woods Agreement.8 As of 2022, foreign central

banks still hold 59% of reserves in U.S. dollars.

• Digital and crypto payments. Stablecoins and CBDCs are widely considered as the next

generations of payment methods (see, e.g., Duffie, 2019, Auer, Frost, Gambacorta, Mon-

net, Rice and Shin, 2022, Brunnermeier and Payne, 2022, for surveys). For example, Auer,

Frost, Gambacorta, Monnet, Rice and Shin (2022) estimate that the greatest potential for

stablecoins is the cross-border remittance markets, on which stablecoins may help reduce

the current costs by more than half. In these applications, the transactional gains – rewards

– are typically reflected in local currencies, which are not directly substitutable with stable-

coins. On the other hand, the supply of stablecoins and CBDCs as reserves is constrained

by the various design choices.

Beyond potential use in payments, stablecoins and CBDCs deliver other non-payment ben-

efits and functions. For example, stablecoins are widely held by investors as collateral for

speculating other cryptoassets (Gorton, Klee, Ross, Ross, and Vardoulakis, 2023). CBDCs,

regardless of their design choices, are largely perceived to be a store of value accessible

to households. Indeed, some recent studies hypothesize that this role of CBDCs may even

generate unintended consequences by disintermediating commercial banks, particularly in

crisis times (e.g., Auer, Frost, Gambacorta, Monnet, Rice and Shin, 2022).

Separation of the roles of medium of exchange and store of value. Although intrinsic

value (e.g., from service flows), if any, can be easily separated from the other functions of the

reserve good in the above applications, its payment and non-payment functions may reinforce

each other in reality (e.g., Gorton and Pennacchi, 1990). Our separation of them follows from the

classic idea of Hayek (1976) who argues the following. The payment function, that is, the role

of reserves as a medium of exchange, stems from them resolving the lack of double coincidence

of wants across time. In contrast, the role as a store of value, the leading non-payment function

8Under the Bretton-Wood System, the U.S. dollar was pegged to gold at $35 an ounce, and other countries peg
their currencies to the U.S. dollar. The U.S. abandoned this aspect of the agreement as President Nixon abandoned
the gold standard in favor of free-floating exchanges in 1971. However, the end of the gold standard had little impact
on the U.S. dollar’s role as a store of value.
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of reserves, originates from them improving the ability to commit to future risk-sharing across

different states of the world. Thus, these two functions reduce fundamentally different economic

frictions. This separation has also been studied in the recent literature (e.g. Diamond and Rajan,

2006, Brunnermeier, James and Landau, 2019).

Payment shock. The payment shock in our model is a parsimonious way to capture uncertain

transaction needs and the relative scarcity of reserves compared to transaction needs. In reality, at

any given date, an individual may receive goods or services, or may not receive anything. A bank

may receive clients’ payment requests or not as well. An agent only needs to send a payment if

there are transaction needs.

We highlight that only agent i (i.e., the reserve-holding agent) is subject to the payment shock.

This setting parsimoniously captures the notion that whoever has to make a payment already has

enough reserve funds to do so despite reserves being scarce in the aggregate. Thus, we rule out

the mechanical and uninteresting case in which an agent does not make a payment or waits for

others to make a payment first simply because she does not have enough reserve funds.

How does the model capture delays? Although the reserve-holding agent only chooses

between sending (i.e., at = 1) and not sending (i.e., at = 0) upon receiving a payment shock, it

precisely captures payment delays in the following sense. If the reserve-holding agent does not

make a transfer at time t, she does not enjoy any reward (e.g., the delivery of the consumption

good, or payment fees) accordingly and keeps the reserve. At time t + 1, she is subject to

another payment shock with probability λ > 0. This can be interpreted as with probability λ

the household is tempted to purchase the same good again at t = 1 she would have purchased

at t = 0, or the client’s payment request still stays on the bank’s order book at t = 1. If the

reserve-holding agent chooses to pay now (i.e., at+1 = 1) and the payment goes through, the

combined history of {st = 0, st+1 = 1} suggests that the payment, which could have been made

earlier, is delayed for one period. Delays of more periods can be thus captured in the same way.

Technology shock. The technology shock captures the efficiency of the underlying payment

technology, highlighting the notion that a payment may fail for reasons that are out of the agents’

control. Shell and gold may be stolen in transitions. Even modern, large-scale electronic payment

systems are subject to technical errors and failures. For example, the Fedwire system may occa-

sionally break down; it was disrupted twice in 2019 due to undisclosed technical issues, resulting

in significant delays in cross-bank settlements.

The modeling of the payment shock and technology shock allows us to cover many realistic

frictions in payment activities. We highlight that both the payment shock and the technology
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shock are only privately known to the potentially payment-sending agent i, but not j. Those two

assumptions imply that seeing no payments, the non-reserve-holding agent j is not sure whether

it is because agent i chooses not to make a payment, or if it is just because agent i is simply

not requested to send any payment at all, or because the technology fails. This signal-jamming

problem implies that past payment outcomes are informative but imperfect signals when an agent

tries to look at them to anticipate other agents’ future payment patterns. Therefore, we are able

to characterize to what extent the past dependence of payments is subject to different types and

degrees of shocks in various payment applications.

Relationship with repeated games with imperfect public monitoring. As discussed above,

the presence of payment and technology shocks introduces a signal-jamming and imperfect mon-

itoring problem. Therefore, the stochastic dynamic economy we set up is similar to a standard

repeated game with imperfect public monitoring (e.g., Abreu, Pearce, and Stacchetti, 1990, Fu-

denberg, Levine and Maskin, 1994). However, some important differences emerge between our

model and standard repeated games, which significantly affect the equilibrium analysis.

First, our dynamic economy does not involve the repetition of a stage game. The stage game

in our economy more closely resembles a decision problem for the reserve-holding agent, taking

into consideration the strategic interaction between the two agents only through the continuation

value.

Second, beyond the public history, which agent holds the reserve good also constructs an

important state variable. Despite the two agents’ preferences being identical, their continuation

values in any given period are thus different depending on who owns the reserve good. We

view these features being important because they jointly capture the nature of payments being

reciprocal and reserves being scarce.

3 Payment equilibria and financial fragility

3.1 The “good” payment equilibrium

We start by characterizing the existence of both a “good” and a “bad” payment equilibrium, in

which agents’ payment decisions are history-independent. In the good (bad) equilibrium, the

agent who holds the reserve good always (never) makes a payment, regardless of the past history

of the other agent making payments or not. Those two equilibria thus serve as benchmarks

and allow us to later uncover the economic conditions under which payment decisions become

history-dependent.
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Proposition 1. There exists a good equilibrium in which the reserve-holding agent always makes

a payment, if and only if
z

κ
≥ 1− δ

1− δ(1− λµ)
. (3.1)

The right hand side of (3.1) is strictly smaller than 1, and is decreasing in δ, λ, and µ. The good

payment equilibrium is a PPE and is history independent.

The proof is based on Abreu, Pearce, and Stacchetti (1990)’s idea of decomposability, but

we give a sketch of the idea here to help build intuition. It is based on the standard one-shot

deviation principle to check whether the reserve-holding agent, conditional on being subject to

a payment shock and the other agent playing the proposed equilibrium strategy, would find a

profitable deviation. Intuitively, 1− λµ is the per period probability of no transfer and the game

continues to the next period conditional on the bank with the reserve transferring the reserve upon

request. In other words, 1− λµ is the probability that the bank keeps its current status in the next

period given that it chooses to transfer the reserve this period (which succeeds with probability

µ < 1) given the other agent playing the equilibrium strategy. Then, we have

z ≥ c
(
1 + δ (1− λµ) + δ2 (1− λµ)2 + ...

)
, (3.2)

meaning that the good payment equilibrium exists if and only if z, the gain from making a pay-

ment at time t, is no less than the sum of c, the cost at time t if giving up the reserve, δ (1− λµ) c,

the present value of the expected cost at time t + 1, δ2 (1− λµ)2 c, the present value of the ex-

pected cost at time t + 2, and so on. By the relationship of κ = c/(1 − δ), condition (3.2)

immediately yields the equilibrium condition (3.1).

Proposition 1 allows for a number of comparative statics thanks to the explicit characterization

of the equilibrium existence region. First, the good payment equilibrium is more likely to happen

when the benefit of payment-making is higher (i.e., a larger z). This is intuitive because the

benefit from a successful payment can directly compensate for the cost of not having enough

reserves in the future, encouraging the reserve-holding agent to make a payment today.

Second, the good payment equilibrium is more likely to happen when the reserve good is

less scarce/valuable for non-payment functions (i.e., a smaller κ). Intuitively, when the reserve is

more scarce, the reserve-holding agent has a higher incentive to hoard the reserve good because

losing it otherwise would incur a larger present loss. By the same token, when the reserve is

less scarce, the reserve-holding agent is more encouraged to make a payment. This prediction is

directly supported by the recent evidence in, for example, Afonso, Duffie, Rigon and Shin (2022)
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and Lopez-Salido and Vissing-Jorgensen (2023), that interbank payments are more efficient when

reserves are more abundant.

Third, the good payment equilibrium is more likely to happen when the agents are more

patient (i.e., when δ is larger in the baseline economy), or when the aggregate negative shock is

less likely to happen (i.e., when δ is larger in the alternative economy). This result is consistent

with the repeated game literature (e.g. Green and Porter, 1984, Fudenberg and Maskin, 1986) that

a cooperation equilibrium is more easily sustained when agents are more patient. This analogy

points to the endogenous coordination motive embedded in our dynamic payment game despite

that the game is not repeated and each stage game does not feature any coordination motives.

Fourth, the good equilibrium is also more likely to happen when the payment technology is

better (i.e., when µ is larger). Intuitively, when the technology is better, the reserve-holding agent

is more likely to get a reciprocal payment back from its counterpart in the future. This in turn

increases the reserve-holding agent’s incentives to make a payment, leading to a more likely good

payment equilibrium.

Finally, the good payment equilibrium is more likely to happen when the other non-reserve-

holding agent is more likely to receive a payment request next period (i.e., when λ is larger).

To understand this, note that the existence of the good payment equilibrium is guaranteed by an

unprofitable one-shot deviation by the reserve-holding agent provided a given payment shock.

In other words, the magnitude of the private payment shock is already becoming irrelevant for

the reserve-holding agent in question. Rather, when the other non-reserve-holding agent is more

likely to receive a payment request going forward, the reserve-holding agent is more likely to get

a reciprocal payment back. Just like what a better payment technology implies, this increases the

reserve-holding agent’s incentives to make a payment and makes a good payment equilibrium

more likely to happen.

Overall, Proposition 1 provides a useful benchmark to understand what economic conditions

contribute to a good and efficient payment system. It also helps provide alternative yet forceful

answers to a number of important questions regarding the nature and evolution of money and

payment systems:

Bank market power on deposit markets. A growing literature (e.g, Drechsler, Savov and

Schnabl, 2017) examine commercial banks’ market power on the deposit markets. Particularly,

checking deposits often entitle their holders to zero interest rates regardless of the policy rate.

It is typically understood from this literature that commercial banks process such market power

from their franchise value such as the provision of branches, debit cards, and customer services.
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Proposition 1 provides a complementary explanation from a payment efficiency point of view:

zero interest rates, by reducing κ, help to minimize the conflict between checking deposits’ pay-

ment and non-payment functions because these deposits are indeed designed for payments.

