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Abstract

We analyze jointly optimal carbon pricing and financial policies under finan-

cial constraints and endogenous climate-related transition and physical risks. The

socially optimal emissions tax may be above or below a Pigouvian benchmark,

depending on the impact of physical climate risk on collateral values. We derive

necessary conditions for emissions taxes alone to implement a constrained-efficient

allocation, and compare the welfare consequences of introducing a cap-and-trade

system, green subsidies, or leverage regulation. Our analysis also shows that effi-

cient carbon pricing can be supported by carbon price hedging markets but may

be hindered by socially responsible investors in equilibrium.
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1 Introduction

Tackling climate change requires large-scale emissions reductions and investments in clean

technologies. Absent frictions, such investments can be incentivized through emissions

taxes set at a rate equal to the social cost of emissions, also known as Pigouvian taxes

in reference to the pioneering work by Pigou (1932). However, during the transition to

a low-carbon economy firms and financial institutions may suffer significant losses that

can exacerbate the severity of financial frictions. Such frictions may limit the ability

of firms to make the necessary investments in green technologies (see Kacperczyk and

Peydró, 2022; Martinsson et al., 2023), and constrain regulators in designing environ-

mental policies (see Hoffmann et al., 2017; Oehmke and Opp, 2023; Biais and Landier,

2022). Accordingly, the risks posed by climate change have moved up the agenda of

investors and financial policy makers.1

Motivated by these considerations, we evaluate jointly optimal climate and financial

policies in a tractable model with financial constraints and endogenous climate-related

transition and physical risks. The model yields several insights. First, our analysis

shows that physical climate risk gives rise to a collateral externality that crucially af-

fects how carbon taxes interact with financial constraints. This collateral externality

implies the optimal carbon tax may be above a standard Pigouvian benchmark. Sec-

ond, we derive necessary conditions under which carbon taxes alone can implement a

constrained-efficient allocation in the presence of financial constraints. This enables a

clean ranking of several commonly used climate and financial policies such as cap-and-

trade systems, green subsidies, and leverage regulation. Third, the model provides novel

insights to the theoretical literature on socially responsible investing (e.g., see Heinkel

et al., 2001; Chowdhry et al., 2019; Gupta et al., 2022; Hong et al., 2023), by highlighting

how socially responsible investors and carbon price hedging markets interact with carbon

pricing policies. We show that responsible investors may hinder, while hedging markets

can enable, efficient emissions reductions in equilibrium.

In the model there are three dates and two types of agents: borrowers and deep-

pocketed, risk-neutral lenders. At the initial date, each borrower finances an investment

project using their limited initial endowment and debt raised from investors. The bor-

1For example, the European Central Bank and the Bank of England now include climate risks in their
stress tests (see Alogoskoufis et al., 2021; Brunnermeier and Landau, 2022), and institutional investors
view climate change as an important source of risk that they seek to mitigate (Krueger et al., 2020).
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rower’s project generates a pecuniary return as well as carbon emissions at the final date.

At the interim date a regulator sets an emissions tax in order to incentivize borrowers to

reduce their emissions through costly abatement activities. At the same time, borrowers

need to roll-over debt raised in the initial period, but debt issuance is limited by a finan-

cial constraint because project returns are not fully pledgeable to outside investors. Con-

strained borrowers can liquidate part of the initial investment at the interim date to gener-

ate resources and reduce emissions, yet liquidations are inefficient due to liquidation losses.

