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Too Good to Be True: Look-ahead Bias in Empirical
Options Research

Abstract

Numerous trading strategies examined in options research exhibit remarkably high
mean returns and Sharpe ratios. We show some of these seemingly “good deals” are
due to look-ahead biases. These biases stem from using information unavailable at the
portfolio formation time to filter out observations suspected of being noisy or erroneous.
Our results suggest that elevated Sharpe ratios may serve as potential indicators of such
look-ahead biases. Furthermore, deviating from previous literature findings, we show
that illiquidity is not strongly priced in stock options and that only a small set of stock
characteristics are in fact associated with option expected returns.

Keywords: Options; Look-ahead bias



1 Introduction

Numerous trading strategies in the options literature exhibit high expected returns and

Sharpe ratios. Indeed, the options literature often reports instances of substantial average

returns, accompanied by Sharpe ratios well above two (e.g., Zhan, Han, Cao, and Tong (2021)

and Christoffersen, Goyenko, Jacobs, and Karoui (2018)). These elevated Sharpe ratios imply

that many option strategies persistently offer “good deals,” which in turn suggests that the

options market faces frictions that prevent investors from arbitraging away these seemingly

advantageous opportunities.1 However, before drawing this conclusion, it is imperative to

assess the realism of these high mean returns and Sharpe ratios. In this paper, we investigate

the extent to which these elevated mean returns and Sharpe ratios may be attributed to look-

ahead bias.

We investigate how look-ahead biases influence two stylized facts in the empirical options

literature. The first stylized fact is that numerous stock characteristics seem to be priced in

the cross-section of individual equity option returns. In their study, Zhan, Han, Cao, and

Tong (2021, hereafter ZHCT) explore the relation between the returns from delta-hedged

call writing and ten stock characteristics commonly analyzed in the equity literature. At the

end of each month, ZHCT classify all stocks within their sample into deciles based on these

characteristics. They compare the returns over the following month of the portfolios of delta-

neutral calls written on stocks falling within the top decile versus the bottom decile. Across

the majority of the characteristics they analyze, they identify substantial mean returns for

long/short strategies involving the top and bottom decile portfolios. In fact, the average

long/short equal-weighted mean excess return across all the characteristics they investigate

amounts to 2.4% per month, with an average t-statistic of about 19 and an average annualized
1To benchmark these elevated Sharpe ratios, note that Bernie Madoff’s Ponzi scheme had Sharpe ratios

between 2.5 and 4 (Carozza (2009)).
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Sharpe ratio of 4.

The second stylized fact is that illiquidity seems to be strongly priced in individual equity

options. Christoffersen, Goyenko, Jacobs, and Karoui (2018, hereafter CGJK) explore the

link between the mean daily returns of delta-hedged options and option illiquidity. At

the conclusion of each trading day, CGJK construct five portfolios of delta-hedged options,

sorting them based on option illiquidity. They find significant mean returns for the strategy

involving a long position in illiquid options and a short position in liquid options. Specifically,

the mean long/short excess return for providing liquidity on at-the-money (hereafter ATM)

call (put) options amounts to 3.4% (2.5%) per day, with a t-statistic of approximately 26

(14) and an annualized Sharpe ratio of 9 (5).

We employ a two-step methodology to investigate how look-ahead biases affect the styl-

ized facts presented in these papers. In the initial step, we apply the same sample selection

filters as those used by ZHCT and CGJK in order to replicate their findings. It is worth

noting that within the options literature, it is customary to employ filters during sample se-

lection to eliminate erroneous and noisy observations. However, differently from most of the

literature (e.g. Driessen, Maenhout, and Vilkov (2009), Bollen and Whaley (2004), Goyal

and Saretto (2009), Cao and Wei (2010), and Muravyev (2016)), some of the filters utilized

in ZHCT and CGJK rely on information that is not available at the time of portfolio forma-

tion (t0). Consequently, these filters result in infeasible trading strategies. For example, one

of the sample selection filters entails removing all option prices that do not satisfy arbitrage

bounds. This filter is infeasible for a trader who, at time t0, does not possess the informa-

tion to determine whether an option price will satisfy no-arbitrage bounds at the end of the

holding period (t). In our second step, we replicate the option trading strategies in ZHCT

and in CGJK using a feasible trading approach that relies solely on information available at

the time of portfolio formation.
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We find similar results to those in ZHCT and in CGJK in the first step of our methodology.

Specifically, most of the mean returns and t-statistics of the long/short strategies based on

stock characteristics match those in ZHCT very well. In our replication, the mean long/short

monthly excess return across all characteristics they examine is 2.4% with a mean t-statistic

of about 16. The mean annualized Sharpe ratio is 3.6. Moreover, as in CGJK, we find that

the mean liquidity premium on options can be more than one percent per day. Specifically,

the mean long/short excess return of providing liquidity on ATM call (put) options is 1.6%

(0.9%) per day with a t-statistic of about 30 (18). The annualized Sharpe ratio for providing

liquidity for ATM calls (puts) is 10.4 (6.5).

In the second step of our methodology, we uncover a notable shift in the results, as

the elevated mean returns and t-statistics previously reported for the infeasible strategies

dissipate when replaced with feasible strategies. When we replicate the trading strategies

in ZHCT and CGJK using feasible trading strategies that rely exclusively on information

available at the time of portfolio formation, the previously observed high mean returns, t-

statistics, and Sharpe ratios do not persist. In the feasible trading strategies, we find that

the mean long/short monthly excess return across all characteristics examined in ZHCT

amounts to 0.4%, with an average t-statistic of approximately 2. The average annualized

Sharpe ratio stands at around 0.5. Similarly, our analysis reveals that the mean long/short

daily excess return for providing liquidity on ATM call and put options is 0.10% and 0.06%,

respectively, with t-statistics of about 2.6 and 1.3. The annualized Sharpe ratio for providing

liquidity for ATM calls and puts is 0.9 and 0.5, respectively.

The difference between the feasible and infeasible results indicates that the high Sharpe

ratios and mean returns for the trading strategies we examine are due to look-ahead biases.

The large biases we find result from sample selection filters based on information that is not

available to traders at the time of portfolio formation. These filters are intended to remove
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erroneous and noisy observations, but if they are based on information that is not available

at the time of portfolio formation they may result in large look-ahead biases. Naturally,

applying these filters only at the time of portfolio formation would not result in such a bias.

Two characteristics of the procedure detailed in ZHCT introduce a positive look-ahead

bias. Firstly, their sample selection criteria exclude call options that become either deep

out-the-money (OTM) or deep in-the-money (ITM) at the end of the holding period. Since

delta-neutral call writing, characterized by a negative gamma, yields negative returns when

call options become either deep-ITM or deep-OTM, the exclusion of these options from their

sample introduces a positive look-ahead bias. Secondly, the stock attributes they use for

portfolio sorting exhibit a correlation with stock volatility. Options on high volatility stocks

are more likely to end up either deep-OTM or deep-ITM by the conclusion of the holding

period. Consequently, the positive bias resulting from the exclusion of deep ITM or OTM

options from their sample is more pronounced in portfolios with higher volatility, thereby

impacting the mean returns of their long/short strategies.

The procedure in CGJK introduces look-ahead bias because of two features. Firstly,

CGJK’s sample selection process includes only options that fall within a predefined money-

ness range (e.g., ATM) in the middle of the holding period. As a result, their selection of

call options includes a higher proportion of calls that were OTM prior to the holding period

when the underlying stock – and therefore a call option – has a positive return during the

holding period. Similarly, their selection of put options includes a greater number of puts

that were OTM prior to the holding period when underlying stock returns are negative, im-

plying positive put option returns. Secondly, their sorting variable — option illiquidity — is

higher for OTM options than it is for ITM options. Consequently, sorting option portfolios

based on illiquidity is tantamount to sorting them by their moneyness. When we combine

these two features, the procedure in CGJK generates a look-ahead bias because sorting based
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on option illiquidity is effectively equivalent to sorting based on moneyness, which, in turn,

is akin to sorting based on the returns of the options during the holding period.

It is important to note that some degree of infeasibility is natural in empirical research.

For instance, removing options with prices that appear to be erroneous could induce some

bias. Erroneous observations contribute to noise in the inferences and are commonplace in

the datasets used in academic research. In the appendix, we show results with an infeasible

sample that is cleaned for outliers. Our protocol for managing erroneous observations involves

transparently disclosing their count within the sample and comparing the results with and

without these data points. This is distinct from eliminating every observation with potential

error. More crucially, the biases in ZHCT and CGJK arise from selecting a sample of options

based on their moneyness after the portfolio formation period, not from the removal of clearly

erroneous observations.

Our primary contribution is to the empirical option literature. We contribute to this

literature in three different ways.

First, our paper adds to the expanding body of research on empirical option pricing,

which explores the relationship between various stock characteristics and expected option

returns. For example, Goyal and Saretto (2009), Aretz, Lin, and Poon (2022), Choy and

Wei (2023), Bali, Beckmeyer, Mörke, and Weigert (2023), and Cao, Goyal, Zhan, and Zhang

(2023) investigate how different stock attributes are linked to option returns. We extend

this literature by showing that the number of stock characteristics associated with expected

option returns is much lower than that found by ZHCT. In contrast to ZHCT, who identified

a strong correlation between delta-hedged option returns and a wide array of previously

unexplored stock characteristics (such as stock price, profit margin, firm profitability, cash

holdings, cash flow variance, new share issuance, total external financing, distress risk, and

dispersion of analyst forecasts), our findings suggest that most of these apparent relations

5



are the result of look-ahead biases. Notably, within the feasible sample, we find that only

stock price, cash holdings, and new share issuance are modestly related to the cross-section

of delta-hedged option returns.

Second, our findings underscore the need for further examination of whether illiquidity

is priced in stock options. The strength of the CGJK findings established a stylized fact in

the literature that illiquidity is indeed priced into options. In fact, numerous papers in the

field cite CGJK as evidence supporting the idea that options expected returns are correlated

with illiquidity (e.g., Goncalves-Pinto, Grundy, Hameed, van der Heijden, and Zhu (2020);

Cosma, Galluccio, Pederzoli, and Scaillet (2020); Goyal and Saretto (2022); Ramachandran

and Tayal (2021)). However, our results suggest that this may not be the case, as we observe

evidence of illiquidity being priced only marginally in call options when employing the bias

correction procedure outlined by Duarte, Jones, and Wang (2022). Notably, we do not

find evidence indicating that illiquidity is priced in put options in our feasible sample. Our

weaker results on illiquidity are consistent with the fact that there is no definitive theoretical

prediction suggesting that illiquidity should be positively priced in options, given their zero-

net-supply nature. In case of options, the pricing of illiquidity can be either negative or

positive, depending on whether sellers or buyers demand an illiquidity premium (Brenner,

Eldor, and Hauser, 2001).

Third, a common practice in the empirical option literature is to address the effect of

measurement errors in option prices with sample selection filters. These filters normally elim-

inate deep-OTM options and option prices that do not satisfy arbitrage bounds (e.g., Bollen

and Whaley (2004), Driessen, Maenhout, and Vilkov (2009), Goyal and Saretto (2009), and

Muravyev (2016)). We show that these filters may result in large look-ahead biases when

they are based on information that is not available at the time of portfolio formation.

Our work is also related to the burgeoning literature addressing the many biases in the
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estimation of expected option returns. Eraker and Osterrieder (2018) show that the VIX

is a biased estimate of implied volatility because the midpoint of the closing bid-ask prices

is biased due to order flow pressure, while Goyenko and Zhang (2019) find biases in mean

returns computed from closing prices that arise from differences between closing and intraday

option prices. Duarte, Jones, and Wang (2022) extend the work by Blume and Stambaugh

(1983) and Asparouhova, Bessembinder, and Kalcheva (2010, 2013) to options. They show

that estimates of the volatility risk premium in individual equity options are sensitive to

microstructure biases. Differently from these papers, we focus on the effect of look-ahead

biases in the estimation of expected returns of option strategies.

We also extend the literature that analyzes look-ahead biases in the estimation of ex-

pected returns. This literature has largely focused on the effect of survivorship biases in the

estimation of expected returns (e.g., Brown, Goetzmann, and Ross (1995), Carpenter and

Lynch (1999), ter Horst, Nijman, and Verbeek (2001), and Baquero, ter Horst, and Verbeek

(2005)). We add to this work by showing that procedures used to eliminate potentially noisy

or erroneous data may also lead to look-ahead biases. Cochrane and Saa-Requejo (2000)

theoretically extend the no-arbitrage principle to price options by assuming the investors en-

gage in strategies with high Sharpe ratios – good deals. Our findings suggest that the same

idea applies in empirical research. Specifically, we show that unreasonable Sharpe ratios may

serve as an indicator of look-ahead biases and that strategies with high Sharpe ratios should

be scrutinized.

2 Empirical Methodology

Our convention is that t0 is the time that a trader forms a portfolio of options. We assume

that the trader only has access to information that is publicly available at time t0 to form her

portfolio. Let Rt represent the return of the trader’s portfolio between t0 and the end of the
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holding period (t > t0). The return Rt is the object of study of an econometrician analyzing

a trading strategy. We also define tE as the time of the information that the econometrician

uses to create a portfolio that is supposed to be formed at time t0.

We define a trading strategy as infeasible when tE > t0 and feasible otherwise. An econo-

metrician can analyze an infeasible trading strategy by using information that is available

at only time tE > t0 to place a given security in a pseudo portfolio at time t0. In contrast,

a trader does not have, at time t0, the information necessary to select the options in the

econometrician’s pseudo portfolio. Therefore the trading strategy is infeasible.

Infeasibility could result from a number of different choices by the econometrician, but

in this paper we focus on strategies that are infeasible as a result of sample selection. A

feasible sample is one that is based on information that is observable at t0. In contrast,

an infeasible sample is based on information that is not observable at t0. For instance, a

sample is infeasible when it excludes all option observations with prices violating no-arbitrage

conditions at time t. This sample is infeasible because a trader does not know at time t0

whether any given option satisfies no-arbitrage conditions at time t.

A look-ahead bias in the estimation of expected returns occurs when the trading strategy

is infeasible and the sample selection criteria covaries with the return Ri,t of the securities in

the portfolio. For example, assume that an econometrician wishes to estimate the expected

return of options in the population (E[Ri,t]). To do so, the econometrician estimates the

expected return of calls in the sample, which is E[Ri,t|ISi], where ISi indicates that call i is

within the econometrician’s sample at time t0. The look-ahead bias is

E[Ri,t|ISi]− E[Ri,t] = (E[Ri,t]− E[Ri,t|FOi])×Odds[FOi], (1)

where FOi indicates that call i is filtered out of the econometrician’s sample at time t0, and

Odds[FOi] is the odds that that option i is filtered out of the sample.2 Equation 1 indicates
2This follows from E[Ri,t] = E[Ri,t|ISi]× P [ISi] +E[Ri,t|FOi]× P [FOi], where P [ISi] and P [FOi] are
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that when E[Ri,t] = E[Ri,t|FOi] the bias is zero. That is, if the sample selection process

does not covary with Ri,t there is no look-ahead bias even if the sample is infeasible.