Should CBDCs be interest-bearing? An important debate concerning the design of CBDCs

is whether they should be interest-bearing (Auer, Frost, Gambacorta, Monnet, Rice and Shin,

2022). Currently, this debate centers how a potentially interest-bearing CBDC would interact

with commercial banks in various aspects. Focusing on improving payment efficiency, which

is widely perceived as the top reason to introduce a CBDC, Proposition 1 implies that CBDCs

should not bear an interest in order to keep κ low and minimize the conflict between CBDCs’

payment and non-payment functions. We acknowledge that to analyze the full implications of

CBDCs is however beyond the scope of this paper. Gresham’s Law. In monetary economics,

Gresham’s Law implies that “bad” money that has a lower intrinsic value will drive “good” money

out of circulation. That is, ironically, “bad” money appears to be a more popular means of pay-

ment compared to “good” money. Historians and economists have offered various explanations

for Gresham’s Law and explored its implications (see Sargent and Velde, 2001, for a review).

Proposition 1 offers a complementary view: everything else equal, a reserve with lower intrinsic

value dominates another with higher intrinsic value for payment efficiency thanks to a higher

z/κ. Indeed, Proposition 1 implies that any desirable form of reserves for payments should have

minimal or zero intrinsic value to mitigate the conflict from other non-payment functions. This

idea is reminiscent of Adam Smith’s point in the Wealth of Nations, who argues from a different

perspective that replacing gold and silver coins with bank notes would free up the gold and silver

for other use of higher social value.

3.2 The “bad” payment equilibrium

Next, we turn to study the other benchmark equilibrium in which none of the agents makes

payments regardless of the payment history.

Proposition 2. There exists a bad equilibrium in which the reserve-holding agent never makes a

payment if and only if
z

κ
≤ 1 . (3.3)

The bad payment equilibrium is a PPE and is history independent.

The intuition of Proposition 2 can be also understood by looking at the one-shot deviation of
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the reserve-holding agent. We have:

z ≤ c(1 + δ + δ2 + ...) , (3.4)

In words, the bad payment equilibrium exists if and only if z, the gain from making a payment

at time t, is no greater than than the sum of c, the cost at time t if giving up the reserve, δc, the

present value of the expected cost at time t+1, δ2c, the present value of the expected cost at time

t + 2, and so on. By the relationship of κ = c/(1 − δ), condition (3.4) immediately yields the

equilibrium condition (3.3).

The bad equilibrium is more likely to happen when the benefit of payment-making is smaller

(i.e., a smaller z), or when the reserve good is more scarce/valuable for non-payment functions

(i.e., a larger κ). This result is similar to its counterpart in Proposition 1.

Similarly, Proposition 2 also provides alternative answers to a number of important questions

in the evolution of monetary and payment systems:

“Big problem of small change.” In monetary economics, the “big problem of small change”

refers to the notorious phenomenon over the many years of metallic systems that low-value coins

constantly disappear from circulation, and the economy suffers from the lack of means to com-

plete low-value transactions (Sargent and Velde, 2001, Steinsson, 2023a). So far, the leading

explanation for the “big problem of small change” is that these low-value coins are so small that

they are easily lost or difficult to pick up and count (Redish, 2000), so they are unlikely to be

useful in everyday payments. Proposition 2 provides an alternative view: these coins disappear

not because their physical size is small but because their z/κ is too small. Specifically, the size

of the economic transactions they aim to support is so small that people tend to instead hoard

them to enjoy their other non-payment functions. Indeed, Redish (2000) documents anecdotal

evidence that some low-value coins were privately destroyed for building other products such as

weapons. Combined with Proposition 1, this view also helps understand why the “big problem

of small change” is no longer a problem today because even for small z the corresponding κ is

significantly reduced by the use of deposits and digital payments.

End of the Gold Standard. The Gold Standard effectively ends in 1971 when President

Nixon abandoned the peg of the U.S. dollar to gold. The literature has offered many explanations

for the end of the Gold Standard, the leading one being the fear of deflation and devaluation of

the U.S. dollar (see Blinder, 2022, for a review). To synthesize these views is beyond the scope of

this paper, but Proposition 2 provides a complementary view from the payment evolution angle.
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Indeed, the U.S. dollar has started to rise as a dominant currency for payments during the same

period (Gopinath and Stein, 2021), rendering z/κ to be too low for gold compared to the U.S.

dollar and therefore gold to be a dominated reserve good for payments.

Finally, different from Proposition 1, an important observation from Proposition 2 is that how

likely the bad equilibrium happens does not depend on the agent’s time preference (in the baseline

economy), the aggregate shock (in the alternative economy), the frequency of payment requests,

or the quality of the payment technology. This can be interpreted as a “coordination trap” because

the bad equilibrium happens when the reserve-holding agent believes the other agent will never

make a returning payment in the future. Intuitively, conditional on the other non-reserve-holding

never making a payment in the future regardless of the economic environment, any changes in the

various model parameters will not make a one-shot deviation profitable for the reserve-holding

agent in question. This result thus points to the importance of trust-building because it suggests

that technology improvement, for example, may not necessarily solve the issue of lack of trust.

3.3 Multiple equilibria and payment fragility

Having analyzed the two benchmark equilibria, we immediately have the following result, which

directly derives from Propositions 1 and 2:

Proposition 3. Both the good and bad payment equilibria exist when

1− δ
1− δ(1− λµ)

≤ z

κ
≤ 1 . (3.5)

Proposition 3 implies that the two payment equilibria may co-exist in the same economy

for medium values of z/κ. The existence of multiple equilibria resembles the classic notion of

coordination such as that in the bank run models (e.g., Diamond and Dybvig, 1983). There,

whether a depositor runs the bank depends on whether other depositors run. Here, whether a

reverse-holding agent makes payments depend on whether the non-reserve-holding agent will

make a reciprocal payment in the future.

Proposition 3 provides a plausible answer to the motivating question of this paper as to why

payments are often fragile. When the economy falls into the parameter region where both equi-

libria exist, the payment patterns cannot be fully pinned down by fundamentals, implying a po-

tential switch between the two equilibria. For example, when the economy sustains the good

payment equilibrium at the lower threshold and an arbitrarily small negative shock hits it, the

reserve-holding agent will stop making payments, pushing the economy to switch to a bad pay-
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ment equilibrium. Such a switch between the two equilibria due to relatively small changes in

fundamentals may lead to relatively large changes in equilibrium payment behaviors.

Proposition 3 maps to several important episodes of disruptions in various payment contexts.

Below we describe these contexts and discuss how they connect to our model.

Repo market crisis in 2019. One of the motivating facts of this paper is the repo market crisis

in September 2019. Overnight Treasury repo rates spiked by over 1,000 basis points, a level not

seen since the 2008 global financial crisis (Afonso, Cipriani, Copeland, Kovner, La Spada and

Martin, 2020, Correa, Du and Liao, 2020). Existing empirical literature has ascribed this crisis to

dysfunctional interbank payments (Copeland, Duffie and Yang, 2020, Afonso, Duffie, Rigon and

Shin, 2022), which was indeed driven by a number of factors including banks’ increased demand

for reserves to meet regulatory requirements, a reduction in the supply of reserves due to the

Fed’s balance sheet normalization process, and corporations withdrawing cash from banks to pay

quarterly tax obligations. That said, it is less well understood why the repo spike started to happen

exactly on September 16, 2019. Proposition 3 provides a fragility perspective to understand it:

the Fed’s balance sheet normalization process pushes z/κ lower and falling into the intermediate

region where multiple equilibra exists, leading to the potential for interbank payment disruptions

due to coordination failure.

German interbank crisis in 1931. Blickle, Brunnermeier, and Luck (2022) provide a com-

prehensive analysis of the run on the German banking system in 1931, which was one of the

largest bank runs in history and a key event of the Great Depression. A notable feature of this

run episode is the severe disruption in interbank payments and lending. Importantly, the run hap-

pened when the Reichsbank, the German central bank at that time, was constrained by the Gold

Standard and was mandated to cover 40% of the circulating currency with gold. Proposition 3

thus provides a complementary view to understand the source of fragility in interbank payments

and lending: reserve scarcity. The mandate to follow the Gold Standard could be understood as

κ falling in the intermediate region so that multiple equilibria exists, leading to the potential for

interbank payments and lending disruptions.

September 11 attacks. In 2001, the September 11 attacks on the World Trade Center and

the Pentagon caused significant disruptions in the U.S. financial system, including the interbank

payment systems. The Federal Reserve Bank of New York (New York Fed), which serves as

the primary operator of Fedwire, was located just blocks away from the World Trade Center.

The attack led to halts and significant delays in the settlement of interbank payments despite

major banks being sufficiently funded and the Fedwire operation system itself not being attacked
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(Afonso and Shin, 2011). In this context, the September 11 Attacks could be interpreted as a

sudden decrease in δ: agents suddenly become less patient, or the probability of the bad aggregate

shock suddenly increases.

Brexit. The United Kingdom’s withdrawal from the European Union (EU) in 2020 created

significant challenges for cross-border payments between the UK and the EU. This included

disruptions in the settlement of cross-border payments, as well as uncertainty around regulatory

compliance and other issues. In this context, similarly, the establishment of Brexit could be

interpreted as a sudden decrease in δ.

SWIFT hacks. SWIFT is a global financial messaging network that facilitates cross-border

payments between financial institutions. In recent years, there have been several high-profile

hacks of the SWIFT network, including the 2016 Bangladesh Bank heist, in which hackers stole

$81 million from the bank’s account at the New York Fed (see Hill, 2018, for a comprehensive

analysis). Cross-border payment halt after these events, even if the financial institutions in ques-

tion have not necessarily been subject to these hacks themselves. In this context, the hacks could

be interpreted as a sudden quality decrease in the payment technology µ.

Ripple Labs lawsuit. Ripple Labs, the creator of the XRP cryptocurrency, was sued by

the U.S. Securities and Exchange Commission (SEC) in 2020, alleging that the company had

conducted an unregistered security offering through the sale of XRP. This led to significant dis-

ruptions in cross-border payments involving XRP, with many financial institutions halting or

limiting their use of the cryptocurrency. In this context, the lawsuit could be interpreted as a

sudden decrease in the frequency of payment request λ.

A straightforward but important observation from Proposition 3 is that multiple equilibria

and the implied financial fragility would not go away even when there is no uncertainty about the

private payment request (i.e., λ = 1) and when the payment technology is perfect (i.e., µ = 1).

Corollary 1. When λ→ 1 and µ→ 1, both the good and bad payment equilibria exist when

1− δ ≤ z

κ
≤ 1 .

The importance of Corollary 1 is that it shows what matters most for payment fragility is the

scarcity of the reserve good but not the uncertain payment needs or the quality of the payment

technology. As long as δ < 1, that is, when the agents are impatient (in the baseline economy) or

when the aggregate shock is not zero (in the alternative economy), the reserve good is valuable

in the sense that it processes a positive present value κ > 0. The scarcity of the valuable reserve
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good thus gives rise to the dynamic coordination motive between the agents in making payments,

leading to financial fragility.

4 The history-dependence of payments

Having analyzed the existence of multiple payment equilibria and linked it to observed disrup-

tions in various payment applications, we move forward to analyze how payment fragility may

happen within an equilibrium. This is important to help further discipline the model and under-

stand the source of fragility without relying on exogenous shocks or sunspots. In other words,

we aim to uncover the endogenous source that may trigger a payment disruption to better under-

stand the motivating facts, for example, the 2019 Repo market crisis. At the same time, we aim

to answer why payments often involve delays and history-dependence in the sense that an agent

makes outgoing payments only after receiving incoming payments, even if these agents are well

funded during normal times (e.g., Afonso, Duffie, Rigon and Shin, 2022). This question cannot

be fully answered by Proposition 3 because both equilibria studied there are history-independent.