To capture the notion of “stranded assets”, we assume that agents learn the social cost

of emissions – and therefore the optimal level of emissions taxes – only at the interim date,

when borrowers’ initial investment decisions have already been made. This assumption

is also consistent with the uncertainty evident in the wide range of estimates of the social

cost of carbon (e.g., see Golosov et al., 2014; Nordhaus, 2019), and implies that borrowers

are exposed to climate transition risk in the model.2

A key feature of our model is that we also incorporate the empirically documented

effect of physical climate risk on asset values (Giglio et al., 2021; Issler et al., 2020; Gin-

glinger and Moreau, 2019).3 In particular, to capture borrowers’ exposure to losses in

asset values due to (expected) environmental damages caused by a warming climate, we

assume the return of the project may decrease in the level of aggregate emissions. Both

climate-related risks are endogenous in the model: transition risk is a consequence of

emissions taxes optimally set by an environmental regulator, and financial losses due to

physical climate risks depend on aggregate emissions that are a function of abatement

and investment decisions by borrowers. This allows us to explore the differences in how

these two types of climate-related risks interact with financial frictions and affect optimal

environmental and financial policies in equilibrium.

As a benchmark, we show that a state-contingent emissions tax equal to the social

cost of emissions (i.e., a Pigouvian tax) implements the first-best allocation if financial

constraints are slack in all states. In the first-best allocation, there are no liquidations

2Consistent with transition risks being priced in financial markets, recent evidence documents that
firm-level carbon emissions are priced in corporate bonds (see Seltzer et al., 2020), stocks (see Bolton and
Kacperczyk, 2021), and options (see Ilhan et al., 2021), and that the risk of stranded fossil fuel assets is
priced in bank loans (see Delis et al., 2019).

3Giglio et al. (2021) find that the value of real estate in flood zones responds more to changes in climate
attention. Issler et al. (2020) document an increase in delinquencies and foreclosures after wildfires in
California. Evidence in Ginglinger and Moreau (2019) indicates that physical climate risks affect a firm’s
capital structure. For a review discussing climate risks, see Giglio et al. (2021).
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and the optimal abatement scale trades off the social benefit of lower emissions against

abatement costs.

However, in equilibrium the financial constraint may bind (particularly when a high

social cost of emissions necessitates high emissions taxes and abatement investments).

In this case, Pigouvian taxes cannot implement the first best, and optimal emissions

taxes generally differ from the Pigouvian benchmark. The reason is that a constrained

borrower has a limited ability to finance abatement and therefore needs to inefficiently

liquidate some of the initial investment at the interim date. Consequently, the socially

optimal emissions tax needs to trade off the benefit of lower emissions against the cost

of triggering inefficient liquidations. This implies an optimal emissions tax below the

Pigouvian benchmark as emissions taxes tighten financial constraints.4

A key insight from our analysis is that physical climate risks can reverse the rela-

tionship between emissions taxes and financial constraints. If physical climate risk has a

substantial effect on collateral values, borrowers may benefit from an increase in pledge-

able income when the aggregate level of emissions is brought down by a higher emissions

tax.5 Because of this collateral externality the optimal emissions tax may be above the

Pigouvian benchmark rate if the effects of physical climate risk dominate the effects of

transition risk. More broadly, we show that financial constraints call for a generalized

Pigouvian tax that takes climate-induced collateral externalities into account.

To evaluate whether it may be welfare-improving to use other policy tools, we an-

alyze under what conditions the allocation implemented with emissions taxes alone is

constrained efficient (i.e., equivalent to an allocation chosen by a planner maximizing

social welfare subject to the same constraints as private agents). In a first step, we con-

sider a benchmark where emissions taxes are fully rebated to borrowers, and tax rebates

are fully pledgeable to outside investors, so that emissions taxes have no direct effect on

financial constraints. In this case, the competitive equilibrium with optimally set emis-

sions taxes is constrained efficient. This implies that, while financial constraints generally

imply optimal emissions taxes different from a Pigouvian benchmark, there is no scope to

improve welfare using additional policy instruments when tax rebates are fully pledgeable.

4The mechanism behind this result is consistent with recent evidence documenting that financial con-
straints affect firm abatement activities and emissions, see Xu and Kim (2022) and Bartram et al. (2021).