We examine the look-ahead biases in two types of option strategies. First, we examine

option strategies that are based on stock characteristics (ZHCT). Second, we examine the

premia on liquidity provision in the option market (CGJK).

While the bias presented in Equation 1 impacts the estimation of expected returns for

options, it may not necessarily affect the outcomes in ZHCT and CGJK. In these studies,

the option strategies involve sorting options within the sample to construct portfolios and

subsequently calculating the mean returns of long/short strategies. Consequently, the bias

in these strategies is the difference in the biases of the top and bottom portfolios. If both

these portfolios are equally susceptible to look-ahead biases, this difference is zero, and

the mean return of the long/short strategy is unaffected by look-ahead bias. Conversely,

if the top and bottom portfolios are impacted differently by look-ahead biases, then the

mean return of the long/short strategy will be influenced by look-ahead bias. To clarify, by

employing Equation 1, if the probabilities of excluding options (Odds[FOi]) or the expected

returns of the options that are excluded (E[Ri,t|FOi]) from the bottom and top portfolios are

dissimilar, the average difference in returns between these portfolios is subject to look-ahead

bias. Therefore, look-ahead biases affect long/short strategies only when the sorting variable

used to create the portfolios is correlated with the look-ahead bias in the mean return of

each portfolio.

We employ a two-step methodology to investigate the presence of look-ahead biases in

the mean returns of the long/short strategies described in ZHCT and CGJK. Initially, we

reproduce the findings from these papers utilizing all available information. Subsequently,

we emulate their long/short strategies by implementing a feasible trading strategy based

the probabilities that option i is in the sample and is filtered out from the sample respectively. Odds[FOi] =

P [FOi]/(1− P [FOi])
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solely on information accessible at the time of portfolio formation (t0). In Section 3, we

examine the results presented in ZHCT. In Section 4, we delve into the results presented in

CGJK.

3 Option Return Predictability

ZHCT study the relation between monthly return to delta-hedged call writing and ten differ-

ent stock characteristics. In their paper, the monthly excess return to writing a delta-hedged

call is
∆t−1St − Ct

∆t−1St−1 − Ct−1

− 1− rf,t−1, (2)

where ∆t−1, St−1, and Ct−1 are the call option delta, underlying price and call price respec-

tively at the portfolio formation time (t − 1). The risk-free rate is rf,t−1. The value of the

delta-hedged call writing portfolio at time t− 1 is ∆t−1St−1 − Ct−1. In ZHCT, t0 is the last

trading day of the month (t0 = t−1). As ZHCT, we hold the position for one month without

rebalancing the delta hedge.

We implement the same procedure as ZHCT to study the relation between the return to

delta-hedged call writing and stock characteristics. At the end of each month and for each

of the ten stock characteristics they study, ZHCT sort all stocks in their sample into deciles

and compare the portfolios of delta-neutral calls written on the stocks belonging to the top

decile to those written on the bottom decile.

The ten stock characteristics in ZHCT are as follows: CFV (cash flow variance from

Haugen and Baker (1996)), CH (cash-to-assets as in Palazzo (2012)), DISP (analyst earnings

forecast dispersion as in Diether, Malloy, and Scherbina (2002)), ISSUE1Y (one-year new

issues as in Pontiff and Woodgate (2008)), ISSUE5Y (five-year new issues as in Daniel and

Titman (2006)), PM (profit margin as in Soliman (2008)), ln(PRICE) (the log of stock

price at the end of last month as in Blume and Husic (1973)), PROFIT (profitability as in
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Fama and French (2006)), TEF (external financing for one fiscal year end as in Bradshaw,

Richardson, and Sloan (2006)), and ZS (Z-score as in Altman (1968) and Dichev (1998)). We

follow ZHCT closely for calculation of stock characteristics. We also consult with and follow

the original papers that publish those characteristics as stock return predictors as well as

Hou, Xue, and Zhang (2020), which provides construction details. Appendix A gives details

on these characteristics. ZHCT also use three control variables: ln(HV/IV ) (volatility

mispricing measure as in Goyal and Saretto (2009)), IVOL (idiosyncratic volatility as in

Ang, Hodrick, Xing, and Zhang (2006) and Cao and Han (2013)), AMIHUD (the Amihud

(2002) stock illiquidity measure). The construction of the control variables is also described

in the appendix.

We use the same data source and time period as ZHCT to create our sample. The

data on U.S. individual stock options are from OptionMetrics from January 1996 to April

2016. The data set includes the daily closing bid and ask quotes, trading volume, open

interest, and delta of each option. We use the WRDS link table to merge this data set with

CRSP, from which we obtain stock returns, prices, trading volume, market capitalization,

and adjustments for stock splits. Our sample includes options on common stocks with

CRSP share codes of 10 and 11 and a stock price at least five dollars at the time of portfolio

formation (t − 1). The Fama-French common risk factors and the risk-free rate are from

Kenneth French’s website. Annual accounting data are from Compustat, while analyst

coverage and forecast data are from I/B/E/S.

The sample used in ZHCT is infeasible because it is based on information only available

at the end of the holding period (time t). That is, tE = t which is greater than t0 = t − 1.

Specifically, to build a sample that replicates ZHCT’s results, we apply the following filters

using call and put prices at time t and t − 1: (1) Bid prices are positive. (2) The quote

midpoint is at least $1/8. That is, Ct−1 ≥ $1/8, Pt−1 ≥ $1/8, Ct ≥ $1/8 and Pt ≥ $1/8.
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(3) Quote midpoints do not violate no-arbitrage conditions, which result in having missing

implied volatilities in Optionmetrics.3 (4) The underlying stock does not pay a dividend

during the remaining life of the option. This reduces the potential effects of early exercise,

as the options we examine are American.

In contrast, to build a feasible version of the ZHCT sample, we impose filters (1), (2),

and (3) using only option prices at time t − 1. Also, differently from ZHCT we exclude an

option if the underlying stock paid a dividend during the holding period when the dividend

was announced before portfolio formation.4

In addition to the filters above, we follow ZHCT and impose the following filters when

selecting stock options for both the feasible and infeasible samples: (5) We only retain options

with positive total trading volume in the month preceding the portfolio formation. (6) We

remove all option observations with bid price larger or equal to the ask price at t − 1. (7)

We exclude options with moneyness lower than 0.8 or higher than 1.2 at time t − 1, where

moneyness is defined as stock price divided by strike.

After applying these filters to each optionable stock, we choose a pair of options (one call

and one put) that are closest to being at-the-money (ATM) and have the shortest maturity

among options with more than one month to expiration. The vast majority of the options

selected each month have the same maturity. We drop options with maturity different from

the majority. Finally, we only retain stocks with both call and put options available after

filtering. As a result, if a call is not filtered out of the sample with filters (1) to (7) above,

but the corresponding put is filtered out, then this last step results in the call being removed
3The no-arbitrage conditions imposed are S ≥ C ≥ max(0, S − PV (K)) and K ≥ P ≥ max(0,K − S),

where PV (K) is the present value of the strike price.
4This procedure results in a sample with some options that have both the stock dividend announcement

and the ex-dividend date during the holding period. Some of these call options may be potentially exercised
before their ex-dividend date. We show robustness of our results to these potential early exercises in Appendix
B. See Aretz and Gazi (2023) for a discussion of the early exercise premium in put options.
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from the sample. To be specific, since the infeasible (feasible) sample applies filters at both

time t and t− 1 (only time t− 1), this last step accordingly applies at both time t and t− 1

(only time t− 1).

Table 1, Panel A shows summary statistics of calls in the infeasible sample. The sample

statistics in Panel A are in general close to those reported in ZHCT. For instance, the mean

monthly return of writing delta-hedged calls is about 3% with a standard deviation of about

6%, while ZHCT report in their Table 1 a mean return of 3.5% with a standard deviation of

5.65%.

[Insert Table 1 Here]

The returns from the feasible sample, shown in Panel B, are very different. The mean

monthly return in the feasible sample is close to zero, with a standard deviation of about

10%. The difference in the mean returns displayed in Panels A and B indicates that the

look-ahead bias in the mean return of writing delta-hedged calls in the infeasible sample is

about 3% per month. This is a very large bias in monthly returns. In addition, the standard

deviation is more than 50% larger in the feasible sample.

The summary statistics in Table 1 reveal that the large bias in the infeasible sample is

due to removal of a large number of call options that become either deep-OTM or deep-ITM

at time t. Indeed, the infeasible sample has 151,756 observations while the feasible sample

has almost twice the number of options, with 274,389 observations. That is, the filters at

time t delete almost half of the option-month observations. Not only do these filters remove

almost half of the sample, they also remove observations in which delta-hedged call writing

has negative returns. In fact, the tenth (first) percentile of the returns in the feasible sample

is about -8% (-35%), while it is much higher in the infeasible sample, at about -2% (-16%).

Also, the tenth (first) percentile of the moneyness (closing price of the underlying divided

13



by option strike price) of the options at time t is about 83% (59%) in the feasible sample,

while it is 89% (73%) in the infeasible sample. That is, the infeasible filters remove call

options that become deep-OTM from the sample. Moreover, the 90th (99th) percentile of

the moneyness of the options at time t is about 116% (144%) in the feasible sample while

it is 112% (131%) in the infeasible sample. Therefore, the infeasible filters also remove call

options that become deep-ITM.

The infeasible sample filters out options that become either deep-OTM or deep-ITM at

time t because of filters like the one requiring that Ct ≥ $1/8 and Pt ≥ $1/8. This filter in

particular removes the returns of call options with price dropping below $1/8 at time t, which

occurs when the underlying stock price drops significantly (St −St−1 ≪ 0). Moreover, if the

price of a put drops below $1/8 at time t, the return of the matched call is dropped from

the infeasible sample.5 This happens when the underlying stock price increases significantly

(St − St−1 ≫ 0).

This selection criterion eliminates many negative returns, resulting in a positive look-

ahead bias. Approximating the return of a delta-hedged call writing with a Taylor expansion

around St = St−1 helps formalize this point. The approximate return is

− θt−1

∆t−1St−1 − Ct−1

− Γt−1

2(∆t−1St−1 − Ct−1)
(St − St−1)

2, (3)

where θt−1 and Γt−1 are the derivative of the call price with respect to time (in months),

and the second derivative of the call price with respect to the price of the underlying stock

respectively. When (St − St−1)
2 is small, Equation 3 results in a positive value since θt−1

is negative. On the other hand, when (St − St−1)
2 is large, the expression above results in

a negative value since Γt−1 of call options is positive. This happens when the price of the

underlying moves dramatically because either St − St−1 ≪ 0 or St − St−1 ≫ 0. That is,

when call options become deep-ITM or deep-OTM the return of a delta-hedging call writing
5Recall that the sample selection criteria require calls to be matched with puts.
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is negative. Consequently, a sample selection criterion that removes options that become

deep-ITM or deep-OTM results in a positive bias in the mean return to delta-hedged call

writing.

While the bias in Table 1 is very large, as we point out in Section 2, this bias may have no

effect on the ZHCT results in principle. Therefore, to examine the biases in the long/short

strategies in ZHCT we replicate their results with both infeasible and feasible samples.

Table 2 shows the results of the replication of ZHCT. We follow ZHCT and adjust pre-

dictors (by multiplying by -1) so that the high portfolio has the highest mean return. The

table shows the difference between the equally-weighted average returns of the high-minus-

low portfolios.6 The results of the columns labeled infeasible are very similar to those in

ZHCT, with most of the mean returns and t-statistics a close match. As with ZHCT, most

of the mean returns, t-statistics, and Sharpe ratios are quite large. Indeed, the mean returns

are in general above 1.5% per month, while their respective t-statistics are above ten. With

one exception, Sharpe ratios are above two, with several portfolios having values above five.

For instance, a long/short position in the bottom/top decile portfolios sorted on the log of

the price of the underlying (ln(PRICE)) at the end of the previous month generates a mean

excess return of about 5% per month, with a t-statistic of about 26 and a Sharpe ratio of

5.88. The only sorting variable that does not generate the same magnitude of t-statistic and

mean returns as ZHCT is the Z-score. Our Z-score results are similar to those in Goyal and

Saretto (2022), though.

The large returns and t-statistics reported for the infeasible strategies disappear for the

feasible strategies. In contrast to the results in the columns labeled infeasible, the columns

labeled feasible in Table 2 show mean returns that are in general not statistically different
6The appendix shows results of weighting by market capitalization of the underlying stock and of weighting

by the market value of option open interest at the beginning of the holding period. As ZHCT, we winsorize
all the sorting variables each month at the 0.5% and 99.5% levels.
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from zero. The economic significance of the mean returns is also strongly affected with

the adoption of a feasible sample. For instance, the feasible strategy based on ln(PRICE)

generates a mean excess return of about 0.6% per month, with a t-statistic of about 3 and

a Sharpe ratio of 0.6. Overall, the results in Table 2 indicate that the large Sharpe ratios of

the strategies described in ZHCT result from look-ahead biases. We examine these biases in

more detail in Section 5.

[Insert Table 2 Here]

4 Illiquidity Premia

CGJK study the relation between option illiquidity and the mean daily returns on delta-

hedged calls and puts. CGJK differ from standard practice and use intraday transactions

prices to compute option returns, though they use closing prices to compute hedge ratios

and stock returns. To formalize the CGJK methodology, define Oi,j,t as the dollar volume-

weighted average price of option i on stock j over all trades that happen between the open

and close of trading day t. We represent the return of option i at time t, computed with

these intraday prices, as RO,i,j,t = Oi,j,t/Oi,j,t−1 − 1. CGJK computes delta-hedged returns

as DHRi,j,t = RO,i,j,t − βi,j,t−1RS,j,t where βi,j,t−1 is the beta of option i with respect to the

underlying stock and RS,j,t is the return of the underlying stock j.7 βi,j,t−1 is computed from

prices observed at the close of day t − 1, while RS,j,t uses closing prices on both t − 1 and

t. The use of intraday prices to calculate option returns implies that portfolio formation

starts with the first trade during period t− 1. Also, note that because βi,j,t−1 and RS,j,t are

calculated with closing prices at time t−1, the positions are effectively unhedged during the

portion of day t− 1 that the trades are in place.