4.1 The grim trigger payment equilibrium and history dependence

To illustrate the point of payments being history-dependent and fragile within an equilibrium, we

start by focusing on the classic “grim trigger” strategy first introduced in Friedman (1971) and

widely studied in repeated games. The grim trigger strategy is a behavioral strategy in game the-

ory that is used to enforce cooperation among players in a repeated game. The basic idea behind

this strategy is that a player will initially cooperate with their opponent, but if their opponent

ever defects, then the player will retaliate by defecting in all subsequent rounds of the game. In

other words, if one player cheats or does not cooperate, the other player will “punish” them by

not cooperating in any future rounds, even if it means a worse outcome for both players. The

grim trigger strategy is considered as a form of “tit-for-tat” strategy, where players mimic the

previous action of their opponent. However, the grim trigger is more extreme in that it involves

a permanent switch to defecting if the opponent ever defects. The grim trigger strategy is most

effective when the game is played repeatedly over a long period of time and when the players

have a long-term perspective. It is also effective when the cost of defecting is higher than the

cost of cooperating, as it provides a strong incentive for players to cooperate in order to avoid the

long-term consequences of defection.

Formally, we define the grim trigger strategy in our dynamic economy using a two-state
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automaton, as follows.

Definition 4. There is a grim trigger payment equilibrium if the reserve-holding agent plays

the grim trigger strategy, which is represented by the following automaton. The set of states is

W = {w(1), w(0)}, with the output function f
(
w(1)

)
= 1 and f

(
w(0)

)
= 0. The initial state is

w(1). The transition function is given by

τ(w, k) =

 w(1), if w = w(1) and k = 1 ,

w(0), otherwise.

A grim trigger strategy is described by (W,w(1), f, τ), whereas the continuation strategy profile

after any history in which a reserve transfer (i.e., k = 1) is not publicly observed in at least one

period is described by (W,w(0), f, τ).

w(1) w(0)
0

1 1, 0

Figure 3: Automaton representation of the grim trigger equilibrium

This figure shows the automaton that represents the grim trigger strategy equilibrium. Circles are states and arrows
are transitions, labeled by public outcomes that lead to the transitions.

By Definitions 2, 3, and 4, a grim trigger payment equilibrium is a PPE, and exhibits his-

tory dependence. Our next result shows that such an equilibrium exists, and characterizes the

conditions under which it exists.

Proposition 4. There exists a grim trigger payment equilibrium if and only if

1− δλµ ≤ z

κ
≤ 1 . (4.1)

Comparing Proposition 4 to Proposition 3 reveals an interesting observation: the region where

the grim trigger equilibrium exists is a strict subset of the region where the good and bad payment
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equilibria co-exist. To see this, note that

1− δ
1− δ(1− λµ)

< 1− δλµ .

The relationship between the good, bad, and grim trigger payment equilibrium can be thus

illustrated as in Figure 4.

1−δ
1−δ(1−λµ) 11− δλµ z/κ

Good equilibrium

Bad equilibrium

Grim trigger equilibrium

Figure 4: Relationship between the good, bad, and grim trigger equilibria

This figure shows the relationship of the existence regions of the good, bad, and grim trigger equilibria. The good
and bad equilibria can co-exist in the intermediate region, and the existence region of the grim trigger equilibrium is
a subset of that intermediate region.

The intuition for the relationship between the three equilibria can be understood in two steps.

First, notice that the existence of the grim trigger payment equilibrium relies on the existence of

the bad payment equilibrium because the bad payment equilibrium constructs one possible sub-

game equilibrium of the grim trigger equilibrium. This explains that the region where the grim

trigger equilibrium exists is a subset of the region where the bad payment equilibrium exists.

Furthermore, the existence of the grim trigger payment equilibrium also requires stronger

economic fundamentals in terms of z/κ than the good payment equilibrium would require. To

understand this more subtle result, it is useful to check the one-shot deviation again. Recall that

the good payment equilibrium essentially requires the reserve-holding agent to make a payment

conditional on the other agent always making a payment in the future. In contrast, the grim trigger

payment requirement requires even stronger incentives for the reserve-holding agent, because

it implies that the reserve-holding agent is still willing to make a payment initially given the

existence of some sub-game equilibrium paths along which the other agent will stop making

payments. This finally explains why the region where the grim trigger equilibrium exists is a

strict subset of the region where the good and bad payment equilibria co-exist.

The existence of the grim trigger payment equilibrium allows our model to explain why pay-
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ments often involve delays in the sense that an agent makes outgoing payments only after receiv-

ing incoming payments, even if these agents are well funded. As described by Afonso and Shin

(2011), Copeland, Duffie and Yang (2020), and Afonso, Duffie, Rigon and Shin (2022), banks

typically wait until they have received incoming payments to start sending outgoing payments to

other banks, resulting in significant delays in intraday payments during both normal and crisis

times. This delay pattern tends to be more pronounced when banks face higher capital costs and

when aggregate central bank reserves are more scarce. In our model, this pattern can be explained

by the agents playing a grim trigger payment equilibrium when κ, the value of the reserve good

is relatively larger, and thus the reserve is more scarce.

Comparative statics of the existence region of the grim trigger payment equilibrium with re-

spect to the economic environment further reveals a number of interesting economic predictions.

Notice that the region [1 − δλµ, 1] can only vary with economic parameters at the lower bound,

but not the upper bound. Therefore, it suffices to perform comparative statics of the lower bound

1 − δλµ with respect to δ, λ, and µ, and it is straightforward to see that the lower bound de-

creases in all of the three. That is, the grim trigger payment equilibrium is more likely to happen

when agents are more patient, when the bad aggregate shock is less likely, when the frequency of

payment requests is higher, or when the quality of the payment technology is better.

To understand the intuition, it is useful to be reminded that the grim trigger payment equilib-

rium requires the bad payment equilibrium as a sub-game equilibrium, but it is itself an improve-

ment of the bad payment equilibrium in terms of payment efficiency in the dynamic economy

because the reserve-holding agent is willing to make payment at the beginning. Hence, taking

the scarcity of the reserve good as given, an improvement in other economic conditions (including

agents being more patient, the bad aggregate shock being less likely, a higher frequency of pay-

ment requests, or a better payment technology) gives the reserve-holding agent a higher incentive

to pay a payment initially, supporting a grim trigger equilibrium.

However, interestingly, these comparative static results also suggest that an improvement in

economic conditions may rather increase rather than decrease the likelihood of payments being

history-dependent when the conflict between payment and non-payment is large in the sense that

z/κ ≤ 1. And the nature of payments being history-dependent would not go away even if there

is no uncertainty about the payment needs and when the payment technology is perfect. Similar

to Corollary 1, we have the following result:
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Corollary 2. When λ→ 1 and µ→ 1, the grim trigger payment equilibrium exists if and only if

1− δ ≤ z

κ
≤ 1 .

Like Corollary 1, Corollary 2 shows what matters most for the history dependence of pay-

ments is the scarcity of the reserve good but not the uncertain payment needs or the quality of the

payment technology. This prediction also relates to Proposition 2, which shows that any improve-

ment in economic conditions other than the scarcity of the reserve good cannot change the region

where the bad payment equilibrium exists. Thus, even if improvements in economic conditions

increase the chances of the reserve-holding agent making an initial payment upon request, they

cannot prevent the economy from eventually switching to the bad payment sub-game equilibrium

after some unsuccessful history of payments regardless of the reasons. Proposition 4 and Corol-

lary 1 thus again suggest that economic improvements such as a better payment technology may

not necessarily eliminate payment delays that fundamentally arise from reserve scarcity, a point

we highlight throughout the paper.

To offer another important perspective to understand the history dependence of payments, we

consider the time until when the grim trigger equilibrium “collapses” in that the two agents stop

making payments to each other. We can define this time formally and generally:

Definition 5. For any PPE that admits the bad payment equilibrium as a sub-game equilibrium,

the time-to-collapse T is the time when state w(0) is reached, that is, when the bad payment

equilibrium is played.

In our stochastic dynamic game, the time-to-collapse T is itself a random variable in any

given equilibrium. Thus, it is useful to consider its distribution and expectation. We have the

following result, which immediately follows from Definition 4 and Proposition 4.

Corollary 3. The time-to-collapse in a grim trigger payment equilibrium follows a geometric

distribution with a parameter 1− λµ, and the expected time-to-collapse is

E[T ] =
1

1− λµ
.

The intuition behind Corollary 3 directly follows from the definition of the grim trigger pay-

ment equilibrium and its existence. The two agents start by trusting each other and making

payments until no reserve transfer is observed for one period. Looking forward from any given

period, we know that the probability of a reserve transfer is λµ, that is, if the reserve-holding
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agent is requested to make a payment, and her payment goes through. Therefore, the grim trigger

payment equilibrium would collapse with probability 1− λµ in any given period.

Together with Proposition 4 and Corollary 2, Corollary 3 offers a complementary view re-

garding the history dependence of payments in a grim trigger payment equilibrium, and partic-

ularly, how payment needs and payment technology affect the history dependence. Although,

for example, a better payment technology may not necessarily reduce the chance when history

dependence arises in terms of economic fundamentals (as illustrated in Proposition Proposition 4

and Corollary 2), it does reduce the time-to-collapse when history dependence actually happens.

In other words, a better payment technology may still reduce the sensitivity of payment decisions

on past payment histories, despite they being history-dependent in nature.

4.2 Generalized grim trigger payment equilibria and history dependence

Having studied the classic grim trigger equilibrium, we generalize the analysis to a class of equi-

libria that allows us to further characterize the magnitude of history dependence in payments.

Formally, we define an n-trigger payment equilibrium as follows:

Definition 6. There is an n-trigger payment equilibrium if the reserve-holding agent plays the

n-trigger strategy, which is represented by the following automaton. The set of states is W =

{w(l)|0 ≤ l ≤ n}, with the output function f
(
w(l)
)
= 1 for 1 ≤ l ≤ n and f

(
w(0)

)
= 0. The

initial state is w(n). The transition function is given by

τ(w, k) =


w(l), if w = w(l), 1 ≤ l ≤ n, and k = 1 ,

w(l−1), if w = w(l), 1 ≤ l ≤ n, and k = 0 ,

w(0), otherwise.

An n-trigger strategy is then described by (W,w(l), f, τ).

By Definitions 2, 3, and 6, an n-trigger payment equilibrium is a PPE, and exhibits history

dependence. It is straightforward that the grim trigger payment equilibrium considered in Defini-

tion 4 is a special case of the general n-trigger payment equilibrium with n = 1. Intuitively, the

classic grim trigger strategy represents the most extreme form of punishment in that the reserve-

holding agent never makes any future payments after a reserve transfer has been not publicly

observed for just one period. The n-trigger payment equilibrium accommodates the same idea of

history dependence but is more general to capture its magnitude: the reserve-holding stop making

payments after reserve transfers have been unobserved for a total of n accumulated periods. The
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w(n) w(n−1) w(0)...0 0 0

1 1 1, 0

Figure 5: Automaton representation of the n-trigger equilibrium

This figure shows the automaton that represents the n-trigger strategy equilibrium. Circles are states and arrows are
transitions, labeled by public outcomes that lead to the transitions.

parameter n thus naturally captures the magnitude of history dependence in payments; a larger

n suggests that payment decisions are less sensitive to past payment histories, and thus a lower

magnitude of history dependence.