5This effect is similar to collateral externalities in models with pecuniary externalities (for a detailed
discussion, see Dávila and Korinek, 2018). In our setting, the collateral externality operates through a
reduction in asset values due to (expected) environmental damages.
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By contrast, when tax rebates are partially non-pledgeable, the allocation is not con-

strained efficient, and using other policy tools can improve welfare. We first consider a

cap-and-trade system with tradable pollution permits (such as the EU Emissions Trading

System, EU ETS). In a frictionless world, emissions taxes are equivalent to a cap-and-

trade system, and the initial allocation of pollution permits does not matter for equi-

librium emissions (see Montgomery, 1972). We show that in the presence of financial

constraints this “Coasean independence” breaks down because the initial allocation of

permits affects the tightness of constraints. Additionally, we show that the equivalence

between emissions taxes and a cap-and-trade system only holds if the fraction of pledge-

able tax rebates is equal to the fraction of freely allocated permits. This implies that

freely allocating all pollution permits can eliminate the direct effect of carbon pricing

on financial constraints and implement a constrained-efficient allocation. This result

highlights the relevance of financial constraints in optimally allocating pollution permits,

which is an important policy insight for real-world cap-and-trade systems that typically

do not allocate 100% of permits for free.

Given the central role of financial constraints in our framework, we also consider lever-

age regulation that fixes the initial level of borrowers’ equity at a given level. Such a policy

can be applied directly to non-financial firms and implemented through taxes and subsi-

dies on initial leverage or leverage ratio requirements (such as loan-to-value limits). Al-

ternatively, we show our setup is equivalent to one in which borrowers represent financial

institutions that lend to firms with polluting assets (see Internet Appendix Section IA.3).

Under this interpretation, leverage regulation can be implemented within the Basel regu-

latory framework for financial institutions. Importantly, we show the presence of financial

constraints alone does not motivate leverage regulation in the model. This implies any

rationale for leverage regulation within our setting is driven by the environmental exter-

nality, which allows us to contribute to the debate on whether financial regulatory frame-

works should consider climate-related risks beyond the prudential motive behind current

regulatory frameworks (such as moral hazard problems due to government guarantees or

pecuniary externalities, see, for example, Dewatripont and Tirole, 1994; Hellmann et al.,

2000; Lorenzoni, 2008; Martinez-Miera and Repullo, 2010; Bahaj and Malherbe, 2020).

To understand the role of leverage regulation in the model, note that, (i) a borrower’s

initial leverage affects emissions because it affects financial constraints and therefore
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liquidations and abatement activities; and (ii) when emissions pricing cannot implement

a constrained-efficient allocation, there remains a wedge between the social and the private

cost of emissions even if emissions taxes are set optimally. Together, these two points

imply that borrowers make socially inefficient leverage choices, and consequently there is

a role for leverage regulation to improve welfare – but only if the environmental policy

cannot implement the constrained-efficient allocation in the first place.

Overall, in our model there is a pecking order for optimal policy tools under financial

constraints. Theoretically, the most effective policy tools combine a stringent emissions

tax with transfers of resources from unconstrained investors to constrained borrowers.

Such an intervention relaxes polluters’ financial constraints and allows the regulator to

implement the first-best allocation using a Pigouvian emissions tax. However, such a pol-

icy can arguably be politically difficult to implement. If that is the case, a cap-and-trade

system with freely allocated permits can still implement the second-best allocation (i.e.,

constrained efficiency). Only if such policies cannot be implemented optimally, there is

a case to complement carbon pricing with leverage regulation.

We also show that carbon price hedging markets can have a positive effect on equi-

librium environmental policy, beyond their first-order risk sharing benefits for borrowers.

We consider hedging contracts contingent on carbon taxes, which can be implemented

through carbon price derivatives or climate-linked bonds that write off part of the princi-

pal when carbon taxes are high. Such instruments shift resources from low- to high-carbon

price states. If this results in slack constraints in both states, it may enable the regulator

to implement the first-best allocation using standard Pigouvian taxes. This highlights

an important role the financial sector can play in the transition to a low-carbon econ-

omy, distinct from socially responsible investing that aims to reduce emissions by taking

environmental and social factors into account in investment decisions.