CGJK examine option returns at the stock level. That is, they calculate the equal average
7The β of an option is equal to its ∆ divided by its price multiplied by the price of the underlying.
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of DHRi,j,t across all options on stock j that are within a certain moneyness range at time

t− 1:

DHRj,t =
1

N

N∑
i=1

DHRi,j,t (4)

We implement the same procedure as CGJK to study the relation between option ex-

pected returns and illiquidity. Their main measure of illiquidity is the effective option spread,

ESO
j,t, which is computed daily at the stock level. The effective spread on day t for option

i is twice the average of the absolute percentage difference between transactions prices and

contemporaneous quote midpoints, where the average is weighted by the number of contracts

transacted. As in the case of returns, CGJK take the equally-weighted average of effective

spreads across all options within a certain moneyness range on the same stock j to calculate

ESO
j,t. At the end of each trading day t − 2, CGJK create five portfolios of delta-hedged

options sorted on ESO
j,t−2 and compare the average returns of the top and bottom quintiles.

We merge three datasets in our empirical analysis: CRSP, OptionMetrics, and CBOE

LiveVol. Our sample period is from January 2012 to December 2019. The data range for

CGJK spans from 2004 to 2012. We selected a different sample period from CGJK for two

main reasons. First, in line with Andersen et al. (2021), we observe numerous outliers in

the LiveVol data that likely represent errors. While these outliers do not alter our primary

conclusions, they introduce noise into our inferences, much more so in the early sample period

from 2004 to 2012. Second, perhaps due to the volume of these questionable observations,

CBOE LiveVol has ceased offering data from before 2012. In essence, CBOE LiveVol now

exclusively provides data from 2012 onwards. As such, our findings would not be replicable

if we started our sample in 2004. This poses a significant issue, as emphasized by Spiegel

(2019), who notes that having accessible data “is the most fundamental requirement that

any article claiming scientific validity must fulfill. Results must be verifiable.” Nevertheless,

we do have access to a sample of LiveVol data for the same time frame as CGJK with a
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smaller number of stocks than CGJK, and we detail results for this period in the Internet

Appendix. Like CGJK, our sample only includes stocks in the S&P 500 Index. Option hedge

ratios and closing prices are from OptionMetrics, and stock returns are from CRSP. LiveVol

is used to compute effective option spreads and option returns based on intraday prices. We

follow CGJK and consider put and call options with maturities between 30 and 180 days.

To build a sample that replicates the primary results of CGJK, we impose a number

of filters. Using OptionMetrics data from the close of day t − 1, we require that (1) the

absolute value of delta is between 0.375 and 0.625, (2) the closing relative bid-ask spread is

no larger than 50%, (3) the closing mid-point price is at least $0.10, (4) the option’s open

interest is positive, and (5) the closing price, delta, and implied volatility are all non-missing.8

Additional filters are applied to the LiveVol data on day t−1 and day t. Specifically, we only

retain transactions for which (6) the transaction price satisfies no-arbitrage conditions and

(7) transactions occur when the relative bid-ask spread is 50% or less. We also exclude (8)

transactions with negative prices, (9) that occur when the bid-ask spread is not positive, or

that have (10) time stamps that don’t match the date on the file. Finally, (11) transactions

data must exist, meaning that option volume must be positive, a condition that is also

imposed on day t− 2, following CGJK.

The sample in CGJK is therefore infeasible. The use of intraday prices in CGJK to

calculate option returns implies that portfolio formation starts with the first trade on day

t − 1. That is, t0 is the time of the first trade of day t − 1. In comparison, the sample

selection uses criteria based on prices from the close of t− 1 and, in addition, requires that

the option is traded on day t. That is, tE is the closing of the trading day t. As a result,
8Much of CGJK is done using ATM options. Many studies (e.g., Driessen, Maenhout, and Vilkov (2009)

and Bollen and Whaley (2004)) also define moneyness as the option delta from OptionMetrics. These filters
are standard in the literature and do not result in look-ahead biases when imposed only prior to the holding
period (e.g., Goyal and Saretto (2009), Cao and Wei (2010), and Muravyev (2016).
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tE > t0 – the portfolio is selected after the start of the holding period.

In contrast, to build a feasible sample that follows CGJK in spirit, we impose filters (1)

to (5) using only prices and deltas at the closing of day t− 2. Moreover, we apply filters (6)

and (7) only on day t − 1 and (11) only on days t − 2 and t − 1. These filters are applied

before the options are included in the trader’s portfolio and hence are feasible. In the case

in which an option is not traded on day t, we use the closing quote on day t to calculate

its return.9 These changes prevent the conditioning on information after the start of the

holding period.

Our feasible sample still has some degree of infeasibility because, as in CGJK, we exclude

data violating filters (8), (9), and (10) on day t. These filters eliminate only about 1% of the

entire LiveVol dataset. Moreover, each of these violations unambiguously signals a data error

rather than an actual market condition. Furthermore, violations of each of these conditions

are often associated with large outliers. We emphasize that our main results are virtually

unaffected by whether these filters are imposed or not, though they have a modest effect on

the summary statistics.

Figure 1 clarifies the differences between the feasible and infeasible samples used to

analyze the pricing of illiquidity in equity options. Figure 1, Panel A shows the time line

of the sample selection in CGJK. Figure 1, Panel B shows the time line of the feasible

sample selection. The difference between these two sample selection criteria is emphasized

on the differences between these two panels. Specifically, in Panel A the sample selection

happens with information available at the closing of day t − 1, while the sample selection

uses information available at the closing of day t− 2 in Panel B. Moreover, in Panel A, it is

required that an option is traded at time t to be included in the sample, while there is no

such requirement in Panel B.
9This is analogous to the procedure that CRSP uses for computing stock returns. Indeed, when a stock

is not traded in a given day, CRSP uses the closing mid-quote to compute the stock return.
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[Insert Figure 1 Here]

Figure 2 shows that OTM options have higher effective spreads. Specifically, Figure 2

shows the average effective spreads of calls and puts as function of moneyness defined as the

ratio of the underlying closing price (S) by the option strike price (K). In the case of calls

(puts) effective spreads are decreasing (increasing) with S/K indicating that OTM options

have larger effective spreads than ITM options. In both cases, effective spreads increase

steeply from ATM (S/K = 1) to OTM options.

[Insert Figure 2 Here]

Table 3 displays the summary statistics of the delta-hedged option returns (DHR) and

option effective spreads (ESO) in our sample. Panel A shows summary statistics on mean

delta-hedged returns and underlying stock returns. Panel B shows summary statistics on

effective option spreads. Even though our sample period is different from that used in

CGJK, our summary statistics on mean returns are not very different. As in CGJK, we find

that the mean DHR is positive for both calls and puts. Moreover, the mean returns for

the underlying stocks are also very similar to those in CGJK. The mean average effective

spread in our sample is somewhat smaller than those in CGJK. This is consistent with the

observation, described in CGJK, that effective spreads have been decreasing over time.

Table 3, Panel A shows that the mean returns of calls and puts have a strong positive

look-ahead bias in the infeasible sample. Indeed, the difference between the mean DHR of

calls in the infeasible and feasible sample is 0.46% per day (0.47-0.01) and is 0.66% per day

(0.63+0.03) for puts. These are large values for daily returns.

The significant look-ahead biases arise from the fact that the infeasible sample only

includes options at the time of portfolio formation (i.e., the time of the first trade on day

t − 1) that are ATM by the middle of the holding period (i.e., the close of day t − 1). To
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understand this, consider that a call option which is ATM at the end of day t− 1 may have

been either OTM or ITM at the opening of t− 1, where any change in moneyness is driven

by movements in the underlying stock price. Call options transition from OTM to ATM

when the underlying stock price rises, and from ITM to ATM when the underlying stock

falls. Consequently, selecting call options that are ATM at the closing of t− 1 results in the

selection of more calls that were OTM (ITM) at the open of day t− 1 when the underlying

stock increases (decreases) between the open and close of day t− 1.

More importantly, this selection criterion leads to a sample that is more (less) sensitive

to the underlying stock return when the underlying stock rises (falls). This is because the

returns of OTM options are more responsive to changes in the underlying stock price than

those of ITM options.10 Further, recall that a portion of DHRt is the unhedged option

return between the opening and the closing of t− 1 and hence is substantially driven by the

option sensitivity to the underlying stock return over the same period. Consequently, the

mean return (DHRt) of the infeasible sample becomes upward biased, as symmetric positive

and negative stock returns have asymmetric effects on the options included in the sample.

Table 3, Panel C illustrates these effects for call options by showing the mean moneyness

(S/K), β, and DHR separately for RS,t−1 > 0 and RS,t−1 < 0. Notably, when RS,t−1 > 0,

moneyness is about two percentage points smaller, which results in a larger β and in a

absolute value of the mean DHR 0.29% higher than the absolute value of the mean DHR

when RS,t−1 < 0 (3.72% vs. 3.43%). That is, the selected infeasible sample of call options

is more (less) sensitive to the underlying stock return when the underlying stock goes up

(falls).

These look-ahead biases are absent in the feasible sample. As we emphasize in Session

2, look-ahead biases occur when the sample selection criterion exhibits correlation with the
10OTM options have higher absolute βS values compared to ITM options.

21



returns during the holding period. These biases occur in the infeasible sample because call

options that are more (less) sensitive to the returns of the underlying stock are included

in the sample when the returns of the underlying stock are positive (negative) during the

holding period. In contrast, the feasible sample selection criteria are uncorrelated with the

returns during the holding period as they are based on information available prior to the

beginning of the holding period (i.e., end of day t−2). Indeed, Table 3, Panel C demonstrates

that when RS,t−1 > 0, moneyness is only 0.15 percentage points lower than when RS,t−1 < 0.

As a result, the absolute value of the mean DHR in the feasible sample when RS,t−1 > 0 is

0.31% lower than the absolute value of the mean DHR when RS,t−1 < 0 (3.39% vs. 3.70%).

This bias is similar for puts, except that the transition from OTM or ITM to ATM

requires a stock return of the opposite sign. Table 3, Panel D illustrates the results for

puts. When RS,t−1 < 0, the absolute value of the mean put DHR is 1.03% greater than the

absolute value of the mean put DHR when RS,t−1 > 0 (4.16% vs. 3.13%). As with calls, this

generates an upward bias in the unconditional return on the infeasible portfolio. Returns on

the feasible portfolio are unconditionally lower and less dependent on the sign of RS,t−1.

Table 3, Panels C and D, also demonstrate that the selection of the infeasible sample

also has an impact on the effective spreads of options. As a reminder, Figure 2 illustrates

that OTM options exhibit larger effective spreads compared to ATM or ITM options. Con-

sequently, the fact that the infeasible sample includes more OTM calls (puts) on days when

RS,t−1 > 0 (RS,t−1 < 0) leads to higher mean spreads for calls (puts) when RS,t−1 > 0

(RS,t−1 < 0). Indeed, when RS,t−1 > 0, the mean effective spread of calls (Panel C) in the

infeasible sample is about three quarters of a percentage point higher (4.85% vs. 4.12%)

than the mean spread when RS,t−1 < 0. Similarly, when RS,t−1 < 0, the mean effective

spread of puts (Panel D) in the infeasible sample is about half a percentage point (4.13%

vs. 3.68%) higher than the mean spread when RS,t−1 > 0. The patterns are significantly less
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pronounced in the feasible sample.

[Insert Table 3 Here]

While the bias in Table 3 is very large, as we point out in Section 2, biases may have

no effect on the CGJK results in principle. To examine the biases in the estimation of the

illiquidity premium in options, we replicate their main result with both the infeasible and

feasible samples.

Table 4 shows the results of the replication of CGJK with both samples. We report mean

returns on portfolios that go long options with high effective spreads and short options with

low effective spreads. Both equally-weighted (EW) and gross-return-weighted (GWR) means

are reported, the latter to address the microstructure biases described in Duarte, Jones, and

Wang (2022).11

[Insert Table 4 Here]

The results in the columns labeled infeasible in Table 4 are very similar to those in CGJK.

Indeed, the equally-weighted mean returns, t-statistics, and Sharpe ratios for the infeasible

strategy are large. The illiquid calls outperform the liquid calls by more than 1% per day,

while differences for puts are also large, at around 0.9% per day. Corresponding t-statistics

are all above eleven, and long/short portfolio Sharpe ratios are all above three. There is not

much of difference between the EW and GRW results, at least for the infeasible sample.

The results with feasible strategy paint a different picture. Indeed, the large returns,

t-statistics, and Sharpe ratios reported for the infeasible strategy disappear for the feasible

11Equal weighted portfolio returns can be written as
∑Mt

j=1

∑Nj,t

i=1 (1/Mt)(1/Nj,t)DHRi,j,t, where Mt is
the number of stocks at date t, Nj,t is the number of options on stock j on that date, and DHRi,j,t is
the delta-hedged return of option i on stock j. Gross return weighted portfolios are instead computed as∑Mt

j=1

∑Nj,t

i=1 wi,j,tDHRi,j,t, where wi,j,t ∝ (1/Nj,t) × (Oj,i,t−1/Oj,i,t−2), O is the option price, and weights
are normalized to sum to 1 for each t.
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strategy. Moreover, the gross return-weighted put means are not statistically different from

zero. Thus, the results in Table 4 indicate that liquidity is priced only in call options once

we correct for microstructure biases described in Duarte, Jones, and Wang (2022). The large

differences between the feasible and infeasible mean returns indicate look-ahead bias explains

most of the pricing of illiquidity in options.

The economic significance of the estimated price of illiquidity is strongly affected with the

adoption of a feasible sample. For instance, a feasible long/short strategy on the top/bottom

quintile portfolio of delta-hedged calls sorted on illiquidity generates a mean excess return of

about 0.19% per day, with a t-statistic of about 4.9 and a Sharpe ratio of 1.73. In contrast,

the equivalent infeasible strategy generates a mean excess return of about 1.52% per day,

with a t-statistic of about 31 and a Sharpe ratio of 11. Overall, the results in Table 4 indicate

that the impressive Sharpe ratios earned from providing liquidity in options largely result

from look-ahead biases. We discuss the precise source of these biases in Section 5.

5 Understanding the Look-Ahead Biases

To understand why the difference in the mean returns of infeasible and feasible strategies in

Table 2 is due to look-ahead biases, recall that the results in Table 1 show that the infeasible

sample in ZHCT filters out options that end up either deep-OTM or deep-ITM at time t.

Removing options with extreme moneyness also drives the results in Table 2. To show this,

we analyze how the infeasible filters affect changes in the moneyness of the options in the

High and Low return portfolios of Table 2. The results are in Table 5.

Panel A of Table 5 shows the changes in the 10th percentile of moneyness (S/K) between

times t−1 and t. Because options start off ATM, changes in the 10th percentile of moneyness

are universally negative, but the changes are in most cases significantly larger for the feasible

sample. This is because the infeasible sample removes a large fraction of the calls that become
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OTM by time t.

More importantly, the effects of filtering OTM calls differs between the high and low

deciles. For every characteristic, the “DiD” column shows that the impact of filtering is

higher for the high decile portfolio than it is for the low decile portfolio. That is, in every

case, more OTM options are removed from the top decile portfolio than from the bottom.