Proposition 5. There exists an n-trigger payment equilibrium for all n ≥ 1 if and only if

1− δλµ ≤ z

κ
≤ 1 .

Comparing Proposition 5 to Proposition 4 reveals that the region where the n-trigger equilib-

rium exists is exactly the same as that where the grim trigger equilibrium exists. In other words,

the region where the n-trigger equilibrium exists is independent of n. This somewhat surprising

result can be understood from the following two observations.

On the one hand, by definition, the existence of the n-trigger payment equilibrium relies on

the existence of the n−1-trigger equilibrium because the latter constructs one possible sub-game

equilibrium of the former. This explains that the region where the n-trigger equilibrium exists is

a subset of that where the n− 1-trigger equilibrium exists, and by induction, also a subset of that

where the grim trigger equilibrium exists,

On the other hand, the n+ 1-trigger payment equilibrium must exist if the n-trigger payment

equilibrium exists, for any n ≥ 1. This is the key step in the proof of Proposition 5, and its

intuition follows from that a larger n represents a lower magnitude of history dependence. To see

this, note that the n + 1-trigger payment equilibrium requires weaker economic fundamentals in

terms of z/κ for the reserve-holding agent to make a payment at the initial state compared to the

n-trigger payment equilibrium because the former admits one more period of not publicly ob-

serving a reserve transfer. In other words, the reserve-holding agent is more encouraged to make
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a payment in the n + 1-trigger payment due to a lower threat of experiencing a bad technology

shock and the reserve involuntarily failing to be transferred. Hence, the region where the n-

trigger equilibrium exists must also be a subset of that where the n+1-trigger equilibrium exists.

Taken together, these two observations explain why the region where the n-trigger equilibrium

exists is independent of n.

Similarly, we can characterize the time-to-collapse for a general n-trigger payment equilib-

rium, based on Definition 5 and Proposition 5.

Corollary 4. The time-to-collapse in an n-trigger payment equilibrium follows a negative bino-

mial distribution with parameter n and 1− λµ, and the expected time-to-collapse is

E[Tn] =
n

1− λµ
.

Corollary 4 nests Corollary 3 and provides a complementary view to illustrate the nature of

the n-trigger payment equilibrium. The expected time-to-collapse becomes longer when n is

larger. This result naturally follows from a lower magnitude of history dependence: a larger n

implies that the payment system is more resilient to potential payment failures despite the nature

of payments being history-dependent. All these equilibria can be possibly sustained, allowing

our model to capture the rich patterns of history dependence in payments in reality.

5 Full equilibrium characterization and welfare outcomes

So far, we have focused on multiple equilibria to understand sudden payment halts for non-

fundamental reasons and a specific type of history-dependent equilibrium, the grim trigger pay-

ment equilibrium (and its generalized form, the n-trigger payment equilibrium), to understand

payments being history-dependent and the resulting payment delays. In this section, we show

that the results of payment delays and payments being history-dependent hold much more gen-

erally. When the good and bad payment equilibria co-exist, there further exist a set of many

history-dependent equilibria, which helps capture the rich pattern of reciprocal payments and

their history dependence. As an example, the reserve-holding agent may use a less strict punish-

ment in the sense that it may resume making payments after a number of periods of non-payment.

Alternatively, the reserve-holding agent may only stop making payments after having observed

multiple periods of non-payment from the other agent.

Given the impossibility to search through a prohibitively immense set of possible equilibria,

the repeated game literature has developed an alternative methodology to study the equilibrium
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outcomes by focusing on the payoffs of agents, that is, the welfare outcomes, rather than im-

posing any restrictions on the space of the strategy profiles per se. To that end, we adapt the

methodology for computing subgame-perfect equilibrium payoffs in repeated games comes from

Abreu, Pearce, and Stacchetti (1990), hereafter APS, to our dynamic economy. APS show that

the set of equilibrium payoffs satisfies a recursive relationship that is analogous to the Bellman

equation from dynamic programming. In particular, any equilibrium payoff can be decomposed

into a flow payoff from the first period of play plus the expected discounted payoff from the next

period onward, which, by subgame perfection, is also an equilibrium payoff. APS call this idea

“decomposability.” Just as the value function is the fixed point of the Bellman operator, so too is

the equilibrium payoff set is the largest fixed point of an operator that produces the set of payoffs

that can be generated using continuation values chosen from a given set. Moreover, APS show

that iterating this operator on any set that contains all equilibrium payoffs yields a sequence of sets

that asymptotically converges to the set of equilibrium payoffs, which they call “self-generation.”

Although APS focus on repeated games with imperfect monitoring and without a state variable,

we show that their methodology can be extended to the class of games studied here, where there

is not a repeated stage game and payoffs are generated in each state using continuation payoffs

drawn from a received payoff correspondence.

Our main methodological contribution is an adaption of the APS methodology to a class of

non-repeated stochastic dynamic games. In the analogy with dynamic programming, the APS

algorithm is identified with value function iteration. We combine this approach with a new form

of policy iteration, which is used to solve for equilibrium payoffs when incentive constraints are

slack at times. We perform an analysis that yields a recursive characterization of contractual

equilibrium payoffs, along the lines of APS, where one relates continuation values that can be

achieved from a given period to the continuation values in the next period. The key complication

we face here is that the sets of continuation values are different for the two agents depending on

their reserve-holding status, and generally differ across periods. Thus, instead of looking for a

fixed point set of continuation values, as is the case in the large literature of repeated games, we

are looking for a fixed point in the space of indexed collections of sets of continuation values. The

approach also leads to new structural insights about equilibria that generate extreme equilibrium

payoffs, namely, that play must be stationary until the first period in which an incentive constraint

binds. Thanks to the design of our stochastic dynamic game, we are further able to characterize

the full set of equilibrium payoffs in closed form, which is typically hard to achieve in the repeated

game literature even after applying modern methods (Abreu and Sannikov, 2014, Abreu, Brooks,
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and Sannikov, 2020).

We first provide some primitive analysis to illustrate the structure of a generic PPE under

our framework. In our two-agent stochastic dynamic game, a PPE can be fully characterized

by a pair of both agents’ continuation values, where the two components in the pair separately

capture the continuation values depending on whether a payment is successfully made, that is,

whether the reserve good is transferred from one agent to the other. This is because, different

from a classic repeated game, the stochastic dynamic game we consider requires an additional

state variable of who owns the reserve good, which is scarce. We note that this is different from

APS and the subsequent work on repeated games in which the stage game is repeated and does

not change over time. This also implies that our methodology involves significant differences

from the original APS framework. This methodological contribution provides a useful tool to

study long-term interactions in non-repeated stochastic dynamic games and can inform future

work in related areas.

Formally, consider any time t ≥ 0. Suppose agent 1 holds the reserve good at the beginning

of date t while agent 2 does not. Let wi be agent i’s equilibrium payoff, that is, per-period

continuation value at the beginning of date t, i ∈ {1, 2}. Let wki , where k ∈ {0, 1}, be agent i’s

per period continuation value at the beginning of date t + 1, with k = 1 meaning that a transfer

of the reserve good successfully occurs at time t and k = 0 meaning not.

In what follows, we extend the APS framework of equilibrium payoff construction to our

stochastic dynamic game in several steps.

Decomposability. First, following the idea of decomposability in APS, we can decompose

the two agents’ equilibrium payoff into the current period’s payoff and the expected continuation

payoff. Note that, any meaningful payment equilibrium profile other than the bad payment equi-

librium (described in Proposition 2) must involve the reverse-holding agent choosing to make a

payment (upon receiving the private payment shock) at least at some history; otherwise it is the

bad payment equilibrium. Thus, without loss of generality, we start from the initial state that

agent 1 chooses to make a payment, and we can write:

w1 = (1− δ)λµ (z − c) + δ
[
λµw1

1 + (1− λµ)w0
1

]
= λµ

[
δw1

1 + (1− δ) (z − c)
]
+ (1− λµ) δw0

1 (5.1)
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and

w2 = (1− δ) (1− λµ) (−c) + δ
[
λµw1

2 + (1− λµ)w0
2

]
= λµδw1

2 + (1− λµ)
[
δw0

2 − (1− δ) c
]

, (5.2)

which can be summarized by the following vector operation:

w ,

 w1

w2

 =

δ ·w1 +

 (1− δ) (z − c)

0

 , δ ·w0 −

 0

(1− δ) c

 λµ

1− λµ

 ,

(5.3)

where the bold letters denote vectors, and w1 (w0) is the pair of the two agents’ date-t + 1 per

period continuation values if a transfer occurs (does not occur) at date t.

We provide some intuition to help understand conditions (5.1) and (5.2). In (5.1), the reserve-

holding agent’s current period payoff is λµ(z − c) because she gets a net payoff of z − c if and

only if a successful payment is made, which happens with probability λµ. Otherwise, she does

not enjoy any rewards from making a payment but does not suffer from any cost either, resulting

in a net payoff of 0. Next period, there are two possible states. If the reserve good is successfully

transferred (with probability λµ), her continuation value is w1
1, while it is w0

1 if not. Taking

expectations of these two continuation values and combining them with the current period payoff

gives condition (5.1).

Similarly, (5.2) decomposes the non-reserve-holding agent’s equilibrium payoff. Her current

period payoff is (1− λµ)(−c) because she suffers from a cost of lacking the reserve good if and

only if she has not received any payment from the other reserve-holding agent, which happens

with probability 1 − λµ. Otherwise, she gets the reserve good and avoids the cost, getting a net

payoff of 0. Next period, there are still two possible states. If the reserve good is successfully

transferred (with probability λµ), her continuation value is w1
2, while it is w0

2 if not. Taking

expectations of these two continuation values and combining them with the current period payoff

gives condition (5.2).

Based on the construction above, we can define the following operator for any µ ∈ (0, 1),

w1,w0 ∈ R2,

φ
(
µ,w1,w0

)
=

δ ·w1 +

 (1− δ) (z − c)

0

 , δ ·w0 −

 0

(1− δ) c

 λµ

1− λµ

 .

(5.4)

34



Then, (5.3) can be written as

w =φ
(
µ,w1,w0

)
.

Enforceability (incentive compatibility). The second step is to incorporate the two agents’

incentive compatibility conditions, which APS call “enforceability.” Recall that, due to the imper-

fect payment technology, a payment will go through with probability µ when the reserve-holding

agent chooses to send it. Facing future continuation values w1 and w0, therefore, the reserve-

holding agent effectively chooses the probability at which a payment is successfully made:

µ = µ
(
w1,w0

)
,

 µ if (1− δ) (z − c) + δw1
1 ≥ δw0

1

0 if (1− δ) (z − c) + δw1
1 < δw0

1 ,
(5.5)

where we break the tie by assuming that any agent makes a payment when she is indifferent.

The intuition of the enforceability condition (5.5) is straightforward: conditional on receiving

the private payment shock, the reserve-holding agent chooses to make a payment if and only if

this action gives her a higher total payoff (including current period’s payoff and next period’s

expected payoff) compared to not making a payment.

Generating function and evolution of the state variable. Third, we construct the generating

function as in APS. Notably, we develop an approach to accommodate the evolution of the state

variable (i.e., the ownership of the scarce reserve good), which is not present in APS. The change

of reserve ownership differentiates our stochastic dynamic game from standard repeated games

in which the stage game is repeated and the space of actions in a stage game does not change over

time.

For any payoff set W ⊂ R2, define its transpose as

T (W ) = {(w1, w2) : (w2, w1) ∈ W} .