In another extension, we consider socially responsible investors directly in the model.

Socially responsible investors can provide incentives to reduce emissions by demanding

a higher financing cost if borrowers fail to reduce emissions. However, our analysis also

highlights they can have a perverse negative effect by tightening borrowers’ financial

constraints, consistent with evidence in Kacperczyk and Peydró (2022). This implies

that socially responsible investors are an imperfect substitute for a well-designed carbon

pricing policy.
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This paper relates to several recent contributions that study environmental external-

ities and green investment under financial and other economic frictions (Tirole, 2010;

Biais and Landier, 2022; Huang and Kopytov, 2023; Allen et al., 2023). Similar to Hoff-

mann et al. (2017) and Oehmke and Opp (2023), we also show that in the presence of

binding financial constraints the optimal tax may be below a Pigouvian benchmark. Our

analysis contributes by uncovering that physical climate risk may give rise to a collateral

externality that alters the interaction between environmental policy and financial con-

straints, potentially motivating an emissions tax above a standard Pigouvian benchmark.

Moreover, we derive necessary conditions under which emissions taxes can implement a

second-best allocation and compare the efficiency under a range of policy tools, including

cap-and-trade system and jointly optimal carbon pricing and leverage regulation.

By studying financial policy in this context we also relate to recent contributions by

Oehmke and Opp (2022) and Dávila and Walther (2022), who consider risk-weighted

capital regulation as a tool for tackling environmental externalities. We follow a different

approach in that we take optimal emissions taxes as a starting point and show under

what conditions leverage regulation can be valuable as a complementary policy tool.6

Our model also provides novel insights on how carbon price hedging markets and so-

cially responsible investors may enable or hinder efficient carbon pricing and emissions

reductions in equilibrium, contributing to the literature analyzing the effects of socially

responsible investing (Heinkel et al., 2001; Chowdhry et al., 2019; Pástor et al., 2021;

Green and Roth, 2022; Broccardo et al., 2022; Gupta et al., 2022; Goldstein et al., 2022;

Piccolo et al., 2022; Hong et al., 2023; Oehmke and Opp, 2023).

Section 2 describes the model setup. Section 3 solves the competitive equilibrium.

Section 4 analyzes optimal emissions taxation, and compares emissions taxes to a cap-and-

trade system and green subsidies. Section 5 introduces leverage regulation, and Section 6

considers carbon price hedging and socially responsible investors. Section 7 concludes.

6Another related strand of literature uses DSGE models with financial frictions to simulate the
effect and optimal design of macroprudential and monetary policies in the presence of environmental
externalities (Carattini et al., 2021; Dafermos et al., 2018; Diluiso et al., 2020; Ferrari and Landi, 2021;
Giovanardi and Kaldorf, 2023). We contribute by providing analytical results that allow us to compare
different policy tools, pinpoint the friction motivating financial regulation, and study the impact of
financing instruments on equilibrium policy.
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2 Model Setup

There are three dates, t = 0, 1, 2, a unit mass of investors, and a unit mass of borrowers.

At t = 1 all agents learn whether the economy is in a good state (s = G) with a low

social cost of emissions, or in a bad state (s = B) with a high social cost of emissions.

The state of the world is drawn from a binomial distribution with the probability of the

bad state given by qB and that of good state equal to qG = 1− qB.