This largely explains why it appears to be more profitable to write options for the high

decile.

Similarly to Panel A, the results in Table 5, Panel B show that infeasible filters that

remove ITM calls at time t also have a stronger effect in the High portfolios than in the Low

portfolios. Specifically, Panel B displays the changes in the 90th percentile of moneyness

(S/K) between t − 1 and t. The negative values in the DiD column in Panel B indicate

that the infeasible filters result in a smaller increase in the 90th percentile of moneyness for

the High portfolio compared with the Low portfolio. Therefore, the infeasible filters remove

more deep-ITM calls from the high decile portfolio, again raising the the returns to call

writing for that decile.

[Insert Table 5 Here]

The differential effects presented in Table 5 should naturally be expected to result in

look-ahead biases in returns. To understand the strength of this effect, we plot the bias of

each strategy from Table 2 as a function of the DiD displayed in Table 5. The result, in

Figure 3, Panel A, is an unmistakably positive and near-linear relation between the DiD

in the changes in the 10th percentile of moneyness and the look-ahead biases from Table 2.

Similarly, Panel B of Figure 3 illustrates an extremely strong negative relation between the

DiD in the change in the 90th percentile of moneyness and the same look-ahead biases from

Table 2. Indeed, the relations in Panels A and B represent correlations of approximately 98%
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and -96%, respectively. This suggests that differences in the mean returns of the infeasible

and feasible strategies can be almost entirely attributed to the filters that remove options

with extreme moneyness from the feasible sample at time t.

[Insert Figure 3 Here]

Naturally, a lingering question pertains to why the infeasible filters exert differential

impacts on the High and Low portfolios. To address this, Figure 3, Panel C plots the

look-ahead bias as a function of the average difference in the implied volatilities of the call

options in the High and Low portfolios. Panel C reveals a substantial correlation between

the difference in implied volatility and the look-ahead bias, with a correlation coefficient of

approximately 70%. Consequently, the look-ahead bias in ZHCT stems from the fact that

the call options in their High portfolios are more likely on stocks that exhibit higher volatility,

making them more prone to end up either deep-ITM or deep-OTM by the conclusion of the

holding period and, as a result, being removed from the sample.

The disparity in the mean returns of the infeasible and strategies of CGJK and their

feasible counterparts is also due to look-ahead biases. To understand this, we recall two key

findings from the results in Table 3.

Firstly, the selection criteria results in the infeasible sample only including options at

the time of portfolio formation (i.e., the time of the first trade on day t − 1) that become

ATM by the middle of the holding period (i.e., the close of day t − 1). Consequently, the

infeasible sample tends to select OTM call (put) options when the stock return on day t−1 is

positive (negative) and ITM call (put) options when the stock return on day t−1 is negative

(positive).

Secondly, OTM options tend to have higher spreads. Thus, the fact that the infeasible

sample includes a greater number of OTM calls (puts) on days when RS,t−1 > 0 (RS,t−1 < 0)

results in higher mean spreads (ESO
t−2) for calls (puts) when RS,t−1 > 0 (RS,t−1 < 0).
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These two characteristics of the infeasible sample also underlie the results in Table 4. To

illustrate this, consider that stocks with positive (negative) returns during the holding period

tend to have call options that were OTM (ITM) on day t− 1 included in the sample. Since

moneyness is linked to ESO
t−2, stocks with positive (negative) returns during the holding

period tend to have a larger representation of illiquid (liquid) call options within the sample.

Likewise, stocks with positive (negative) returns during the holding period tend to feature

a higher proportion of liquid (illiquid) put options in the sample. Consequently, sorting call

portfolios on ESO
t−2 in the infeasible sample is akin to sorting them based on RS,t−1. When

we sort put portfolios in the infeasible sample by ESO
t−2, it is akin to sorting them based on

−RS,t−1.

Table 6 illustrates these points by showing a variety of quintile averages for portfolios of

delta-hedged calls and puts sorted by illiquidity (ESO
t−2). Panel A (B) shows the results for

the infeasible (feasible) sample.

[Insert Table 6 Here]

Panel A results show a strong relation between ESO
t−2 and delta-hedged returns (DHR).

It also shows that calls with high ESO
t−2 are on average more OTM prior to the holding period

(lower (S/K)t−2) and are written on stocks with much higher stock returns on day t − 1

(RS,t−1). The result is that the mean DHR is higher as well.12 In fact, Table 6 demonstrates

that a trading strategy involving short selling stocks with liquid calls and buying stocks

with illiquid calls between t − 2 and t − 1 yields an average return of 0.52% per day, with

a t-statistic of 42.80. This strategy boasts a remarkable Sharpe ratio of approximately 15.

However, it’s important to note that this strategy is infeasible. The results for puts show
12Recall that DHR is driven by the unhedged option return on day t− 1 since the delta hedge is not put

in place until the close of day t−1. Hence the call return is mainly the result of a positive β times a positive
RS,t−1.
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that puts with high ESO
t−2 are more OTM prior to the holding period (higher (S/K)t−2) and

are written on stocks with much lower mean stock returns RS,t−1. Hence, the strong relation

between ESO
t−2 and DHR in the infeasible sample can be attributed to the fact that RS,t−1

is linked to both ESO
t−2 and DHR within this sample.

The findings in Panel B indicate that there exists only a weak relation between ESO
t−2 and

DHR in the feasible sample. High ESO
t−2 calls are more likely to be OTM, characterized by

lower (S/K)t−2 values. However, in contrast to the results observed in the infeasible sample,

these high ESO
t−2 calls are not written on stocks with significantly higher mean returns

(RS,t−1). Similar patterns emerge for puts within this sample. Therefore, the feasible sample

selection process eliminates the spurious correlation between RS,t−1 and ESO
t−2 observed in

the infeasible sample. This, in turn, results in considerably weaker evidence suggesting that

illiquidity is priced in options.

6 Conclusion

We demonstrate that look-ahead bias can explain some of the stylized facts in the options

empirical literature. This bias arises from the application of sample filters that employ

information not available at the time of portfolio formation. Notably, filters associated with

option moneyness appear to play a particularly crucial role in generating look-ahead biases.

The first stylized fact is that numerous stock characteristics seem to be priced in the

cross-section of individual equity option returns. Our findings indicate a narrower set of

stock characteristics associated with option expected returns compared to ZHCT. In contrast

to ZHCT, who identified a robust correlation between delta-hedged option returns and ten

stock characteristics, our results suggest that many of these relations are due to look-ahead

biases. Specifically, within the feasible sample, we find that only three stock characteristics

exhibit a modest correlation with the cross-section of delta-hedged option returns.
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The second stylized fact is that illiquidity seems to be strongly priced in individual equity

options. We provide evidence suggesting that illiquidity is not nearly as strongly priced in

the cross-section of options returns as implied by CGJK. Specifically, we observe evidence

of illiquidity being priced only in call options when employing the bias correction procedure

outlined by Duarte, Jones, and Wang (2022). Remarkably, we do not find evidence indicating

that illiquidity is priced in put options within our feasible sample.
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Figure 1: Sample selection to analyze illiquidity premium in options. Panels A shows the time line
of the sample selection in Christoffersen, Goyenko, Jacobs, and Karoui (2018). Panel B shows the time line
of the feasible sample selection.
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Figure 2: Option Illiquidity as Function of Moneyness. This figure shows the average of the effective
spreads across all options within different moneyness ranges. Moneyness is defined as the closing underlying
price (S) divided by the option strike price (K). Panel A (B) shows the results for calls (puts).
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Figure 3: Look-ahead bias in Zhan, Han, Cao, and Tong (2021) trading strategies. This figure
presents the look-ahead biases for the different strategies in Zhan, Han, Cao, and Tong (2021) as function
of the DiD of the changes in the 10th (Panel A) and 90th (Panel B) percentiles of moneyness for the High
and Low portfolios in Table 5. The look-ahead biases are the differences between the infeasible and feasible
equal weighted mean returns in Table 2. Panel C presents the look-ahead biases as function of the difference
in the mean implied volatilities of the call options in the High and Low portfolios.

37



Table 1: Summary statistics as in Zhan, Han, Cao, and Tong (2021). This table displays the summary statistics of samples used to replicate
the Zhan, Han, Cao, and Tong (2021) results. “Buy & hold until month-end” refers to the return of writing delta-hedged call options from the end
of the previous month (t− 1) to the end of the current month (t). We follow Zhan, Han, Cao, and Tong (2021) and define option moneyness as the
closing stock price (S) divided by the option strike price (K). Panel A shows the pooled sample summary statistics for the infeasible sample. Panel B
shows the pooled sample summary statistics for the feasible sample. The infeasible and feasible filters used to create these samples are described in
Section 3. The data are from Optionmetrics database.

Panel A: Infeasible sample

Mean Std. Dev. 1st 10th 25th Median 75th 90th 99th

Buy & hold until month-end (%) 3.19 6.29 -15.83 -2.13 0.95 3.14 5.78 9.17 18.87
Moneynesst−1 (S/K) (%) 99.53 4.68 86.25 94.03 97.00 99.67 102.12 104.98 112.20
Moneynesst (S/K) (%) 100.43 10.67 73.00 89.00 94.73 100.09 105.75 112.00 130.77
Days to maturity 49.99 1.97 45.00 47.00 50.00 50.00 51.00 52.00 53.00
Vega 0.14 0.01 0.11 0.13 0.14 0.14 0.15 0.15 0.15
Quoted bid-ask spreadt−1 (%) 15.56 15.34 1.68 4.35 7.06 11.43 18.18 30.30 80.00
Quoted bid-ask spreadt(%) 29.19 31.48 1.05 4.88 8.70 17.14 38.46 66.67 142.86

Panel B: Feasible sample

Mean Std. Dev. 1st 10th 25th Median 75th 90th 99th

Buy & hold until month-end (%) 0.25 9.56 -34.89 -8.45 -1.81 1.80 4.50 7.73 16.89
Moneynesst−1 (S/K) (%) 99.18 05.10 84.50 93.09 96.47 99.44 102.02 105.00 112.80
Moneynesst (S/K) (%) 99.81 15.50 59.30 82.82 92.00 99.84 107.31 116.00 144.00
Days to maturity 49.91 2.02 45.00 47.00 50.00 50.00 51.00 52.00 53.00
Vega 0.14 0.01 0.09 0.13 0.14 0.14 0.15 0.15 0.15
Quoted bid-ask spreadt−1 (%) 18.93 20.52 1.72 4.71 7.69 12.77 22.22 40.00 114.29
Quoted bid-ask spreadt (%) 52.43 65.78 1.34 4.96 9.09 20.47 66.67 200.00 200.00
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Table 2: Average return of long-short portfolios of delta-neutral written calls sorted by under-
lying stock characteristics. This table shows the results of the replication of Zhan, Han, Cao, and Tong
(2021) with infeasible and feasible samples. All portfolios are equal-weighted. This table displays the differ-
ence between the returns of the high and low decile portfolios formed on various characteristics. The signs
of some characteristics are switched so that the high-low average return is always positive for the infeasible
sample. Average returns are in percent. Annualized Sharpe ratios are within brackets and t-statistics are in
parentheses.

Infeasible Feasible Bias
CFV 2.12 -0.13 2.25

(16.99) (-0.94) (16.29)
[3.78] [-0.21]

CH 2.10 0.60 1.51
(13.90) (2.70) (10.29)
[3.09] [0.60]

DISP 1.91 -0.11 2.01
(14.40) (-0.69) (14.23)
[3.20] [-0.15]

ISSUE_1Y 1.62 0.20 1.41
(13.68) (1.59) (12.99)
[3.04] [0.35]

ISSUE_5Y 1.82 0.31 1.52
(14.16) (2.14) (13.16)
[3.15] [0.48]

TEF 1.59 0.01 1.58
(11.07) (0.08) (12.01)
[2.46] [0.02]

-PM 2.30 0.12 2.18
(16.47) (0.66) (14.50)
[3.66] [0.15]

-LN(PRICE) 4.85 0.61 4.25
(26.48) (2.74) (21.70)
[5.88] [0.61]

-PROFIT 2.27 0.10 2.17
(19.18) (0.54) (14.81)
[4.26] [0.12]

-ZS 0.44 0.10 0.34
(2.63) (0.58) (2.02)
[0.58] [0.13]

-VOL_deviation 3.00 2.81 0.19
(13.59) (11.53) (1.49)
[3.02] [2.56]

IVOL 3.78 0.77 3.01
(25.18) (3.75) (16.72)
[5.60] [0.83]

AMIHUD 3.78 0.22 3.56
(24.40) (1.21) (23.35)
[5.42] [0.27]
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Table 3: Summary statistics as in Christoffersen, Goyenko, Jacobs, and Karoui (2018). This table presents
summary statistics for the samples used to estimate the illiquidity premium in option returns. The end of the holding period
is at the close of day t. Panel A presents summary statistics for delta-hedged returns (DHRt) on calls and puts as well as on
the excess returns of the underlying stocks (RS,t). DHRt is an average of the returns on all ATM options for a given stock
on a single day. Each option’s return is constructed from average transaction prices on days t − 1 and t, but the delta hedge
is not put into place until the close of day t − 1. As in CGJK, we compute the descriptive statistics for each stock and then
we take the averages of these statistics across stocks. We report the mean, standard deviation, skewness, kurtosis, first-order
autocorrelation of delta-hedged returns (ρ(1)), and first-order autocorrelation of the absolute value of delta-hedged returns,
(|ρ(1)|). We also report the average number of stocks in each cross-section and the average number of option series for each
stock on each day. Panel B presents statistics on the effective option spreads on day t− 2 (ESO

t−2). For each stock and on each
day, we compute ESO

t−2 from all the available options in the sample and then take the time series mean, standard deviation,
minimum, maximum, and first-order autocorrelation (ρ(1)) for each stock. Panel B displays the averages of these statistics
across stocks. Panels C and D present the means of moneyness (S/K)t−2, βt−2, DHRt, and ESO

t−2 on days in which the
returns on the underlying stock in the first day of the holding period (RS,t−1) are either positive or negative. The moneyness
of an option is defined as the closing price of the underlying stock (S) divided by the option’s strike price (K). The option β

is its delta divided by its price multiplied by the price of the underlying stock. Filters used in sample selection are described
in Section 4. The sample only contains ATM options, defined for the infeasible (feasible) sample as options with the absolute
value of δt−1 (δt−2) between 0.375 and 0.625. Returns and effective spreads are in percent. The sample includes all S&P 500
constituents with any valid traded options data between January 2012 and December 2019.