With a little abuse of notation but no confusion, for any w =(w1, w2)∈R2, we also write T (w) =

(w2, w1) ∈ R2.

Let Vs ⊂ R2 denote the set of per-period continuation value pairs that can be supported in a

PPE when the state is s ∈ {0, 1}, that is, the equilibrium payoff set for the two agents, where s is

the same as defined in Section 2. Specifically, V1 is set of the equilibrium value pairs when agent

1 has the reserve good, while V0 is that when agent 1 does not have the reserve good.
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Definition 7. Let B (·) be a set operator such that for any W ⊂ R2,

B (W ) =
{
w ∈R2 : ∃w0 ∈ W and w1 ∈ T (W ) , such that w =φ

(
µ
(
w1,w0

)
,w1,w0

)}
.

Following APS, we call the operator B(·) the generating function. As discussed before, how-

ever, the structure of this generating function is significantly different from its original version

in APS and the large literature of repeated games following APS. Specifically, B (W ) in our

non-repeated dynamic stochastic game consists of pairs of continuation values that can be sup-

ported by future continuation value pairs w1 and w0 chosen from T (W ) and W , respectively,

contingent on whether there is a successful transfer of the reserve good or not. Note that w1,

the pair of future continuation values after a transfer, is chosen from T (W ) instead of W , be-

cause after a transfer of the reserve good the state of the game switches from s to 1 − s, and

V1−s = T (Vs). Fortunately, due to the symmetry between V0 and V1, we need to characterize one

of them only. We will focus on V1 below, a generic element of which is (w1, w2), with w1 being

the continuation value of the reserve-holding agent, and w2 being the continuation value of the

non-reserve-holding agent.

We provide another perspective to understand why we can handle the evolution of the reserve

good ownership as the state variable in the generating function without actually tracking it. In our

economy, this stems from the fact that the two agents jointly own one indivisible reserve good.

Whenever a successful transfer of the reserve good takes place, the initially reserve-holding (non-

reserve-holding) agent becomes the non-reserve-holding (reserve-holding) agent. The resulting

new stage game, albeit different from the initial stage game due to the change of ownership,

mirrors the initial game by switching the roles of the two agents. Mathematically, this can be thus

handled by the transpose of the initial vector that consists of the two agents’ payoffs. This feature

plays an important role in the analysis of our economy. As discussed above, this feature requires

a setup that prevents us from directly making quantitative predictions regarding the amount of

the reserve goods. However, it does sufficiently capture the scarcity of the reserve good, which

is the key. Furthermore, we also gain the analytical tractability to make significant progress in

characterizing the full equilibrium payoff set.

Self-generation and equilibrium payoff set. Having developed an approach to handle the

evolution of the state variable, we extend the notion of self-generation in APS to our framework

and present an analytical procedure to characterize the equilibrium payoff set V1, as the last step.

Lemma 1. The equilibrium payoff set is self-generating in the sense that V1 ⊂ B (V1).
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Lemma 1 holds by definition of PPE: any sub-game equilibrium of a PPE is itself a PPE.

Economically, this means that the set of equilibrium payoffs V1 should be self-generating in the

sense that it is possible to sustain average payoffs in V1 by promising different continuation values

in V1.

Lemma 2. If W ⊂ R2 is bounded and W ⊂ B (W ), then B (W ) ⊂ V1.

Lemma 2 then gives us a criterion for identifying subsets of the equilibrium payoff set V1,

because any self-generating set is such a subset. Interestingly, other than boundedness, Lemma

2 does not impose any restrictions on the payoff set W . One might expect that applying the

generating function B(·) on W would generate payoffs that are not attainable in our dynamic

economy. Indeed, the real requirement for Lemma 2 is thatW must be able to generate a superset

of itself. Intuitively, the generating function given by Definition 7 implies that any B(W ) must

be itself enforceable in our dynamic economy. Because any enforceable payoff constructs an

equilibrium payoff by the definition of PPE, we have the desired result.

Proposition 6. The equilibrium payoff set satisfies V1 = B (V1).

Proposition 6 is important and directly follows from Lemmas 1 and 2. It states that the

equilibrium payoff set V1 is a fixed point of the generating function B (·). Following APS, we

thus call that the equilibrium payoff set V1 can be factorized. Economically, this implies that V1

can be found by characterizing the largest fixed point of B (·).

So far, we have extended the APS methodology to our non-repeated stochastic dynamic game

and show that the equilibrium payoff set can be similarly characterized by factorization despite

the change of reserve ownership as the state variable. However, we note that it is generally hard

to analytically characterize the equilibrium payoff set in repeated games even with the powerful

tool developed by APS. Rather, the literature has largely focused on describing some potential

features of the set, for example, whether the set is compact or closed as APS initially focuses

on, or imposing restrictions on the discount factor (e.g., Fudenberg, Levine and Maskin, 1994),

or imposing restrictions on the strategy space with the notable example of focusing on strongly

symmetric PPE in that all players use the same strategy after every history (e.g., Athey, Bagwell

and Sanchirico, 2004). Alternatively, a literature has focused on developing methods to solve

for the equilibrium payoff set numerically (e.g., Abreu and Sannikov, 2014, Abreu, Brooks, and

Sannikov, 2020). Thanks to the structure of our dynamic economy, we are able to further make

significant progress by analytically solving for the full equilibrium payoff set without imposing

any restrictions on the discount factor or the strategy space.
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To proceed, we first identify a boundary of the equilibrium payoff set V1 by highlighting some

intuitive features of our dynamic payment game:

Lemma 3. Let X ⊂ R2 be a set of pairs of per-period continuation values satisfying the above

four constraints, i.e.,

X =
{
(w1, w2)∈R2 : −c ≤ w1 + w2 ≤ λµz − c, w1 ≥ 0 and w2 ≥ −c

}
.

Then V1 ⊂ X .

The proof of Lemma 3 is constructive; the intuition can be understood in the following four

steps. Let w =(w1, w2)∈V1. First, w1 + w2 ≤ λµz − c. This is because at any given time t, the

maximum expected gain from making a payment is λµz (i.e., when the good payment equilibrium

is played), and one and only one agent suffers from a (per period) cost for falling short of the

reserve good, which is c. This captures the upper bound of the two agents’ equilibrium payoff

sums.

Second, w1 + w2 ≥ −c. This is because in the worst case, that is, when the bad payment

equilibrium is played, the reserve-holding agent does not send it upon the payment shock, and

the two agents as a whole enjoy no gain but suffer from a (per period) cost of c. This thus captures

the lower bound of the two agents’ equilibrium payoff sums.

Third, w1 ≥ 0. This is because the reserve-holding agent can guarantee a zero payoff for all

future periods by not sending the transfer. This captures the lower bound for the reserve-holding

agent’s equilibrium payoff.

Fourth, w2 ≥ −c. This is because the non-reserve-holding agent will at most suffer from

a per period cost of −c in the bad payment equilibrium. This captures the lower bound for the

non-reserve-holding agent’s equilibrium payoff.

Lemma 4. If W ⊂ W̃ , then B (W ) ⊂ B
(
W̃
)

.

Lemma 4 further states that the generating function B (·) is monotone with respect to the

partial order induced by set inclusion “⊂”. In addition, since all subsets of X form a complete

lattice with respect to “∩” and “∪” and the partial order, according to Tarski’s fixed point theorem,

the fixed points of B (·) form a complete lattice and thus there is a maximal one, which is V1. In

particular, by definition,Bn (X) forms a non-increasing set sequence and V1 = limn→∞B
n (X) .

Using Proposition 6 and Lemmas 3 and 4, we are finally able to present the following main

result of this section, which shows that all the equilibrium-sustainable payoff outcomes for the
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two agents can be characterized by a triangle. Further, we are able to solve the three extreme

points of this triangle in closed form.

Proposition 7. The equilibrium payoff set V1 can be characterized by a triangle with the follow-

ing three extreme points:
X1 = (0,−c)′ ,

X2 =

(
λµ((1− δ(1− λµ))z − c)

1 + δ(2λµ− 1)
,
δ(λµ)2z − (δλµ+ (1− δ)(1− λµ))c

1 + δ(2λµ− 1)

)′
,

X3 =

(
0,−c+ λµz(2c− (1− δ)z)

c+ δλµz

)′
.

The two triangles in Figure 6 illustrate the sets of equilibrium payoffs V1 for two different

sets of model parameters. Specifically, the full set of PPEs can be characterized by a triangle in

the space of (w1, w2), in which every pair of continuation values are attainable. The equilibrium

payoff set V1 fully captures all the possible welfare outcomes for the two agents in our economy.

It is also worth noting that the two extreme points X1 and X2 in V1, according to Propositions

1 and 2, denote the equilibrium payoffs in the bad and good payment equilibria, respectively, in

which payment decisions are history independent. Excluding these two extreme points, the other

equilibrium payoffs in V1 can be achieved by potentially history-dependent payment equilibria,

the grim trigger payment equilibrium being a notable example.

The closed-form solution provided in Proposition 7 allows for easy and explicit comparative

statics of the full equilibrium payoff set with respect to important model parameters such as the

payment technology and agents’ time preferences. Figure 6 shows that the equilibrium payoff set

expands in that more equilibrium outcomes can be supported in which both agents enjoy higher

payoffs when the quality of the payment technology µ increases. In other words, the equilibrium

payoff set for a smaller µ is a subset of that for a larger µ. Intuitively, a better payment technology

benefits both agents despite payment decisions potentially being history-dependent. This result

is reminiscent of Kandori (1992), which shows that the set of PPE payoffs in repeated games is

increasing as the public monitoring technology becomes more precise. We note again, however,

an improvement in the payment technology may not necessarily reduce payment fragility, as

shown in Corollaries 1 and 2.

Similarly, Figure 7 shows the evolution of the equilibrium payoff set when agents become

more patient or when the aggregate bad shock is less likely, that is, when δ increases. Inter-

estingly, an increase in δ leads to more equilibrium outcomes that disproportionately benefit the
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Figure 6: Equilibrium payoffs and comparative statics w.r.t. payment technology

This graph plots the equilibrium set V1 for two sets of parameters. The shaded area denotes the equilibrium payoffs
of equilibria in which payment decisions are history-dependent. Parameters: c = 0.5, z = 1, δ = 0.7, λ = 0.8, and
µ increases from 0.8 to 0.9.

non-reserve-holding agent (i.e., a higher w2) while hurting the reserve-holding agent (i.e., a lower

w1). This result significantly differs from the standard APS result for a generic repeated game

in that under mild conditions the equilibrium PPE set for a larger discount factor is a superset

of that for a smaller discount factor. To understand the intuition of Figure 7 and the contrast to

existing results in the literature, notice that the two agents’ roles are not symmetric in our (non-

repeated) dynamic game that captures asynchronous but reciprocal payments. Intuitively, when δ

increases, the reserve-holding agent cares more about the future. This implies a higher incentive

for her to send the requested payment to the non-reserve-holding agent, everything else equal.

The higher incentive thus implies an expected welfare transfer from the reserve-holding agent to

the non-reserve-holding agent, which fundamentally arises from the scarcity of the reserve good.

Put differently, a higher δ encourages the reserve-holding agent to give up the scarce reserve good

now in exchange for potentially future coordination due to the history-dependence of payments,

which disproportionally benefits the currently non-reserve-holding agent.