Preferences and Endowments. Investors are risk-neutral and deep-pocketed in that

they have a large endowment Ait at t = 0 and t = 1. Borrowers have a limited endowment

A0 only at t = 0 and quasi-linear utility over consumption. There is no discounting and

all agents suffer disutility from aggregate carbon emissions Ea
s at t = 2:

U i = ci0 + ci1s + ci2s − γusE
a
s ,

U b = u(cb0) + cb1s + cb2s − γusE
a
s ,

where γus is a parameter governing the cost of emissions in agent’s utility, which depends

on the state of the world s ∈ {G,B}. In the bad state γus takes a high value γuB > γuG. In

the good state, we normalize γuG = 0. Agents are atomistic, so that they do not internalize

the effect of their decisions on aggregate emissions Ea
s .

The quasi-linear utility function introduces a meaningful trade-off for borrowers in

how much own funds they contribute to the project. To ensure an interior solution

we assume that u(c0) satisfies the Inada conditions, i.e., u(c0) is strictly increasing and

strictly concave, and in the limit u′(0) = ∞ and u′(∞) = 0.

Technology. At t = 0 borrowers can invest in a productive technology with a fixed scale

at an investment cost I0. At t = 1 borrowers can liquidate some of the initial investment

and adjust the investment scale to I1s ≤ I0. The project generates a return of R(I1s, E
a
s ) =

ρI1s − γpsE
a
s at t = 2, and liquidations generate a payoff µ(I0 − I1s) at t = 1, with µ < 1.

The parameter γps captures the negative effect of physical climate risk on firms’ asset

values. As with the utility cost of emissions, γpB ≥ 0 and γpG = 0. Given that the most

severe adverse effects of climate change are likely to occur in the future, we interpret γps as

the overall asset pricing effect of expected environmental damages, rather than the direct
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impact of extreme weather events in the near future (for a review of evidence on such

asset pricing effects, see Giglio et al., 2021). Using a separate parameters γps allows us

to perform key comparative statics on the intensity of climate-related collateral damages

compared to other climate-related losses captured by γus . The total social cost of emis-

sions consists of a direct utility cost as well as losses in asset values from environmental

damages, γs = 2γus + γps .

The social cost of emissions is uncertain from an ex-ante perspective, consistent with

the wide range of estimates of the social cost of carbon (see Nordhaus, 2019). While un-

certainty is not a necessary model ingredient for our baseline results, it allows us to study

the role that financial markets can play in facilitating more efficient environmental policy

(see Section 6). Moreover, it allows us to frame the analysis in the context of long-run

investments that may become stranded due to uncertain climate policies and outcomes.

The project emits carbon emissions E(Xs, I1s) at t = 2, which can be reduced by

non-verifiable abatement investments Xs at a cost C(Xs, I1s) paid at t = 1. Emissions

aggregate to Ea
s and may be subject to emissions taxes τs ≥ 0. We offer two possible inter-

pretations of this setup. Borrowers may represent non-financial firms that directly invest

in a polluting asset, such as manufacturing firms investing in polluting plants. Alterna-

tively, we show in the Internet Appendix (Section IA.3) that, under certain conditions,

the setup is equivalent to one in which borrowers are financial institutions that lend to

firms with polluting assets. In the latter case, financial institutions pay for emissions

taxes and abatement costs indirectly through the profitability of their lending portfolios.

We make the following functional form assumptions.

Assumption 1. E(X, I1) and C(X, I1) satisfy

1. ∂C(X,I1)
∂X

≥ 0, ∂C(X,I1)
∂I1

≥ 0, ∂E(X,I1)
∂X

≤ 0, ∂E(X,I1)
∂I1

≥ 0,

2. C(0, I1) = 0, C(X, 0) = 0, limX→∞E(X, I0) = 0, E(X, 0) = 0, E(0, I0) = Ē,

3. ∂2E(X,I1)
∂X2 = 0, ∂2C(X,I1)

∂X2 > 0.

Assumption 1.1 ensures that abatement investments are costly but reduce emissions,

and that a higher final investment scale is associated with higher emissions and abatement

costs. Assumption 1.2 defines boundaries such that costs and emissions are non-negative,

and there is an upper bound Ē on emissions. Assumption 1.3 implies that emissions are

9



linear in abatement, which simplifies the exposition, and that the cost of abatement is

strictly convex, so that the borrower’s optimal abatement choice has an interior solution.