Panel A: Returns
Call Put Stock

Infeasible Feasible Infeasible Feasible Return

Mean 0.47 0.01 0.63 -0.03 0.05
Std. Dev. 13.69 13.67 13.26 12.98 1.70
Skewness 1.12 1.14 1.27 1.23 0.18
Kurtosis 20.46 26.27 14.95 19.42 17.43
ρ(1) -0.31 -0.36 -0.29 -0.36 0.00
|ρ(1)| 0.20 0.25 0.19 0.25 0.11
Average # of Stocks 353 429 282 388 475
Average # of Series 4.05 3.80 3.27 2.89

Panel B: Effective Spread
Call Put

Infeasible Feasible Infeasible Feasible

Mean 4.52 4.56 3.92 4.02
Std. Dev. 3.64 3.62 3.71 3.55
Minimum 0.09 0.13 0.03 0.07
Maximum 40.81 41.23 41.48 40.78
ρ(1) 0.23 0.25 0.20 0.22

Panel C: Averages for Calls when RS,t−1 > 0 and when RS,t−1 < 0

Infeasible Feasible

(S/K)t−2 βt−2 DHRt ESO
t−2 (S/K)t−2 βt−2 DHRt ESO

t−2

(1) (2) (3) (4) (5) (6) (7) (8)

RS,t−1 > 0 98.03 13.89 3.72 4.85 99.04 12.51 3.39 4.60
RS,t−1 < 0 100.06 12.64 -3.43 4.12 99.21 12.53 -3.70 4.50

Panel D: Averages for Puts when RS,t−1 > 0 and when RS,t−1 < 0

Infeasible Feasible

(S/K)t−2 βt−2 DHRt ESO
t−2 (S/K)t−2 βt−2 DHRt ESO

t−2

(1) (2) (3) (4) (5) (6) (7) (8)

RS,t−1 > 0 99.39 -11.46 -3.13 3.68 99.96 -10.99 -3.24 3.97
RS,t−1 < 0 101.53 -12.39 4.16 4.13 100.18 -11.09 3.70 4.08
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Table 4: Average return of long-short portfolios of hedged options sorted by option illiquidity.
This table shows the results of the replication of Christoffersen, Goyenko, Jacobs, and Karoui (2018) with
infeasible and feasible samples. We first sort stocks into quintiles based on their option illiquidity at time
t − 2. Option illiquidity is obtained as volume-weighted effective spreads from intraday LiveVol data. The
illiquidity of the options in a given stock is the average of the illiquidity of the individual options written
on that stock. The table reports equal weighted (EW) and gross return weighted (GRW) means of the
difference between the returns on the top and bottom quintile portfolios. The means weighted by lagged
option gross returns (GRW) are reported to correct for microstructure biases described in Duarte, Jones, and
Wang (2022). The table reports portfolio results for daily delta-hedged (DHRt) call and put returns. DHRt

is the return on a portfolio of all ATM calls or puts for a given stock. Each option’s return is computed
based on average transaction prices on days t − 1 and t. The portfolio is unhedged during regular trading
hours on day t− 1 and hedged starting at the close of day t− 1. Average returns are in percent. Annualized
Sharpe ratios are within brackets, and t-statistics are within parentheses. The sample includes the S&P 500
constituents with valid traded options data from January 2012 to December 2019.

Calls Puts

Infeasible Feasible Bias Infeasible Feasible Bias

DHRt (EW) 1.52 0.19 1.33 0.92 0.11 0.81
(30.59) (4.86) (29.95) (19.41) (2.64) (16.97)
[10.87] [1.73] [6.9] [0.94]

DHRt (GRW) 1.58 0.10 1.47 0.92 0.06 0.86
(29.29) (2.58) (29.64) (18.25) (1.34) (16.74)
[10.41] [0.92] [6.49] [0.48]
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Table 5: Filtering extreme moneyness options. This table presents the changes in the 10th (Panel A) and
90th (Panel B) percentiles of moneyness (S/K) within each portfolio between the time of portfolio formation
(t− 1) and the end of the holding period (t). The Difference column is the difference between Infeasble and
Feasible. DiD is the high minus the low return portfolio differences, with t-statistics in parentheses.

Panel A: Changes in the 10th percentile of moneyness

Low Return Portfolio High Return Portfolio
Infeasible Feasible Difference Infeasible Feasible Difference DiD

CFV -4.09 -6.51 2.42 -4.50 -9.90 5.40 2.98 (8.90)
CH -3.11 -6.75 3.64 -6.67 -11.95 5.28 1.64 (4.96)
DISP -3.18 -6.03 2.85 -4.65 -10.47 5.82 2.97 (9.02)
ISSUE_1Y -2.80 -5.83 3.03 -5.81 -11.36 5.54 2.52 (8.52)
ISSUE_5Y -2.25 -5.26 3.02 -5.38 -10.55 5.18 2.16 (7.01)
TEF -3.51 -6.49 2.98 -6.31 -11.78 5.48 2.50 (7.28)
-PM -4.44 -7.59 3.15 -6.37 -12.18 5.81 2.66 (7.15)
-LN(PRICE) -5.84 -7.42 1.58 -2.06 -10.45 8.39 6.81 (18.05)
-PROFIT -4.30 -7.65 3.36 -6.17 -12.18 6.01 2.65 (7.49)
-ZS -6.79 -11.60 4.81 -4.57 -9.66 5.09 0.28 (0.82)
-VOL_deviation -4.78 -9.55 4.77 -4.81 -9.77 4.96 0.19 (0.58)
IVOL -1.66 -3.55 1.89 -7.15 -13.16 6.01 4.12 (12.36)
AMIHUD -4.94 -6.62 1.68 -2.63 -9.83 7.20 5.52 (17.79)

Panel B: Changes in the 90th percentile of moneyness

Low Return Portfolio High Return Portfolio
Infeasible Feasible Difference Infeasible Feasible Difference DiD

CFV 6.26 8.15 -1.90 6.79 12.26 -5.47 -3.58 (-8.99)
CH 5.53 8.44 -2.91 9.08 13.99 -4.91 -2.00 (-4.74)
DISP 5.58 8.03 -2.45 6.71 12.67 -5.95 -3.50 (-8.42)
ISSUE_1Y 5.88 8.61 -2.72 7.74 11.79 -4.05 -1.32 (-4.21)
ISSUE_5Y 4.87 7.39 -2.52 6.98 11.36 -4.38 -1.86 (-6.52)
TEF 6.17 8.84 -2.67 8.05 12.72 -4.67 -2.00 (-4.77)
-PM 6.94 9.08 -2.14 7.92 13.90 -5.98 -3.84 (-8.02)
-LN(PRICE) 8.52 9.31 -0.80 3.61 12.03 -8.42 -7.62 (-14.36)
-PROFIT 6.92 9.92 -3.00 7.59 14.08 -6.49 -3.49 (-6.53)
-ZS 8.91 12.64 -3.73 6.47 11.33 -4.86 -1.13 (-2.89)
-VOL_deviation 6.80 10.68 -3.88 6.56 11.06 -4.49 -0.61 (-1.92)
IVOL 4.04 5.72 -1.68 9.00 14.58 -5.58 -3.91 (-8.58)
AMIHUD 7.34 8.40 -1.05 4.30 11.67 -7.37 -6.31 (-13.61)
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Table 6: Portfolios sorted on illiquidity. This table displays the mean characteristics of portfolios sorted on illiquidity. Illiquidity is measured by
the option effective spread (ESO

t−2). Moneyness is defined as the closing price of the underlying stock divided by the option strike price ((S/K)t−2).
The return of the underlying stock between the closing of t− 2 and the close of t− 1 is RS,t−1. DHRt is the return on a portfolio of all ATM calls or
puts for a given stock. Each option’s return is computed based on average transaction prices on days t − 1 and t. The portfolio is unhedged during
regular trading hours on day t − 1 and hedged starting at the close of day t − 1. The table reports equal weighted (EW) and gross return weighted
(GRW) means of DHRt. The means weighted by lagged gross option returns (GRW) are reported to correct for microstructure biases described in
Duarte, Jones, and Wang (2022). Panel A (B) shows results for the infeasible (feasible) sample. The infeasible and feasible filters used to create these
samples are described in Section 4. Returns, moneyness and spreads are in percent. T-statistics are within parentheses.

Panel A: Infeasible

Calls Puts
1 2 3 4 5 5-1 1 2 3 4 5 5-1

ESO
t−2 1.06 1.80 2.59 3.92 8.49 7.44 0.78 1.41 2.03 3.09 6.95 6.17

(106.74) (99.36) (95.85) (96.63) (95.19) (90.94) (81.93) (84.53) (81.48) (80.46) (78.19) (75.52)
(S/K)t−2 99.46 99.26 99.11 98.93 98.57 -0.90 100.00 100.18 100.36 100.54 100.90 0.90

(4931.30) (4635.68) (4172.48) (3875.96) (3617.87) (-54.44) (4791.86) (4918.15) (4998.99) (4680.37) (4602.80) (52.96)
RS,t−1 -0.17 0.00 0.09 0.16 0.35 0.52 0.22 0.08 -0.01 -0.08 -0.22 -0.44

(-8.99) (-0.23) (4.64) (8.44) (16.88) (42.80) (10.69) (3.99) (-0.56) (-3.82) (-11.31) (-38.42)
DHRt (EW) -0.49 -0.02 0.27 0.46 1.03 1.52 -0.20 0.02 0.19 0.32 0.73 0.92

(-6.35) (-0.19) (3.20) (5.60) (12.16) (30.59) (-2.76) (0.32) (2.53) (4.07) (8.99) (19.41)
DHRt (GRW) -0.48 0.00 0.24 0.46 1.10 1.58 -0.25 -0.04 0.12 0.25 0.67 0.92

(-6.25) (-0.00) (3.16) (5.04) (12.47) (29.29) (-3.50) (-0.48) (1.67) (3.25) (8.06) (18.25)

Panel B: Feasible

Calls Puts
1 2 3 4 5 5-1 1 2 3 4 5 5-1

ESO
t−2 1.08 1.84 2.67 4.01 8.59 7.51 0.81 1.47 2.13 3.25 7.22 6.40

(105.24) (97.58) (95.57) (96.29) (96.95) (92.79) (81.70) (84.19) (80.57) (79.85) (77.97) (75.45)
(S/K)t−2 99.32 99.25 99.17 99.07 98.86 -0.45 100.06 100.13 100.24 100.36 100.59 0.53

(6626.82) (6075.52) (5278.44) (4958.47) (4427.69) (-35.19) (6658.39) (6540.20) (6977.84) (7010.22) (7080.13) (42.58)
RS,t−1 0.05 0.05 0.06 0.06 0.07 0.02 0.06 0.06 0.06 0.06 0.05 -0.01

(2.52) (2.35) (2.86) (3.03) (3.58) (2.29) (3.16) (3.19) (3.18) (3.18) (2.56) (-1.64)
DHRt (EW) -0.06 -0.10 -0.04 0.04 0.13 0.19 -0.06 -0.03 -0.10 -0.08 0.05 0.11

(-0.84) (-1.35) (-0.52) (0.49) (1.69) (4.86) (-0.78) (-0.35) (-1.27) (-1.07) (0.68) (2.64)
DHRt (GRW) -0.04 -0.07 -0.05 0.04 0.06 0.10 -0.10 -0.06 -0.14 -0.14 -0.04 0.06

(-0.54) (-0.87) (-0.68) (0.50) (0.87) (2.58) (-1.39) (-0.86) (-1.87) (-1.90) (-0.56) (1.34)
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Internet Appendix to

Too Good to Be True: Look-ahead Bias in Empirical
Options Research

A Details about stock characteristics

Here we provide construction details for the stock characteristics ZHCT use as option return

predictors. The first ten variables are the main predictors of interest.

1. CFV: Cash flow variance, as in Haugen and Baker (1996), computed as the variance

of the monthly ratio of annual cash flow to market value of equity over the last 60 months

(requiring nonmissing observations in at least 36 months). Annual cash flow is Net Income

(Compustat annual item NI) plus Depreciation and Amortization (item DP), all scaled by

monthly updated market value of equity. We assume annual accounting items known pub-

licly 4 months after the fiscal year end. To avoid stale information, we do not use annual

accounting information from the fiscal year end that is older than 15 months.

2. CH: Following Palazzo (2012), we measure cash-to-assets, as cash holdings (Compustat

quarterly item CHEQ) scaled by total assets (item ATQ). We assume quarterly accounting

items known publicly 4 months after the fiscal quarter end. To avoid stale information, we

do not use quarterly accounting information from the fiscal quarter end that is older than 6

months.

3. DISP: Analyst earnings forecast dispersion, as in Diether, Malloy, and Scherbina

(2002). We measure dispersion in analyst earnings forecasts as the ratio of the standard

deviation of earnings forecasts (IBES unadjusted file, item STDEV) to the absolute value

of the consensus mean forecast (unadjusted file, item MEANEST). We use the earnings

forecasts for the current fiscal year (fiscal period indicator = 1) and we require them to be
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denominated in US dollars (currency code = USD). Stocks with a mean forecast of zero are

assigned to the highest dispersion group. Firms with fewer than 2 forecasts are excluded.

4. ISSUE1Y: One-year new issues, as in Pontiff and Woodgate (2008), measured as

the natural log of the ratio of the split-adjusted shares outstanding at one fiscal year end

to the split-adjusted shares outstanding at the fiscal year end 12 months ago. The split-

adjusted shares outstanding are shares outstanding (Compustat annual item CSHO) times

the adjustment factor (item AJEX). We assume annual accounting items known publicly 4

months after the fiscal year end. To avoid stale information, we do not use annual accounting

information from the fiscal year end that is older than 15 months.

5. ISSUE5Y: Five-year new issues, as in Daniel and Titman (2006), for each month t,

measured as the log growth rate in the market equity not attributable to the stock return,

log(Met/Met−60)− r(t− 60, t). r(t− 60, t) is the cumulative log stock return over the past

60 months including month t (i.e., the return spanning from the last trading day of month

t − 60 to the last trading day of month t), and Met is the market equity (from CRSP) on

the last trading day of month t.

6. PM: Profit margin, as in Soliman (2008), calculated as Earnings Before Interest

and Taxes (Compustat annual item EBIT) scaled by Revenue (item REVT). We assume

annual accounting items known publicly 4 months after the fiscal year end. To avoid stale

information, we do not use annual accounting information from the fiscal year end that is

older than 15 months.

7. ln(PRICE): The log of stock price at the end of last month, as in Blume and Husic

(1973).

8. PROFIT: Profitability, as in Fama and French (2006), calculated as earnings divided

by book equity (the denominator is current, not lagged, book equity), in which earnings is

defined as Income Before Extraordinary Items (Compustat annual item IB). Book equity is
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stockholders’ book equity, plus balance sheet deferred taxes and investment tax credit (item

TXDITC) if available, minus the book value of preferred stock. Stockholders’ equity is the

value reported by Compustat (item SEQ), if it is available. If not, we measure stockholders’

equity as the book value of common equity (item CEQ) plus the par value of preferred

stock (item PSTK), or the book value of assets (item AT) minus total liabilities (item LT).