Furthermore, it is useful to compare Proposition 7 to the results in Abreu, Pearce, and Stac-

chetti (1986) and Athey, Bagwell and Sanchirico (2004) in which the equilibrium payoff set
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Figure 7: Equilibrium payoffs and comparative statics w.r.t. time preferences

This graph plots the equilibrium set V1 for two sets of parameters. The shaded area denotes the equilibrium payoffs
of equilibria in which payment decisions are history-dependent. Parameters: c = 0.5, z = 1, λ = 0.8, µ = 0.8, and
δ increases from 0.7 to 0.9.

can be also analytically characterized when only strongly symmetric equilibria are considered.

Abreu, Pearce, and Stacchetti (1986) first introduce the concept of symmetric games to focus on

PPEs that are strongly symmetric in the sense that each player uses the same strategy after each

history. This is a useful simplification because the equilibrium payoff set of strongly symmet-

ric PPE can be analytically characterized by a compact interval [w,w], where w and w are the

lowest and highest strongly symmetric PPE payoffs. Specifically, Abreu, Pearce, and Stacchetti

(1986) analyze strongly symmetric equilibria in Green and Porter (1984)’s oligopoly game where

players choose quantities and the price is a noisy function of the aggregate quantity. Athey, Bag-

well and Sanchirico (2004) study strongly symmetric equilibria in a repeated Bertrand pricing

game where firms have private cost information. In contrast, we do not impose any restrictions

on the strategy space and show that the full set of equilibrium payoffs in our dynamic economy

is captured by a compact area rather than an interval.

Indeed, as Proposition 7 shows, the equilibrium payoff set for strongly symmetric PPEs is

captured by the interval [X1, X2], where X1 and X2 are the equilibrium payoffs for the bad and

good payment equilibria that are themselves strongly symmetric PPEs. However, an important
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observation from Proposition 7 is that the dynamic economy we consider admits many other non-

symmetric PPEs. We are able to fully characterize them, which represents significant progress

compared to the existing literature.

Finally, it is also useful to compare our methodology to other commonly used equilibrium se-

lection mechanisms in coordination games. In classic static coordination games (e.g., Diamond

and Dybvig, 1983), the strategic complementarity lies in agents’ simultaneous decisions. The

global games technique has been widely adopted to select a unique equilibrium and link it to eco-

nomic fundamentals (e.g. Morris and Shin, 1998, Goldstein and Pauzner, 2005). However, it is

well known that it is difficult to apply the global games technique to general stochastic dynamic

games (Angeletos, Hellwig and Pavan, 2007). A related but independent literature considers dy-

namic games in which random fundamental shocks (rather than past histories of decisions) serve

as a coordination device in the presence of dynamic strategic complementarity (e.g., Frankel and

Pauzner, 2000, He and Xiong, 2012). This literature can explain financial fragility in dynamic

interactions but is not designed to explain endogenous patterns of history-dependence in agents’

actions and strategies, which we view as a prevalent feature of payments. Given these chal-

lenges, we take an alternative approach that is commonly used in the repeated games literature.

Specifically, we choose not to select any specific equilibrium but rather directly characterize the

equilibrium outcomes of all the equilibria. This approach helps us capture the rich dynamics

of history-dependence in the various applications of payments. Our framework and the solu-

tion method may also inform future studies that focus on asynchronous coordination in dynamic

contexts.

6 Conclusion

We present a dynamic theory of payments that establishes a crucial link to the scarcity of reserves.

Our proposition posits that all payments entail the transfer of a reserve good, which, apart from

serving payment functions, holds value for non-payment purposes and exhibits inelastic supply.

The model’s insights illuminate the contrasting behaviors of agents in different reserve abun-

dance scenarios: agents make payments when reserves abound, while they cease payments when

reserves become scarce relative to the payment technology. When reserve scarcity falls within

an intermediate range, the model unfolds multiple equilibria, with agents’ payment decisions

becoming linked to the payment history of their counterparts within an equilibrium. The model

explains why payments frequently encounter delays and halts, even when agents possess adequate
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funding. The model indicates that advancements in payment technologies might not always be the

panacea for fragility reduction. We develop a new methodology to analyze the welfare outcomes

of all feasible equilibria, capturing the intricate dynamics governing the history-dependent nature

of payments. The model applies to various payment contexts, encompassing metallic payments

preceding fiat money, modern bank payments, cross-border transactions, and modern digital pay-

ment systems.

Our work extends to illuminating a conflict between price stability and financial stability.

In an era grappling with surging inflationary pressures, contemporary economic debate centers

around the optimal intensity of monetary policy tightening, reminiscent of the spirited contest

between Arthur Burns and Paul Volcker (Blinder, 2022). Yet, we argue that this debate should

be understood at a deeper level. As we commemorate the 150th anniversary of Walter Bagehot’s

seminal publication, Lombard Street, a treatise that reshaped the central banking history, our work

sheds light on the role of modern central banks. Bagehot’s work laid the foundation for central

banks’ role as lenders of last resort for the money market and the payment function of money.

In that spirit, our work highlights that any monetary policies that involve an increase in interest

rates or a reduction in the supply of the monetary base may inevitably result in increased reserve

scarcity for the payment function, potentially leading to payment fragility. As such, our work

advocates for a judicious calibration of monetary policies, navigating the trade-off between price

stability and the financial stability.
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Appendix for

Payments, Reserves, and Financial Fragility

Itay Goldstein Ming Yang Yao Zeng

A Proofs omitted from the main text

Proof of Proposition 1. The proof follows the idea of APS’s decomposability and is based on

the formal setup we lay out in Section 5. Let w=(w1, w2) be the pair of continuation values,

that is, the equilibrium payoffs of the two agents in the good payment equilibrium. Note that if

a good payment equilibrium exists, (w1, w2) must be unique since the agents’ actions are history

independent. By the nature of the good payment equilibrium, the currently reserve-holding agent

always has continuation value w1 and the non-reserve-holding agent always has continuation

value w2 regardless of the public history. Plugging w1 = T (w) and w0 = w into equation (5.3),

we obtain

w1 = (1− δ)λµ (z − c) + δ [λµw2 + (1− λµ)w1] (A.1)

and

w2 = (1− δ) (1− λµ) (−c) + δ [λµw1 + (1− λµ)w2] . (A.2)

Taking the difference of (A.1) and (A.2) yields

w1 − w2 =
(1− δ) [λµz − (2λµ− 1) c]

1 + δ (2λµ− 1)
. (A.3)

Taking the sum of (A.1) and (A.2) yields

w1 + w2 = λµz − c , (A.4)

which is intuitive. It is straightforward to see that the good payment equilibrium, if exists, is the

only equilibrium that attains the boundary {(w1, w2) : w1 + w2 = λµz − c}. According to (5.5),

this equilibrium exists if and only if

δw2 + (1− δ) (z − c) ≥ δw1 ,
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that is,

δ (w1 − w2) ≤ (1− δ) (z − c) .

By (A.3), this is equivalent to

z/c ≥ [1− δ (1− λµ)]−1 . (A.5)

By the relationship of κ = c/(1− δ), this immediately yields the equilibrium condition (3.1).

We can further solve the two continuation values from (A.3) and (A.4), which are given by

w1 =
λµ

1 + δ (2λµ− 1)
[(1− δ (1− λµ)) z − c] (A.6)

and

w2 =
δ (λµ)2 z − [δλµ+ (1− δ) (1− λµ)] c

1 + δ (2λµ− 1)
. (A.7)

Note that (A.5) implies that w1, the continuation value of the agent with the reserve in this good

equilibrium as given by (A.6), is non-negative. This concludes the proof.

Proof of Proposition 2. The bad payment equilibrium consists of the strategy that the agent with

the reserve never transfer the reserve upon request. Without loss of generality, let agent 1 have

the reserve at the beginning of the period. Then, if both agents follow the bad strategy, Agent 1’s

per period continuation value is 0 and agent 2’s is −c. This strategy is an equilibrium if and only

if one-shot deviation is not profitable. No profitable one-shot deviation is equivalent to

µ

(
z − (1− δ) · c

1− δ
+ δ · −c

1− δ

)
≤ 0 ,

i.e.,

z ≤ c

1− δ
.

By the relationship of κ = c/(1− δ), this immediately yields the equilibrium condition (3.3).

Similarly, we can easily calculate the continuation values for the two agents in the bad pay-

ment equilibrium as w(0)
1 = 0 and w(0)

2 = −c. This concludes the proof.

Proof of Proposition 4. The proof proceeds in two steps. These two steps give the upper and

lower bounds of the region where the grim trigger payment equilibrium exists.

STEP 1. Note that the grim trigger payment equilibrium admits the bad payment equilibrium

as a sub-game equilibrium. By Definition 2, the existence of the grim trigger payment equilibrium

thus requires the existence of the bad payment equilibrium. That is, condition (3.3) must hold.
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STEP 2. Following Definition 4 and APS’s decomposability conditions, we can write:

w
(1)
1 = λµ

(
δw

(1)
2 + (1− δ)(z − c)

)
+ (1− λµ) δw(0)

1 (A.8)

and

w
(1)
2 = λµδw

(1)
1 + (1− λµ)

(
δw

(0)
2 − (1− δ)c

)
. (A.9)

Note that, different from the counterparts in the proofs of Propositions 1 and 2, the pair of contin-

uation values as well as agents’ payment decisions are no longer history independent in the grim

trigger equilibrium. Rather, they follow the automaton as the state of the game evolves.

By Proposition 2, we easily have w(0)
1 = 0 and w(0)

2 = −c. Plugging them into (A.8) and

(A.9) yields:

w
(1)
1 = λµ

(
δw

(1)
2 + (1− δ)(z − c)

)
(A.10)

and

w
(1)
2 = λµδw

(1)
1 − (1− λµ)c . (A.11)

Further plugging (A.11) into (A.10) yields:

w
(1)
1 =

λµ (δ(1− λµ)(−c) + (1− δ)(z − c))
1− δ2λ2µ2

(A.12)

On the other hand, the existence of the grim trigger payment equilibrium requires incentive

compatibility for the reserve-holding agent in state w(1):

δw
(1)
2 + (1− δ)(z − c) ≥ δw

(0)
1 . (A.13)

Plugging (A.11) and w(0)
1 = 0 into (A.13) simplies the incentive compatability condition to:

w
(1)
1 ≥ 0 . (A.14)

Combining (A.12) and (A.14) finally yields:

z

c
≥ 1− δλµ

1− δ
.
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We can now close the proof by combining results from the two steps above:

1− δλµ
1− δ

≤ z

c
≤ 1

1− δ
.

By the relationship of κ = c/(1 − δ), this immediately yields the equilibrium condition (4.1).

This concludes the proof.

Proof of Proposition 5. The proof uses mathematical induction and builds upon the proof of

Proposition 4. It proceeds in three steps.

STEP 1. Based on the proof of Proposition 4, it is known that the grim trigger strategy, that

is, the 1-trigger strategy constitutes a PPE when

1− δλµ
1− δ

≤ z

c
≤ 1

1− δ
.

STEP 2. We show that the n+1-trigger strategy must constitute a PPE if the n-trigger strategy

constitutes a PPE, for all n ≥ 1. Following Definition 4 and APS’s decomposability conditions,

we start from:

w
(n+1)
1 = λµ

(
δw

(n+1)
2 + (1− δ)(z − c)

)
+ (1− λµ) δw(n)

1

and

w
(n+1)
2 = λµδw

(n+1)
1 + (1− λµ)

(
δw

(n)
2 − (1− δ)c

)
.

that is,

w(n+1) ,

 w
(n+1)
1

w
(n+1)
2

 =

δ ·
 0 1

1 0

w(n+1) +

 (1− δ) (z − c)

0

 , δ ·w(n) −

 0

(1− δ) c

 λµ

1− λµ

 ,

where we have w0
1 = 0 and w0

2 = −c by Proposition 2. Recast the equation above to get:I− λµδ
 0 1

1 0

w(n+1) = (1− λµ)δw(n) + (1− δ)

 λµ(z − c)

−(1− λµ)c

 ,

which implies

w(n+1) = (1− λµ)δA−1w(n) + (1− δ)A−1
 λµ(z − c)

−(1− λµ)c

 ,

55



where A , I− λµδ

 0 1

1 0

.