Depending on availability, we use redemption (item PSTKRV), liquidating (item PSTKL), or

par value (item PSTK) for the book value of preferred stock. We assume annual accounting

items known publicly 4 months after the fiscal year end. To avoid stale information, we do

not use annual accounting information from the fiscal year end that is older than 15 months.

9. TEF: Total external financing, as in Bradshaw, Richardson, and Sloan (2006), for one

fiscal year end, scaled by the average of total assets (Compustat annual item AT) at the

same fiscal year end and the prior fiscal year end. Total external financing is the sum of

net equity financing and net debt financing. Net equity financing is the proceeds from the

sale of common and preferred stocks (Compustat annual item SSTK) less cash payments

for the repurchases of common and preferred stocks (item PRSTKC) less cash payments for

dividends (item DV). Net debt financing is the cash proceeds from the issuance of long-term

debt (item DLTIS) less cash payments for long-term debt reductions (item DLTR) plus the

net changes in current debt (item DLCCH, zero if missing). We assume annual accounting

items known publicly 4 months after the fiscal year end. To avoid stale information, we do

not use annual accounting information from the fiscal year end that is older than 15 months.

10. ZS: Z-score. We follow Altman (1968) to construct the Z-score (Dichev (1998))

as Z ≡ 1.2WCTA + 1.4RETA + 3.3EBITTA + 0.6METL + SALETA, in which WCTA

is working capital (Compustat annual item ACT minus item LCT) divided by total assets

(item AT), RETA is retained earnings (item RE) divided by total assets, EBITTA is earnings

before interest and taxes (item OIADP) divided by total assets, METL is the market equity
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(from CRSP, at fiscal year end) divided by total liabilities (item LT), and SALETA is sales

(item SALE) divided by total assets. For firms with more than 1 share class, we merge the

market equity for all share classes before computing Z. We winsorize all non-dummy variables

on the right-hand side of equation at the 1th and 99th percentiles of their distributions each

year. At the end of June of each year t, we split stocks into deciles based on Z-score for the

fiscal year ending in calendar year t− 1. Monthly decile returns are calculated from July of

year t to June of t+1, and the deciles are rebalanced in June of t+1.

The last three variables are controls.

11. VOL_deviation: Volatility deviation measure as in Goyal and Saretto (2009), cal-

culated as the log difference between the rolling annual realized volatility and Black-Scholes

implied volatility for at-the-money options at the end of the last month.

12. IVOL: Idiosyncratic volatility, as in Ang, Hodrick, Xing, and Zhang (2006) and

Cao and Han (2013), computed as the standard deviation of the residuals of a regression of

individual stock returns on the three Fama and French (1993) factors using daily data in the

previous month.

13. AMIHUD: The Amihud (2002) stock illiquidity measure (calculated as the average

of the daily ratio of the absolute stock return to dollar volume over the previous month).

B Robustness

Table A1 replicates the results of ZHCT using three different weighting schemes to calculate

the average return of a delta-neutral call writing portfolio. In addition to equal weighting

(EW), these include weighting by the market capitalization of the underlying stock (Stock-

VW) and the market value of option open interest at the outset of the holding period

(Option-VW). The table also presents results utilizing “true arbitrage” filters, which are

based on bid or ask prices, as appropriate, instead of arbitrage filters based on mid-quotes.
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[Insert Table A1 Here]

Table A2 displays replication results of ZHCT excluding options where the underlying

stock pays dividends during the holding period.

[Insert Table A2 Here]

We originally obtained data from CBOE LiveVol to replicate CGJK in 2020, when CBOE

was offering data starting from 2004. However, we observed some large discrepancies between

the LiveVol data we procured and the data as reported by CGJK. Despite reaching out to

both CGJK and CBOE LiveVol to address these inconsistencies, we were unable to resolve

them. Although our 2004-2012 sample differs from that in CGJK, these variations do not

influence our conclusions. We present our results for our 2004-2012 sample below.

Table A3 shows the summary statistics for the sample period running from January 2004

to December 2012. This table shows that the number of underlying stocks we have in our

sample is smaller than the one in CGJK. Moreover, this table also shows that the mean

and the standard deviation of the the delta-hedged call return are very large at 2.3% and

111.29% per day, respectively.

[Insert Table A3 Here]

Table A4 shows replication results of the CGJK portfolio sorts for the sample period

running from January 2004 to December 2012. Mirroring the findings in Table 6 in the main

paper, Table A4 confirms that look-ahead biases account for the price of illiquidity in options

documented in CGJK.

[Insert Table A4 Here]
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Contrary to CGJK and findings in Table 6, Panel B of Table A4 suggests a potential

negative pricing of illiquidity in call options. Notably, the GRW mean return of the “5-1”

portfolio in Panel B stands at -3.47% per day. Furthermore, the table shows that the high

return on delta-hedged calls is heavily driven by the options in quintile 3, which has an

average EW delta-hedged return of 16.19% per day.

The explanation for the large average returns, and possibly also for the finding that

illiquidity might be negatively priced in call options between 2004-2012, appears to be driven

by extreme outliers that remain in the feasible sample but that are eliminated by the filters

used in the infeasible sample. We therefore introduce additional filters that exclude certain

outliers from the LiveVol database. Specifically, our sample retains options that adhere to

three criteria: (1) The mean underlying midpoint from LiveVol is less than 10% outside the

daily high/low range from CRSP. (2) The mean option trade price from LiveVol is between

1/10 and ten times the IvyDB closing midpoint. (3) The mean LiveVol option trade price

is within 50% of the mean LiveVol midpoint. These criteria are applied at t-2, t-1, and t,

making them infeasible.

[Insert Table A5 Here]

Summary statistics using the new filters are shown in Table A5. They confirm that

outliers drive the large mean return of delta-hedged call options in Table A3. Portfolio sorts

using the new filters, shown in Table A6, no longer show a large negative price of illiquidity,

and the anomalously large return on the third quintile portfolio is gone.

[Insert Table A6 Here]

The findings in Table 6 in the main text rely on a feasible sample without the outlier

filters used in Table A6. For completeness, however, Table A7 replicates that analysis using
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those same outlier filters. The outcomes in Table A7 are fundamentally consistent with

those in Table 6, signifying that outliers in LiveVol don’t influence the 2012-2019 sample as

significantly as in the 2004-2012 sample. Nevertheless, they do affect the results somewhat,

as we find that there is no longer any significant difference between high and low liquidity

options when portfolios use gross return weighting.

[Insert Table A7 Here]

C Impact of Different Filters

C.1 Option Return Predictability

To understand the sources of look-ahead bias in ZHCT, we separately analyze the effects of

each filter in Table A8. For brevity, we only examine equally weighted portfolios.

ZHCT impose many filters on their sample, but we focus here on those based on data at

the end of the holding period (t). As discussed above, these filters require that: (1) Option

bid prices are positive. (2) The bid-ask midpoint is at least $1/8. That is Ct−1 ≥ $1/8,

Pt−1 ≥ $1/8, Ct ≥ $1/8 and Pt ≥ $1/8. (3) The midpoint does not violate no-arbitrage

conditions. Options that violate such no-arbitrage conditions have missing implied volatility

in the Optionmetrics database. (4) The underlying stock does not pay a dividend during the

remaining life of the option. This mitigates early exercise effects, as individual stock options

in the U.S. are of the American type.

[Insert Table A8 Here]

Table A8 begins by repeating the infeasible and feasible spread portfolios described in

Table A8 The additional columns in the table implement portfolios that are feasible except

for one filter, specified on the column name, which is imposed at the end of the holding period.
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The differences between these columns and the feasible portfolios indicate the importance of

each source of look-ahead bias.

The table shows, for example, that conditioning on firms that do not announce and pay

dividends during the holding period has little effect on the results. Similarly, the no-arbitrage

filter has an effect that in some instances is small.

In contrast, the filters that limit the minimum price of the option by requiring either a

midpoint of at least 1/8 or a nonzero bid price turns out to be critical, as they are responsible

for most of the difference between feasible and infeasible results. The results in Table A8

support our explaination of the source of the look-ahead biases in ZHCT as being the result

of removing from the sample options that become either deep-OTM or deep-ITM at the end

of the holding period. Deep-OTM options are more likely to have bid prices equal to zero

or prices below 1/8. Since ZHCT require these conditions for each matching pair of put

and call, these filters also affect deep-ITM call options if the corresponding deep-OTM put

option does not satisfy them.

C.2 Illiquidity Premium

To understand the sources of look-ahead bias in CGJK, we separately analyze the effects of

each filter in Table A9. For brevity, we again focus on ATM options (options with absolute

value of delta between 0.375 and 0.625), and we only examine equally weighted portfolios.

CGJK impose many filters on their sample, but we focus here on those based on data

at the end of the first day of the holding period, which would not be available to investors

trading in the middle of the day. As discussed above, these filters include upper bounds

on spreads, lower bounds on prices, lower and upper bounds on deltas, and positive open

interest. They also include a requirement of positive volume, which is implicit, as CGJK

rely on transaction prices for computing returns.
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[Insert Table A9 Here]

Table A9 begins by repeating the infeasible and feasible spread portfolios constructed by

buying options with high effective spreads and writing options with low effective spreads.

The additional columns in the table implement portfolios that are feasible except for one

filter, specified on the column name, which is imposed at the end of the first day of the

holding period (day t−1). The differences between these columns and the feasible portfolios

indicates the importance of each source of look-ahead bias.

The table shows, for example, that conditioning on closing bid-ask spread has little effect

on the results, which is likely the result of ATM options rarely trading with spreads near

50%. Similarly, the end-of-day price filter also has little effect, as a $0.10 lower bound is

rarely binding for ATM options. The requirement that option volume be positive on day t

is also unimportant in this sample.

In contrast, the seemingly benign delta filter turns out to be critical, as it is responsible

for most of the difference between feasible and infeasible results. Options pass this filter

when their delta is between 0.375 and 0.625 in absolute value at the end of day t− 1. The

results in Table A9 support our explanation of the source of the look-ahead biases in CGJK

as the result of selecting options that are ATM at time t− 1.

In the interest of brevity, we do not report results for OTM options but note that they

are more significantly affected by the filters on spreads and positive volume. The spread

filter is naturally more important for OTM options, which often do trade with spreads above

the maximum value of 50%. The requirement of positive trading volume also biases OTM

returns upward. We find that calls tend to trade more when stock prices go up, while puts

tend to trade more when stock prices decline. As a result, a sample of options, either calls

or puts, that conditions on future volume being positive has an upwardly biased average

return. These results emphasize that a look-ahead bias that is minimal in one context may
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be more problematic in another.
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Table A1: Weighted-Average return of long-short portfolios of delta-neutral call writing sorted
by underlying stock characteristics. This table shows the results of the replication of Zhan, Han,
Cao, and Tong (2021) with infeasible and feasible samples. We use three different weighting schemes to
compute the average return of a portfolio of delta-neutral call writing: weight by market capitalization of
the underlying stock (Stock-VW), equal weight (EW), and weight by the market value of option open interest
at the beginning of the holding period (Option-VW). This table displays the difference between the returns
of the portfolio with High and Low returns. The consequence of this procedure is that, for some sorting
variables, the displayed High minus Low mean returns are the difference in the mean returns of the portfolio
in bottom decile and of the portfolio in the top decile of the stock characteristic. When this is the case, the
first column shows a negative sign on the label of the sorting characteristic. The column “True Arb.” shows
the results of feasible strategies using a sample filter that removes from the sample options with prices that
do not satisfy arbitrage conditions based on bid and ask option prices. In contrast, the columns with the
feasible and infeasible results are based a sample filter that removes from the sample options with prices that
do not satisfy arbitrage conditions based on the mid point of the bid and ask option prices. Average returns
are in percent. Annualized Sharpe ratios are within brackets and t-statistics are within parentheses.

EW Stock-VW Option-VW

Infeasible Feasible True arb. Infeasible Feasible True arb. Infeasible Feasible True arb.
CFV 2.12 -0.13 -0.11 1.52 -0.13 -0.10 2.53 0.34 0.35

(16.99) (-0.94) (-0.76) (9.90) (-0.80) (-0.60) (10.11) (1.14) (1.17)
[3.78] [-0.21] [-0.17] [2.20] [-0.18] [-0.13] [2.25] [0.25] [0.26]

CH 2.10 0.60 0.63 0.40 -0.05 -0.09 1.62 0.31 0.29
(13.90) (2.70) (2.86) (1.76) (-0.20) (-0.35) (5.59) (0.80) (0.75)
[3.09] [0.60] [0.63] [0.39] [-0.04] [-0.08] [1.24] [0.18] [0.17]

DISP 1.91 -0.11 -0.08 1.28 -0.21 -0.17 2.20 0.21 0.19
(14.40) (-0.69) (-0.51) (7.10) (-1.17) (-0.97) (8.70) (0.84) (0.75)
[3.20] [-0.15] [-0.11] [1.5] [-0.26] [-0.22] [1.93] [0.19] [0.17]

ISSUE_1Y 1.62 0.20 0.24 0.44 -0.25 -0.17 1.25 -0.11 -0.01
(13.68) (1.59) (1.87) (2.05) (-1.24) (-0.90) (4.25) (-0.46) (-0.05)
[3.04] [0.35] [0.42] [0.46] [-0.28] [-0.20] [0.95] [-0.10] [-0.01]

ISSUE_5Y 1.82 0.31 0.37 0.23 -0.31 -0.19 1.39 0.08 0.19
(14.16) (2.14) (2.63) (0.85) (-1.52) (-1.01) (4.90) (0.29) (0.72)
[3.15] [0.48] [0.59] [0.19] [-0.34] [-0.22] [1.09] [0.07] [0.16]

TEF 1.59 0.01 0.06 1.06 -0.11 -0.08 1.87 0.07 0.12
(11.07) (0.08) (0.39) (5.21) (-0.51) (-0.34 (6.74) (0.25) (0.42)
[2.46] [0.02] [0.09] [1.16] [-0.11] [-0.08] [1.50] [0.06] [0.09]

-PM 2.30 0.12 0.10 1.73 -0.27 -0.25 2.81 -0.20 -0.21
(16.47) (0.66) (0.55) (6.10) (-1.11) (-1.09) (10.84) (-0.63) (-0.66)
[3.66] [0.15] [0.12] [1.36] [-0.25] [-0.24] [2.41] [-0.14] [-0.15]

-ln(PRICE) 4.85 0.61 0.64 4.43 0.23 0.24 5.62 0.84 0.84
(26.48) (2.74) (3.01) (19.09) (1.11) (1.24) (18.88) (2.70) (2.82)
[5.88] [0.61] [0.67] [4.24] [0.25] [0.28] [4.19] [0.60] [0.63]

-PROFIT 2.27 0.10 0.10 1.55 -0.16 -0.11 2.50 0.05 0.08
(19.18) (0.54) (0.56 (6.20) (-0.84) (-0.58) (9.03) (0.16) (0.28)
[4.26] [0.12] [0.12] [1.38] [-0.19] [-0.13] [2.01] [0.04] [0.06]

-ZS 0.44 0.10 0.09 0.48 -0.08 -0.06 1.41 0.45 0.48
(2.63) (0.58) (0.54) (1.92) (-0.34) (-0.26) (4.42) (1.61) (1.76)
[0.58] [0.13] [0.12] [0.43] [-0.07] [-0.06] [0.98] [0.36] [0.39]

-VOL_deviation 3.00 2.81 2.79 1.78 1.89 1.75 2.88 2.23 2.09
(13.59) (11.53) (11.27) (6.94) (8.02) (7.96) (9.12) (7.28) (7.17)
[3.02] [2.56] [2.51] [1.54] [1.78] [1.77] [2.03] [1.62] [1.59]

IVOL 3.78 0.77 0.80 2.83 0.45 0.50 3.77 0.58 0.65
(25.18) (3.75) (3.76) (9.85) (1.68) (1.99) (12.66) (1.62) (1.85)
[5.60] [0.83] [0.84] [2.19] [0.37] [0.44] [2.81] [0.36] [0.41]

Amihud 3.78 0.22 0.23 3.41 0.0003 -0.05 4.52 1.01 1.00
(24.40) (1.21) (1.21) (22.35) (0.002) (-0.29) (16.91) (3.24) (3.23)
[5.42] [0.27] [0.27] [4.97] [0.0004] [-0.07] [3.76] [0.72] [0.72]
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Table A2: Average return of long-short portfolios of delta-neutral call writing sorted by under-
lying stock characteristics with dividend infeasible strategies. This table shows the results of the
replication of Zhan, Han, Cao, and Tong (2021) with infeasible and feasible samples. We use three different
weighting schemes to compute the average return of a portfolio of delta-neutral call writing: weight by market
capitalization of the underlying stock (Stock-VW), equal weight (EW), and weight by the market value of
option open interest at the beginning of the holding period (Option-VW). This table displays the difference
between the returns of the decile portfolios with High and Low returns. The consequence of this procedure is
that, for some sorting variables, the displayed High minus Low mean returns are the difference in the mean
returns of the portfolio in bottom decile and of the portfolio in the top decile of the stock characteristic.
When this is the case, the first column shows a negative sign on the label of the sorting characteristic. The
results are based on a sample without stocks that pay a dividend during the holding period. Average returns
are in percent. Annualized Sharpe ratios are within brackets and t-statistics are within parentheses.

EW Stock-VW Option-VW
CFV -0.0013 -0.0013 0.0036

(-0.87) (-0.72) (1.12)
[-0.19] [-0.16] [0.25]

CH 0.0058 -0.0007 0.0035
(2.69) (-0.28) (0.91)
[0.60] [-0.06] [0.20]

DISP -0.0010 -0.0022 0.0027
(-0.63) (-1.21) (1.06)
[-0.14] [-0.27] [0.23]

ISSUE_1Y 0.0019 -0.0029 -0.0010
(1.47) (-1.42) (-0.39)
[0.33] [-0.32] [-0.09]

ISSUE_5Y 0.0022 -0.0034 0.0002
(1.54) (-1.60) (0.07)
[0.34] [-0.36] [0.02]

TEF -0.0002 -0.0022 0.0005
(-0.13) (-0.96) (0.17)
[-0.03] [-0.21] [0.04]

-PM 0.0009 -0.0037 -0.0026
(0.49) (-1.46) (-0.79)
[0.11] [-0.32] [-0.18]

-ln(PRICE) 0.0065 0.0031 0.0093
(2.89) (1.47) (2.90)
[0.64] [0.33] [0.65]

-PROFIT 0.0010 -0.0017 0.0001
(0.55) (-0.79) (0.03)
[0.12] [-0.18] [0.01]

-ZS 0.0014 -0.0009 0.0046
(0.84) (-0.38) (1.57)
[0.19] [-0.08] [0.35]

-VOL_deviation 0.0286 0.0183 0.0221
(11.71) (7.76) (6.98)
[2.60] [1.73] [1.55]

IVOL 0.0077 0.0040 0.0058
(3.63) (1.39) (1.54)
[0.81] [0.31] [0.34]

AMIHUD 0.0024 -0.0001 0.0097
(1.34) (-0.04) (3.03)
[0.30] [-0.01] [0.67]
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Table A3: Summary statistics as in Christoffersen, Goyenko, Jacobs, and Karoui (2018) (2004-2012). This table
presents summary statistics on the samples used to estimate the illiquidity premium in option returns. The end of the holding
period is at the closing of t. Panel A presents summary statistics on delta-hedged returns (DHRt) of calls and puts as well as
on the excess returns of the underlying stocks RS,t. DHRt is the mean across all options on the same underlying stocks of the
return of an unhedged option between the opening and the closing of t− 1 with a hedge put in place from the closing of t− 1

and t. As in CGJK, we compute the descriptive statistics for each stock and then we take the averages of these statistics across
stocks. We report the mean, standard deviation (Std. Dev.), skewness, kurtosis, first-order autocorrelation of delta-hedged
returns ρ(1), and first-order autocorrelation of the absolute value of delta-hedged returns, |ρ(1)|. Panel B presents statistics on
the option effective spreads at the closing of t−2 (ESO

t−2). For each stock and on each day, we compute the ESO
t−2 with all the

available options in the sample and then we compute across time the mean, the Std Dev, the minimum (min), the maximum
(max), and the first-order autocorrelation, ρ(1). Panel B displays the averages of these statistics across stocks. Panels C and D
present the means of moneyness (S/K)t−2, βt−2, DHRt, and ESO

t−2 on days in which the returns of the underlying stock in
the middle of the holding period which is on the closing of t− 1 (RS,t−1) are positive or negative. The moneyness of an option
is defined as the closing price of the underlying stock (S) divided by the option’s strike price (K). The option β is its δ divided
by its price. The sample that is built with the infeasible (feasible) filters are described in Section 4. The sample contains only
ATM options which are defined in the infeasible (feasible) sample as options with the absolute value of δt−1 (δt−2) between
0.375 and 0.625. Returns and effective spreads are in percent. The sample includes the S&P 500 constituents with valid traded
options data from January 2004 to December 2012.

Panel A: Returns
Call Put Stock

Infeasible Feasible Infeasible Feasible Return

Mean 0.51 2.30 0.67 0.08 0.03
Std. Dev. 14.51 111.29 13.18 15.84 2.40
Skewness 0.93 1.93 0.83 1.20 0.43
Kurtosis 12.91 67.31 7.00 29.91 16.35
ρ(1) -0.32 -0.38 -0.29 -0.37 -0.04
|ρ(1)| 0.23 0.26 0.19 0.25 0.21
Average # of Stocks 312 385 232 333 455
Average # of Series 2.83 2.92 2.38 2.49

Panel B: Effective Spread
Call Put

Infeasible Feasible Infeasible Feasible

Mean 6.00 5.99 4.69 4.82
Std. Dev. 3.83 3.80 3.27 3.28
min 0.19 0.20 0.11 0.13
max 38.29 41.14 30.99 31.44
ρ(1) 0.33 0.36 0.29 0.32

Panel C: Averages for Calls when RS,t−1 > 0 and when RS,t−1 < 0

Infeasible Feasible

(S/K)t−2 βt−2 DHRt ESO
t−2 (S/K)t−2 βt−2 DHRt ESO

t−2

(1) (2) (3) (4) (5) (6) (7) (8)

RS,t−1 > 0 96.68 11.00 4.48 6.50 98.09 10.07 4.86 5.98
RS,t−1 < 0 99.52 10.09 -3.85 5.44 98.27 10.07 -0.29 5.99

Panel D: Averages for Puts when RS,t−1 > 0 and when RS,t−1 < 0

Infeasible Feasible

(S/K)t−2 βt−2 DHRt ESO
t−2 (S/K)t−2 βt−2 DHRt ESO

t−2

(1) (2) (3) (4) (5) (6) (7) (8)

RS,t−1 > 0 98.05 -10.30 -3.64 4.27 99.04 -10.09 -3.84 4.79
RS,t−1 < 0 101.19 -10.74 4.40 5.03 99.23 -10.20 4.13 4.84
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Table A4: Portfolios sorted on illiquidity in the sample period from 2004 to 2012. This table displays the mean characteristics of portfolios
sorted on illiquidity. Illiquidity is measured with the option effective spread ESO

t−2. Moneyness is defined as the closing price of the underlying stock
divided by the option strike price (S/K)t−2. The return of the underlying stock between the closing of t− 2 and the close of t− 1 is RS,t−1. DHRt

is the mean across all options on the same underlying stocks of the return of an unhedged option between the opening and the closing of t− 1 with a
hedge put in place from the closing of t − 1 and t. The table reports the equal weighted (EW) and the gross return weighted (GRW) mean DHRt.
The means weighted by lagged option gross returns (GRW) are reported to correct for microstructure biases described in Duarte, Jones, and Wang
(2022). Panel A (B) shows results for the infeasible (feasible) sample. The infeasible and feasible filters used to create these samples are described
in Section 4. Returns, moneyness and spreads are in percent. The sample period is from January 2004 to December 2012. T-statistics are within
parentheses.

Panel A: Infeasible

Calls Puts
1 2 3 4 5 5-1 1 2 3 4 5 5-1

ESO
t−2 1.73 2.62 3.50 4.96 10.03 8.30 1.28 2.03 2.66 3.65 7.23 5.94

(47.66) (53.28) (59.57) (72.56) (104.55) (122.64) (43.51) (49.80) (53.90) (62.07) (88.44) (102.06)
(S/K)t−2 99.02 98.65 98.32 97.93 97.04 -1.98 98.79 99.20 99.58 99.95 100.58 1.79

(1667.09) (1552.29) (1338.01) (1128.32) (789.59) (-25.62) (1367.04) (1435.36) (1610.52) (1692.78) (1839.94) (45.43)
RS,t−1 -0.32 -0.08 0.07 0.20 0.45 0.77 0.31 0.10 -0.03 -0.14 -0.36 -0.67

(-10.69) (-2.89) (2.52) (6.74) (13.21) (29.48) (10.29) (3.29) (-0.94) (-4.56) (-11.59) (-36.49)
DHRt (EW) -0.65 -0.18 0.17 0.51 1.28 1.93 -0.37 -0.11 0.15 0.39 0.83 1.20

(-8.17) (-2.19) (2.03) (5.76) (12.45) (31.54) (-5.86) (-1.55) (2.02) (4.92) (9.18) (19.76)
DHRt (GRW) -0.65 -0.20 0.15 0.51 1.30 1.95 -0.42 -0.17 0.08 0.29 0.73 1.15

(-8.27) (-2.41) (1.83) (5.75) (12.68) (30.38) (-6.57) (-2.48) (1.08) (3.77) (8.13) (18.62)

Panel B: Feasible

Calls Puts
1 2 3 4 5 5-1 1 2 3 4 5 5-1

ESO
t−2 1.76 2.66 3.56 5.06 10.22 8.46 1.31 2.06 2.70 3.75 7.52 6.21

(48.16) (53.99) (61.43) (75.57) (107.60) (126.75) (44.62) (51.66) (56.97) (67.68) (96.72) (112.79)
(S/K)t−2 98.70 98.53 98.37 98.07 97.40 -1.30 98.85 99.09 99.37 99.65 100.09 1.24

(1620.35) (1453.50) (1311.12) (1118.25) (832.64) (-20.24) (1308.76) (1372.17) (1454.58) (1462.68) (1542.59) (44.93)
RS,t−1 0.03 0.03 0.03 0.04 0.05 0.03 0.04 0.03 0.04 0.05 0.04 0.00

(0.91) (0.99) (1.04) (1.21) (1.68) (2.09) (1.32) (1.03) (1.46) (1.52) (1.21) (-0.40)
DHRt (EW) 3.74 0.71 16.19 0.75 0.41 -3.33 0.16 0.14 -0.08 0.03 0.02 -0.14

(1.90) (0.93) (1.00) (1.11) (4.21) (-1.69) (0.68) (0.54) (-1.04) (0.27) (0.29) (-0.62)
DHRt (GRW) 3.76 0.80 17.17 0.71 0.29 -3.47 0.15 0.08 -0.14 -0.05 -0.12 -0.27

(1.90) (0.95) (1.00) (1.04) (3.00) (-1.76) (0.56) (0.32) (-2.03) (-0.49) (-1.54) (-1.09)
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Table A5: Summary statistics as in Christoffersen, Goyenko, Jacobs, and Karoui (2018) (2004-2012) with data
matching between OptionMetrics and LiveVol. This table presents summary statistics on the samples used to estimate
the illiquidity premium in option returns. The end of the holding period is at the closing of t. Panel A presents summary
statistics on delta-hedged returns (DHRt) of calls and puts as well as on the excess returns of the underlying stocks RS,t.
DHRt is the mean across all options on the same underlying stocks of the return of an unhedged option between the opening
and the closing of t − 1 with a hedge put in place from the closing of t − 1 and t. As in CGJK, we compute the descriptive
statistics for each stock and then we take the averages of these statistics across stocks. We report the mean, standard deviation
(Std. Dev.), skewness, kurtosis, first-order autocorrelation of delta-hedged returns ρ(1), and first-order autocorrelation of the
absolute value of delta-hedged returns, |ρ(1)|. Panel B presents statistics on the option effective spreads at the closing of t− 2

(ESO
t−2). For each stock and on each day, we compute the ESO

t−2 with all the available options in the sample and then we
compute across time the mean, the Std Dev, the minimum (min), the maximum (max), and the first-order autocorrelation,
ρ(1). Panel B displays the averages of these statistics across stocks. Panels C and D present the means of moneyness (S/K)t−2,
βt−2, DHRt, and ESO

t−2 on days in which the returns of the underlying stock in the middle of the holding period which is
on the closing of t − 1 (RS,t−1) are positive or negative. The moneyness of an option is defined as the closing price of the
underlying stock (S) divided by the option’s strike price (K). The option β is its δ divided by its price. The sample that is built
with the infeasible (feasible) filters are described in Section 4. The sample contains only ATM options which are defined in the
infeasible (feasible) sample as options with the absolute value of δt−1 (δt−2) between 0.375 and 0.625. Returns and effective
spreads are in percent. The sample includes the S&P 500 constituents with valid traded options data from January 2004 to
December 2012.