On the other hand, incentive compatibility requires that

(0, δ)w(n+1) ≥ (δ, 0)w(n) − (1− δ)(z − c) . (A.15)

In order to further characterize w(n) and the incentive compatibility condition, let y(n) =

w(n) + x for some x, such that y(n) takes the form

y(n+1) = (1− λµ)δA−1y(n) , (A.16)

that is,

w(n+1) + x = (1− λµ)δA−1
(
w(n) + x

)
,

⇒ x = (1− δ) [(1− λµ)δI−A]−1

 λµ(z − c)

−(1− λµ)c

 .

Now we can characterize y(n) and equilibirum payoff w(n) with boundary conditions. Note that

(A.16) implies contraction, hence y(∞) = 0 is the unique fixed point and w(∞) = −x. The

incentive compatibility condition (A.15) now becomes

(δ, 0)
[
y(n) − x

]
− (0, δ)

[
y(n+1) − x

]
≤ (1− δ)(z − c) .

Plugging in (A.16) and that w(∞) = −x yields

[
(δ, 0)− (0, δ)A−1(1− λµ)δ

]
y(n+1) ≤ δ(1,−1)x+ (1− δ)(z − c) ,

⇒ 1

1− λµ
(1,−δ)y(n+1) ≤ δ(1,−1)w(∞) + (1− δ)(z − c) . (A.17)

To show that the n+ 1-trigger strategy must constitute a PPE if the n-trigger strategy constitutes

a PPE, it now suffices to show that (A.17) must hold if y(n) satisfies

1

1− λµ
(1,−δ)y(n) ≤ δ(1,−1)w(∞) + (1− δ)(z − c) . (A.18)

By definition, w(∞) is the payoff of the good payment equilibrium, thus the RHS of (A.17) must
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be positive. This is because the RHS is exactly the expected payoff from the good payment

equilibrium minus the expected payoff from one-shot deviation, hence the RHS is non-negative

if and only if the good payment equilibrium exists.

It is straightforward to see that the eigenvalues and the corresponding normalized eigenvectors

of (1− λµ)δA−1 are

m1 =
(1− λµ)δ
1− λµδ

, e1 = 2−
1
2

 1

1

 ,

m2 =
(1− λµ)δ
1 + λµδ

, e2 = 2−
1
2

 1

−1

 ,

where y(0) is given by

y(0) = w(0) −w(∞) =

 −w(∞)
1

−c− w(∞)
2

 .

Note that w(∞)
1 ≥ 0, w(∞)

2 ≤ −c implies y(0)1 ≤ 0, y(0)2 ≤ 0. Let y(0) = (e1, e2)(β1, β2)
T , where

β1, β2 are given by  β1

β2

 = 2−
1
2

 1 1

1 −1

 y
(0)
1

y
(0)
2

 ,

and hence β1 ≤ 0. By (A.16), y(n) = [(1− λµ)δA−1]n y(0) = (mn
1e1,m

n
2e2)(β1, β2)

T . Since

the n-trigger strategy constitutes a PPE, plugging y(0) into (A.18) to get

1

1− λµ
(1,−δ)(mn

1e1,m
n
2e2)

 β1

β2

 ≤ δ(1,−1)w(∞) + (1− δ)(z − c) ,

⇒ 2−
1
2

1− λµ
(1− δ, 1 + δ)

 e1
T

e2
T

 (mn
1e1,m

n
2e2)

 β1

β2

 ≤ δ(1,−1)w(∞) + (1− δ)(z − c) ,

⇒ 2−
1
2

1− λµ
[mn

1 (1− δ)β1 +mn
2 (1 + δ)β2] ≤ δ(1,−1)w(∞) + (1− δ)(z − c) .

(A.19)

To show (A.17), it suffices to show (A.19) holds for n+ 1. To see this, note that

mn+1
1 (1−δ)β1+mn+1

2 (1+δ)β2 = m2 [m
n
1 (1− δ)β1 +mn

2 (1 + δ)β2]+(m1−m2)m
n
1 (1−δ)β1 ,
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where 0 < m2 < m1 < 1. As shown above, β1 ≤ 0, hence (m1 −m2)m
n
1 (1− δ)β1 ≤ 0. Recall

that δ(1,−1)w(∞) + (1− δ)(z − c) ≥ 0. If mn
1 (1− δ)β1 +mn

2 (1 + δ)β2 ≤ 0, we have

2−
1
2

1− λµ
[
mn+1

1 (1− δ)β1 +mn+1
2 (1 + δ)β2

]
=

2−
1
2

1− λµ
[m2 [m

n
1 (1− δ)β1 +mn

2 (1 + δ)β2] + (m1 −m2)m
n
1 (1− δ)β1]

≤ 0

≤ δ(1,−1)w(∞) + (1− δ)(z − c) ,

otherwise,

2−
1
2

1− λµ
[
mn+1

1 (1− δ)β1 +mn+1
2 (1 + δ)β2

]
=

2−
1
2

1− λµ
[m2 [m

n
1 (1− δ)β1 +mn

2 (1 + δ)β2] + (m1 −m2)m
n
1 (1− δ)β1]

≤ 2−
1
2

1− λµ
[mn

1 (1− δ)β1 +mn
2 (1 + δ)β2 + (m1 −m2)m

n
1 (1− δ)β1]

≤ 2−
1
2

1− λµ
[mn

1 (1− δ)β1 +mn
2 (1 + δ)β2]

≤ δ(1,−1)w(∞) + (1− δ)(z − c) ,

where the last inequality follows from (A.19) for n. This thus concludes the second step of

induction. It implies that the region where the n-trigger payment equilibrium must be a superset

of that where the 1-trigger payment equilibrium exists.

STEP 3. Note that, by definition, the n-trigger payment equilibrium admits the 1-trigger

payment equilibrium as a possible sub-game equilibrium. Hence, the region where the n-trigger

payment equilibrium must also be a subset of that where the 1-trigger payment equilibrium exists.

This concludes the proof.

Proof of Lemma 2. For any w ∈B (W ), by the definition ofB (·), there exist w0 ∈ W and w1 ∈

T (W ) such that w =φ (µ (w1,w0) ,w1,w0). Since W ⊂ B (W ), we can find for w0 two pairs

of continuation values w00 ∈ W and w01 ∈ T (W ) such that w0=φ (µ (w01,w00) ,w01,w00),

where the right superscript of each pair of continuation values denote the associated history of

public signals (e.g., w01 = (w01
1 , w

01
2 ) is the pair of continuation values for the two agents after

”no transfer” in period 1 and ”transfer” in period 2). Similarly, since T (w1) ∈ W ⊂ B (W ),

we can find for w1 two pairs of continuation values w10 ∈ W and w01 ∈ T (W ) such that
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T (w1)=φ (µ (T (w11) ,T (w10)) ,T (w11) ,T (w10)). In this way, we can find for every public

history ht = (h1, h2, · · ·, ht−1) ∈ {0, 1}t−1 (where h0 denotes the null history right before period

1 with the initial pair of continuation values w, and write ht+1 = (ht, ht)), a pair of continuation

values

w(ht,0) ∈

 W if st ⊕ 0 = 1

T (W ) if st ⊕ 0 = 0 ,

and a pair of continuation values

w(ht,1) ∈

 W if st ⊕ 1 = 1

T (W ) if st ⊕ 1 = 0 ,

where st ∈ {0, 1} is the state of the game (specifying which agent has the reserve) after

history ht and st+1 = (st + ht)mod 2 , st ⊕ ht, such that i) if st = 1, then wht =

φ
(
µ
(
w(ht,1),w(ht,0)

)
,w(ht,1),w(ht,0)

)
and Agent 1’s action after ht is µ

(
w(ht,1),w(ht,0)

)
;

ii) if st = 0, then T
(
wht
)
= φ

(
µ
(
T
(
w(ht,1)

)
,T
(
w(ht,0)

))
,T
(
w(ht,1)

)
,T
(
w(ht,0)

))
and

agent 2’s action after ht is µ
(
T
(
w(ht,1)

)
,T
(
w(ht,0)

))
.

Define a public strategy profile σ as

σ
(
ht
)
=

 agent 1 chooses µ
(
w(ht,1),w(ht,0)

)
, agent 2 no action if st = 1

agent 2 chooses µ
(
T
(
w(ht,1)

)
,T
(
w(ht,0)

))
, agent 1 no action if st = 0 .

Then the original w ∈B (W ) is attained, and wht is also attained after every public history ht

because W is bounded. Moreover, by construction, there is no profitable one-shot deviation and

thus σ is a PPE. Therefore, B (W ) ⊂ V1. This concludes the proof.

Proof of Proposition 6. The proof takes several steps to explicitly construct the equilibrium

payoff set V1. These steps are developed and presented as lemmas below.

For any closed convex set V ∈ R2, define

Ext (V ) =

 w ∈ V : there do not exist w′ and w′′ in V such that

w = α ·w′ + (1− α) ·w′′ for some α ∈ (0, 1)


as the set of extreme points of V . We will allow public randomization so that V1 is convex. It is

also straightforward to see that V1 is closed. Since a closed and convex set can be characterized

by its extreme points, we next study Ext (V1).
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Note that the good equilibrium is the only equilibrium that attains the boundary

{(w1, w2)∈R2 : w1 + w2 = λµz − c}. Hence, w=(w1, w2) is an extreme point of V1. Let

w= (0,−c). By Lemma 2, w is the pair of continuation values of the equilibrium in which

agents never transfer the reserve. Since w∈ V1 ⊂ X and w is an extreme point of X , it is also an

extreme point of V1.

Lemma 5. If (0,−c) ∈ V1, then ∀w ∈ Ext(V1)\{(0,−c)}, the associated current-period equi-

librium decision for the reserve-holding agent is σ = 1.

Proof. We prove by contradiction. First, if σ = 0, (5.3) implies that w = δw0 + (1− δ)(0,−c)T

for some w0 ∈ V1. Since w 6= (0,−c)T , we also have w0 6= (0,−c)T . Then w is a strict

convex combination of w0 and (0,−c)T , which are two different points in V1, contradicting to

the assumption that w ∈ Ext(V1).

Second, if σ ∈ (0, 1), that is, the reserve-holding agent is indifferent between making a

payment or not, there must exist w0 ∈ V1 and w1 ∈ T(V1) such that w = φ(µ,w1,w0). Since

the reserve-holding agent is indifferent, both φ(0,w1,w0) and φ(µ,w1,w0) belong to V1 as they

should be both supported in a PPE. However, by Lemma 2, for µ ∈ (0, µ1), φ(µ,w1,w0) is a

strict convex combination of φ(0,w1,w0) and φ(µ,w1,w0), contradicting to the assumption that

w ∈ Ext(V1).

Therefore, it must be that σ = 1. This concludes the proof.

Lemma 5 states the current-period equilibrium decision associated with any extreme point of

V1 other than that of the bad payment equilibrium is to transfer the reserve good.

For any W ⊂ R2, let ∂W denote the set of boundary points of W .