Panel A: Returns
Call Put Stock

Infeasible Feasible Infeasible Feasible Return

Mean 0.50 -0.04 0.67 -0.02 0.04
Std. Dev. 14.39 14.15 13.12 12.79 2.46
Skewness 0.73 0.41 0.73 0.57 0.41
Kurtosis 7.65 7.40 4.84 6.04 15.31
ρ(1) -0.32 -0.34 -0.29 -0.30 -0.03
|ρ(1)| 0.23 0.25 0.20 0.21 0.21
Average # of Stocks 312 343 232 271 417
Average # of Series 2.83 2.92 2.38 2.49

Panel B: Effective Spread
Call Put

Infeasible Feasible Infeasible Feasible

Mean 6.00 5.88 4.68 4.67
Std. Dev. 3.83 3.61 3.27 3.12
min 0.19 0.24 0.11 0.16
max 38.29 35.82 31.00 27.66
ρ(1) 0.33 0.35 0.29 0.31

Panel C: Averages for Calls when RS,t−1 > 0 and when RS,t−1 < 0

Infeasible Feasible

(S/K)t−2 βt−2 DHRt ESO
t−2 (S/K)t−2 βt−2 DHRt ESO

t−2

(1) (2) (3) (4) (5) (6) (7) (8)

RS,t−1 > 0 96.68 11.00 4.47 6.50 97.99 10.32 3.97 5.91
RS,t−1 < 0 99.52 10.09 -3.86 5.44 98.25 10.29 -4.13 5.85

Panel D: Averages for Puts when RS,t−1 > 0 and when RS,t−1 < 0

Infeasible Feasible

(S/K)t−2 βt−2 DHRt ESO
t−2 (S/K)t−2 βt−2 DHRt ESO

t−2

(1) (2) (3) (4) (5) (6) (7) (8)

RS,t−1 > 0 98.04 -8.65 -3.65 4.26 99.22 -8.70 -3.84 4.64
RS,t−1 < 0 101.19 -9.29 4.40 5.03 99.50 -8.79 3.94 4.71
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Table A6: Portfolios sorted on illiquidity in the sample period from 2004 to 2012 and with additional filters. This table displays the
mean characteristics of portfolios sorted on illiquidity. Illiquidity is measured with the option effective spread ESO

t−2. Moneyness is defined as the
closing price of the underlying stock divided by the option strike price (S/K)t−2. The return of the underlying stock between the closing of t − 2

and the close of t − 1 is RS,t−1. DHRt is the mean across all options on the same underlying stocks of the return of an unhedged option between
the opening and the closing of t − 1 with a hedge put in place from the closing of t − 1 and t. The table reports the equal weighted (EW) and the
gross return weighted (GRW) mean DHRt. The means weighted by lagged option gross returns (GRW) are reported to correct for microstructure
biases described in Duarte, Jones, and Wang (2022). Panel A (B) shows results for the infeasible (feasible) sample. The infeasible and feasible filters
used to create these samples are described in Section 4. Returns, moneyness and spreads are in percent. The sample period is from January 2004 to
December 2012. T-statistics are within parentheses.

Panel A: Infeasible

Calls Puts
1 2 3 4 5 5-1 1 2 3 4 5 5-1

ESO
t−2 1.73 2.62 3.50 4.96 10.03 8.30 1.28 2.03 2.66 3.65 7.22 5.94

(47.67) (53.29) (59.57) (72.56) (104.57) (122.66) (43.52) (49.80) (53.91) (62.09) (88.42) (102.06)
(S/K)t−2 99.02 98.65 98.32 97.93 97.04 -1.98 98.79 99.20 99.58 99.95 100.58 1.79

(1666.28) (1553.65) (1338.50) (1127.73) (789.99) (-25.65) (1367.88) (1434.26) (1609.91) (1692.19) (1840.09) (45.48)
RS,t−1 -0.32 -0.08 0.07 0.20 0.45 0.77 0.31 0.10 -0.03 -0.14 -0.36 -0.67

(-10.68) (-2.88) (2.52) (6.73) (13.21) (29.50) (10.29) (3.29) (-0.92) (-4.57) (-11.58) (-36.47)
DHRt (EW) -0.66 -0.20 0.16 0.51 1.27 1.93 -0.39 -0.12 0.14 0.38 0.82 1.21

(-8.36) (-2.42) (1.93) (5.68) (12.39) (32.09) (-6.02) (-1.72) (1.90) (4.83) (9.15) (19.86)
DHRt (GRW) -0.65 -0.21 0.15 0.51 1.30 1.95 -0.42 -0.17 0.08 0.29 0.73 1.16

(-8.32) (-2.56) (1.86) (5.78) (12.68) (30.53) (-6.66) (-2.53) (1.07) (3.83) (8.15) (18.75)

Panel B: Feasible

Calls Puts
1 2 3 4 5 5-1 1 2 3 4 5 5-1

ESO
t−2 1.73 2.61 3.45 4.86 9.69 7.96 1.29 2.02 2.63 3.59 7.01 5.71

(47.37) (52.98) (59.10) (72.38) (104.32) (124.69) (43.30) (49.67) (53.87) (62.00) (90.29) (106.66)
(S/K)t−2 98.69 98.52 98.34 98.02 97.31 -1.38 98.99 99.22 99.50 99.78 100.19 1.19

(1618.37) (1454.75) (1310.34) (1119.74) (811.35) (-20.51) (1367.11) (1473.92) (1550.78) (1600.28) (1637.03) (40.28)
RS,t−1 0.02 0.02 0.02 0.04 0.06 0.04 0.05 0.05 0.06 0.06 0.05 0.00

(0.72) (0.85) (0.74) (1.23) (1.82) (2.74) (1.67) (1.46) (1.79) (2.02) (1.68) (-0.00)
DHRt (EW) -0.19 -0.20 -0.18 -0.12 0.01 0.20 -0.14 -0.15 -0.16 -0.12 -0.13 0.01

(-2.39) (-2.47) (-2.16) (-1.46) (0.07) (4.61) (-2.10) (-2.35) (-2.26) (-1.73) (-1.67) (0.20)
DHRt (GRW) -0.15 -0.17 -0.16 -0.14 -0.06 0.09 -0.16 -0.18 -0.20 -0.18 -0.24 -0.08

(-1.90) (-2.15) (-1.98) (-1.67) (-0.70) (2.05) (-2.58) (-2.73) (-2.97) (-2.58) (-3.24) (-1.71)
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Table A7: Portfolios sorted on illiquidity in the sample from 2012 and 2019 and with additional filters. This table displays the mean
characteristics of portfolios sorted on illiquidity. Illiquidity is measured with the option effective spread ESO

t−2. Moneyness is defined as the closing
price of the underlying stock divided by the option strike price (S/K)t−2. The return of the underlying stock between the closing of t − 2 and the
close of t− 1 is RS,t−1. DHRt is the mean across all options on the same underlying stocks of the return of an unhedged option between the opening
and the closing of t − 1 with a hedge put in place from the closing of t − 1 and t. The table reports the equal weighted (EW) and the gross return
weighted (GRW) mean DHRt. The means weighted by lagged option gross returns (GRW) are reported to correct for microstructure biases described
in Duarte, Jones, and Wang (2022). Panel A (B) shows results for the infeasible (feasible) sample. The infeasible and feasible filters used to create
these samples are described in Section 4. Returns, moneyness and spreads are in percent. T-statistics are within parentheses.

Panel A: Infeasible

Calls Puts
1 2 3 4 5 5-1 1 2 3 4 5 5-1

ESO
t−2 1.06 1.80 2.59 3.91 8.49 7.43 0.78 1.41 2.03 3.09 6.94 6.16

(107.27) (99.56) (95.99) (96.79) (95.04) (90.71) (82.32) (84.82) (81.70) (80.58) (78.41) (75.71)
(S/K)t−2 99.47 99.26 99.11 98.93 98.57 -0.90 100.00 100.17 100.36 100.53 100.89 0.90

(4934.86) (4630.58) (4172.28) (3877.47) (3614.74) (-54.65) (4784.02) (4920.67) (5004.20) (4676.20) (4596.05) (53.04)
RS,t−1 -0.17 0.00 0.09 0.16 0.35 0.52 0.22 0.08 -0.01 -0.07 -0.22 -0.44

(-8.97) (-0.21) (4.62) (8.42) (16.92) (42.87) (10.68) (3.98) (-0.60) (-3.79) (-11.30) (-38.38)
DHRt (EW) -0.49 -0.02 0.22 0.44 1.01 1.50 -0.20 0.02 0.18 0.30 0.70 0.91

(-6.45) (-0.28) (2.89) (5.40) (11.97) (30.97) (-2.87) (0.28) (2.47) (3.86) (8.70) (19.58)
DHRt (GRW) -0.48 0.00 0.24 0.45 1.10 1.58 -0.25 -0.03 0.12 0.25 0.66 0.91

(-6.32) (-0.05) (3.12) (4.91) (12.62) (30.46) (-3.56) (-0.46) (1.68) (3.21) (8.02) (18.80)

Panel B: Feasible

Calls Puts
1 2 3 4 5 5-1 1 2 3 4 5 5-1

ESO
t−2 1.04 1.75 2.51 3.79 8.13 7.09 0.78 1.38 1.98 2.99 6.66 5.88

(111.08) (103.96) (100.56) (100.61) (97.31) (92.52) (86.36) (88.09) (84.53) (83.53) (78.25) (74.97)
(S/K)t−2 99.29 99.23 99.15 99.03 98.80 -0.49 100.14 100.21 100.32 100.44 100.67 0.53

(6402.24) (5982.16) (5095.63) (4648.72) (4186.09) (-35.43) (6947.25) (6623.57) (6808.56) (7008.17) (6782.69) (40.65)
RS,t−1 0.05 0.05 0.04 0.05 0.07 0.01 0.06 0.08 0.08 0.09 0.07 0.01

(2.64) (2.36) (2.24) (2.75) (3.51) (1.81) (2.87) (3.80) (4.07) (4.46) (3.73) (1.63)
DHRt (EW) -0.12 -0.17 -0.17 -0.05 -0.02 0.09 -0.06 -0.08 -0.12 -0.16 -0.09 -0.02

(-1.49) (-2.12) (-2.17) (-0.64) (-0.28) (2.24) (-0.92) (-1.15) (-1.62) (-2.16) (-1.20) (-0.56)
DHRt (GRW) -0.08 -0.11 -0.12 -0.01 -0.01 0.07 -0.09 -0.09 -0.15 -0.19 -0.15 -0.06

(-1.01) (-1.39) (-1.50) (-0.14) (-0.15) (1.57) (-1.33) (-1.35) (-2.11) (-2.59) (-2.07) (-1.34)
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Table A8: Impact of different filters on option return predictability by underlying stock char-
acteristics. This table presents a comparison of the infeasible and feasible calculations from Table 2, where
different filters are applied one at a time. All portfolios are equal-weighted. Average returns are in percent.
Annualized Sharpe ratios are within brackets and t-statistics are within parentheses.

Infeasible Feasible Feasible Feasible Feasible Feasible
except except except except

dividend mid arb. bid>0 mid ≥ 1/8
CFV 2.12 -0.13 -0.13 0.36 1.58 1.34

(16.99) (-0.94) (-0.87) (2.52) (13.28) (8.01)
[3.78] [-0.21] [-0.19] [0.56] [2.95] [1.78]

CH 2.10 0.60 0.58 1.11 1.91 1.44
(13.90) (2.70) (2.69) (5.24) (10.59) (6.26)
[3.09] [0.60] [0.60] [1.16] [2.35] [1.39]

DISP 1.91 -0.11 -0.10 0.36 1.39 1.29
(14.40) (-0.69) (-0.63) (2.60) (10.80) (7.50)
[3.20] [-0.15] [-0.14] [0.58] [2.40] [1.67]

ISSUE_1Y 1.62 0.20 0.19 0.63 1.42 1.05
(13.68) (1.59) (1.47) (4.79) (12.23) (7.32)
[3.04] [0.35] [0.33] [1.06] [2.72] [1.63]

ISSUE_5Y 1.82 0.31 0.22 0.71 1.52 1.32
(14.16) (2.14) (1.54) (4.84) (11.58) (8.33)
[3.15] [0.48] [0.34] [1.08] [2.57] [1.85]

TEF 1.59 0.01 -0.02 0.42 1.41 0.91
(11.07) (0.08) (-0.13) (2.54) (9.75) (5.13)
[2.46] [0.02] [-0.03] [0.57] [2.17] [1.14]

-PM 2.30 0.12 0.09 0.75 1.94 1.41
(16.47) (0.66) (0.49) (4.31) (12.87) (6.93)
[3.66] [0.15] [0.11] [0.96] [2.86] [1.54]

-LN(PRICE) 4.85 0.61 0.65 1.50 4.09 3.61
(26.48) (2.74) (2.89) (7.11) (21.53) (19.52)
[5.88] [0.61] [0.64] [1.58] [4.78] [4.34]

-PROFIT 2.27 0.10 0.10 0.64 1.99 1.37
(19.18) (0.54) (0.55) (3.78) (14.57) (6.83)
[4.26] [0.12] [0.12] [0.84] [3.24] [1.52]

-ZS 0.44 0.10 0.14 0.07 0.31 0.61
(2.63) (0.58) (0.84) (0.44) (1.93) (3.59)
[0.58] [0.13] [0.19] [0.10] [0.43] [0.80]

-VOL_deviation) 3.00 2.81 2.86 3.04 2.86 2.86
(13.59) (11.53) (11.71) (12.71) (11.71) (11.71)
[3.02] [2.56] [2.60] [2.82] [2.60] [2.60]

IVOL 3.78 0.77 0.77 1.53 3.20 2.46
(25.18) (3.75) (3.63) (7.65) (20.08) (11.28)
[5.60] [0.83] [0.81] [1.70] [4.46] [2.51]

Amihud 3.78 0.22 0.24 1.04 3.93 1.37
(24.40) (1.21) (1.34) (5.68) (25.51) (6.83)
[5.42] [0.27] [0.30] [1.26] [5.67] [1.52]
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Table A9: Impact of different filters on liquidity sorts for ATM options This table presents average
return of long-short portfolios of hedged and unhedged options sorted by option illiquidity. The table first
repeats the infeasible and feasible calculations from Table 5 before showing the impact of imposing infeasible
filters one at a time. All portfolios are equally weighted. T-statistics are in parentheses.

Infeasible Feasible Feasible Feasible Feasible Feasible Feasible
except except except except except
spread price delta open int volumet > 0

Delta-hedged calls 1.52 0.19 0.23 0.19 1.51 0.20 0.13
(30.59) (4.86) (5.84) (4.88) (33.27) (4.97) (2.98)

Delta-hedged puts 0.92 0.11 0.11 0.11 0.95 0.10 0.03
(19.41) (2.64) (2.70) (2.66) (17.12) (2.33) (0.63)

Unhedged calls 1.80 0.20 0.23 0.20 1.56 0.19 0.31
(18.88) (2.30) (2.65) (2.34) (16.62) (2.20) (3.57)

Unhedged puts 0.85 0.06 0.07 0.06 0.94 0.04 -0.12
(10.30) (0.75) (0.83) (0.74) (10.82) (0.48) (-1.34)
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