Lemma 6. For any w ∈ Ext (V1) and w 6=(0,−c), let w = φ (µ,w1,w0) for some w0 ∈ V1
and w1 ∈ T (V1). Then w0 ∈ ∂V1 and w1 ∈ ∂T (V1). Moreover, at least one of w0 and w1 is an

extreme point of V1.

Proof. Denote the line segment connecting w and w by L (w,w), i.e.,

L (w,w) =
{
w ∈ R2 : w = α ·w + (1− α) ·w for some α ∈ [0, 1]

}
.

Then L (w,w) ⊂ V1. Thus, V1 = limn→∞B
n (L (w,w)) . This concludes the proof.

Lemma 6 states that there exist non-extreme equilibria in which agents stop making transfers

after observing histories of non-transfers, capturing the idea that anticipating that the other agent
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may not transfer the reserve back in the future, the reserve-holding agent is reluctant to transfer

the reserve today.

Recall from Propositions 1 and 2 that the good payment equilibrium exists if and only if
z
c
≥ 1

1−δ(1−λµ1) and the bad payment equilibrium exists if and only if z
c
≤ 1

1−δ . Also note that
1

1−δ(1−λµ1) <
1

1−δ . For any x ∈ R2, α ∈ R,W ⊂ R2, define

α ·W , {α ·w : w ∈ W}

x+W , {x+w : w ∈ W}

Denote the stage game payoffs as

g(0) =

 0

−c

 , g(1) =

 λµ1(z − c)

−(1− λµ1)c


For any w0 ∈ R2 and W ⊂ R2, define

Q0
a(w

0,W ) =

 {w1 ∈ T(W ) : δw1
1 + (1− δ)(z − c) ≤ δw0

1} if a = 0,

{w1 ∈ T(W ) : δw1
1 + (1− δ)(z − c) ≥ δw0

1} if a = 1.

Given w0, the continuation value when no transfer occurs, Q0
a(w

0,W ) is the set of w1 in W such

that action a ∈ 0, 1 is incentive compatible.

Analogously, define

Q1
a(w

1,W ) =

 {w0 ∈ T(W ) : δw1
1 + (1− δ)(z − c) ≤ δw0

1} if a = 0,

{w0 ∈ T(W ) : δw1
1 + (1− δ)(z − c) ≥ δw0

1} if a = 1.

For any W ⊂ R2, let Co(W ) denotes the convex hull of W , i.e.,

Co(W ) = {w : ∃x,y ∈ W and α ∈ [0, 1], s.t. w = αx+ (1− α)y}

Modify the definition of µ(w1,w0) to allow mixed actions when the reserve-holding agent is
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indifferent, i.e.,

µ(w1,w0) =


{µ1} if δw1

1 + (1− δ)(z − c) > δw0
1,

[0, µ1] if δw1
1 + (1− δ)(z − c) = δw0

1,

{0} if δw1
1 + (1− δ)(z − c) < δw0

1.

Accordingly, φ(µ(w1,w0),w1,w0) should be understood as a set, especially when µ(w1,w0) is

a set. We can now generalize the definition of B(.):

Definition 4. Let B(.) be a set operator such that for any W ⊂ R2,

B(W ) =
{
w ∈ R2 : ∃w0 ∈ W and w1 ∈ T(W ), s.t. w ∈ φ(µ(w1,w0),w1,w0)

}
Since public randomization is allowed, following the approach in Abreu and Sannikov (2014),

we can write B(W ) as

B(W ) = Co(B0(W ) ∪B1(W )), (A.20)

where

Ba(W ) = (1− δ)g(a)

+ δ

[( ⋃
w0∈W

((1− λµa)w0 + λµaQ
0
a(w

0,W ))

)
⋃ ⋃

w1∈T(W )

(λµaw
1 + (1− λµa)Q1

a(w
1,W ))

 (A.21)

Note that a ∈ {0, 1}, µ0 = 0, µ1 ∈ [0, 1]. Also, note that any closed convex set can be identified

as the convex hull of its extreme points. We will also characterize V1, by its extreme points. First,

by (A.20), for any W ⊂ R2, e can characterize B(W ) by the extreme points of Ba(W ). Since

public randomization is allowed, without loss of generality, we focus on closed convex set.

Lemma 7. Suppose W ⊂ R2 is closed and convex. Let w ∈ Ext(Ba(W )) and w =

ψ(µa,w
1,w0) for some w1 ∈ T(W ) and w0 ∈ W . Then,

1. w0 ∈ Ext(Q1
a(w

1,W )), w1 ∈ Ext(Q0
a(w

0,W ));

2. At least one of the following two statements is true: (a) w0 ∈ Ext(W ), (b) w1 ∈

Ext(T(W )).
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Proof. Since w1 and w0 induce action a, w1 ∈ Q0
a(w

0,W ) and w0 ∈ Q1
a(w

1,W ).

1. Suppose w1 /∈ Ext(Q0
a(w

0, w)), then there exist w1x,w1y ∈ Q0
a(w

0, w) s.t. w1 is a strict

convex combination of w1x and w1y. Then w = φ(µa,w
1,w0) is also a strict convex com-

bination of φ(µa,w1x,w0) and φ(µa,w1y,w0), which are both in Ba(W ), contradicting to

w ∈ Ext(Ba(W )). Thus w1 ∈ Ext(Q0
a(w

0,W )). A similar argument can be shown for

w0.

2. Suppose w0 /∈ Ext(W ) and w1 /∈ ExtT(W ).

Case (1): At least one of w0 and w1 is on a vertical boundary of W and T(W ), respec-

tively.

If w0 is on a vertical boundary of W , then since w0 /∈ Ext(W ), we can find w0x and

w0y on that vertical boundary of W , s.t. w0x 6= w0y and w0 is a strict convex com-

bination of w0x and w0y. Since w0x
1 = w0y

1 = w0
1 and w1 ∈ Q0

a(w
0,W ), we have

w1 ∈ Q0
a(w

0x,W )∩Q0
a(w

0y,W ). Then φ(λµa,w1,w0x) and φ(λµa,w1,w0y) are both in

Ba(W ), and w = φ(λµa,w
1,w0) is a strict convex combination of them, contradicting to

w ∈ Ext(Ba(W )).

If w1 is on a vertical boundary of T(W ), then since w0 /∈ Ext(T(W )), we can find

w1x and w1y on that vertical boundary of T(W ), s.t. w1x 6= w1y and w1 is a strict con-

vex combination of w1x and w1y. Since w1x
1 = w1y

1 = w1
1 and w1 ∈ Q0

a(w
0,W ), we

have {w1x,w1y} ⊂ Q0
a(w

0y,W ). Then φ(λµa,w1x,w0) and φ(λµa,w1y,w0) are both in

Ba(W ), and w = φ(λµa,w
1,w0) is a strict convex combination of them, contradicting to

w ∈ Ext(Ba(W )).

Case (2): Neither w0 nor w1 is on a vertical boundary of W and T respectively. Then,

there exist w0x 6= w0y in W and w1x 6= w1y in T(W ), s.t. w0 is a strict convex com-

bination of w0x and w0y and w1 is a strict convex combination of w1x and w1y, and

w0x
1 = w0

1 = w1x
1 − w1

1, w0y
1 − w0

1 = w1y
1 − w1

1. Note that these two equations ensure

that (a)∃α ∈ [0, 1], s.t. w0 = αw0x + (1 − α)w0y, w1 = αw1x + (1 − α)w1y. Note

that this α is common for the combination of both w0 and w1; (b) w1x ∈ Q0
a(w

0x,W ),

w1y ∈ Q0
a(w

0y,W ), because w1 ∈ Q0
a(w

0,W ). Then both φ(λµa,w
1x,w0x) and

φ(λµa,w
1x,w0y) belong to Ba(W ). Then,

w = φ(λµa,w
1,w0)

= αφ(λµa,w
1x,w0x) + (1− α)φ(λµa,w1y,w0y)
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contradicting to w ∈ Ext(Ba(W )).

This completes the proof.

Lemma 7 allow us to rewrite (A.21) as

Ba(W ) = (1− δ)g(a)

+ δCo

 ⋃
w0∈Ext(W )

(
(1− λµa)w0 + λµaExt(Q

0
a(w

0,W ))
)

∪

 ⋃
w1∈Ext(T(W ))

(
λµaw

1 + (1− λµa)Ext(Q1
a(w

1,W ))
)

which simplifies the characterization below. Define
X1 = (0,−c)′ ,

X2 =

(
λµ((1− δ(1− λµ))z − c)

1 + δ(2λµ− 1)
,
δ(λµ)2z − (δλµ+ (1− δ)(1− λµ))c

1 + δ(2λµ− 1)

)′
,

X3 =

(
0,−c+ λµz(2c− (1− δ)z)

c+ δλµz

)′
.

Note that X2 is the average continuation payoff vector in the good payment equilibrium. If such

a equilibrium does not exist, X2 can be understood as the average continuation payoff vector

resulted from the history-independent strategy that the two agents always make transfers upon

receive a request. Define W ∗ = Co(X1,X2,X3).

Lemma 8. When 1
1−δ(1−λµ1) <

z
c
< 1

1−δ , W ∗ = B(W ∗).

Proof. We need to show W ∗ ⊂ B(W ∗) and B(W ∗) ⊂ W ∗. To show W ∗ ⊂ B(W ∗), it is

sufficient to show {X1,X2,X3} ⊂ B(W ∗). Since 1
1−δ(1−λµ1) <

z
c
< 1

1−δ , both X1 and X2 are

equilibrium payoff vectors. In particular, X1 = φ(0,T(X1),X1), X2 = φ(µ1,T(X2),X2). Thus

{X1,X2} ⊂ B(W ∗).

For X3, it is straightforward to verify that −(δ−1 − 1)(z − c)
X3

2−X2
2

X3
1−X2

1
(c− (δ−1 − 1)(z − c))

 ∈ Q0
1(X

3,W ∗)

and

X3 = φ

µ1,

 −(δ−1 − 1)(z − c)
X3

2−X2
2

X3
1−X2

1
(c− (δ−1 − 1)(z − c))

 ,X3

 .
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Thus, X3 ∈ B(W ∗).

To show B(W ∗) ⊂ W ∗, it suffices to show Ext(B1(W
∗)) ∪ Ext(B0(W

∗)) ⊂ W ∗. By

Lemma 7, we know that any extreme point of B(W ) can be generated by some w0 ∈ Ext(W ∗)

and w1 ∈ Ext(Q0
a(w

0,W ∗)), or some w1 ∈ Ext(T(W ∗)) and w0 ∈ Ext(Q1
a(w

1,W ∗)), for

some a ∈ {0, 1}.

Therefore, we can check all points generated in this way to show that they are all in W ∗.

We give an example below: let w1 = T(X2), then Ext(Q1
1(w

1,W ∗)) = {X1,X2,X3},

Q1
0(w

1,W ∗) = ∅. Then we have three potential extreme points:

1. φ(µ1,T(X2),X1), which equals to δ(1− λµ1)X
1 + [1− δ(1− λµ1)]X

2 ∈ W ∗.

2. φ(µ1,T(X2),X2) = X2 ∈ W ∗, because this corresponds to the good payment equilibrium.

3. φ(µ1,T(X2),X3), which equals to [1− δ(1− λµ1)]X
2 + δ(1− λµ1)X

3 ∈ W ∗.

Other potential extreme points of B(W ∗) can be checked accordingly. This concludes the proof.

This concludes the proof of Proposition 6.
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