Environmental Regulation. An environmental regulator imposes a state-contingent

emissions tax τs per unit of emissions.7 Emissions taxes are rebated lump-sum to bor-

rowers, Ts = τsE
a
s (such tax rebates are sometimes referred to as a “carbon dividend” in

policy debates). Sections 4.3 and 4.4 consider alternative environmental policies in the

form of a cap-and-trade system and green subsidies. In Section 5 we also study whether

there is scope for leverage regulation to complement environmental policy.

Financing. Borrowers need to finance the upfront investment I0 at t = 0 and abatement

Xs at t = 1. At t = 0, they can contribute their own funds as inside equity financing e ≤

A0. Additionally, borrowers can raise debt financing d0 and d1s from investors at t = 0, 1.8

In Section 6, we also allow borrowers to write hedging contracts (which could be imple-

mented through state-contingent “climate-linked” bonds), and explore the effect of intro-

ducing socially responsible investors. These extensions provide interesting additional in-

sights on how different financial instruments can affect equilibrium environmental policy.

External financing is limited by a moral hazard problem. We assume that borrowers

can abscond with any resources except a fraction θ ∈ [0, 1] of asset returns, and a fraction

ψ ∈ [0, 1] of tax rebates Ts at t = 2. Thus, there is a wedge between the project’s

return and pledgeable income, with pledgeable project returns given by θR(I1s, E
a
s ) (as in

Rampini and Viswanathan, 2013, among others). The separate pledgeability parameter

for tax rebates allows us to perform key comparative statics exercises. For example,

when ψ = 1 tax rebates are fully pledgeable and emissions taxes have no direct effect on

financial constraints, while the opposite holds when ψ < 1.

At the interim date the liquidation proceeds µ(I0−I1s) can be seized by investors who

provided t = 0 financing (that is, liquidation proceeds are pledgeable). Investors can de-

mand liquidation if they choose not to roll over their debt and are not fully repaid at t = 1.

7We only consider a linear tax because there is no heterogeneity among borrowers, and therefore a non-
linear tax cannot improve upon a linear tax. See Hoffmann et al. (2017) for a model with heterogeneity,
in which a non-linear tax can be a superior policy instrument because it transfers less resources from
more to less constrained firms.

8Internet Appendix Sections IA.1.2 and IA.1.3 discuss the solution when borrowers use external
equity or long-term debt financing.
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Variable Definitions. For the further analysis it will be useful to introduce the fol-

lowing variable definitions and assumptions:

Definition 1. The project’s private net marginal return on investment r(τ,X, I1) and

pledgeable net marginal return on investment r̃(τ,X, I1) are respectively defined as

r(τ,X, I1) = ρ− µ− ∂C(X, I1)

∂I1
− τ

∂E(X, I1)

∂I1
,

r̃(τ,X, I1) = θρ− µ− ∂C(X, I1)

∂I1
− τ

∂E(X, I1)

∂I1
.

Assumption 2. Project returns ρ are sufficiently large and pledgeability θ sufficiently

small such that, given a threshold τ̄ ≥ γB,

1. r(τ,X, I1) > 0, ∀X, I1, τ ≤ τ̄ ,

2. r̃(0, X, I1) < 0, ∀X, I1.

The first condition ensures that continuing the project has a positive NPV even in

the bad state with a high social cost of carbon, as long as emissions taxes do not exceed

some threshold τ̄ . Throughout the paper we focus on the interesting case τB ≤ τ̄ , so that

continuation of the project is privately profitable even when emission taxes are high. The

second condition ensures that, while inefficient, liquidations relax financial constraints.

2.1 First-Best Benchmark

Proposition 1. In the first-best allocation I1s = I0, and optimal t = 0 consumption by

borrowers, cb0, and optimal abatement, Xs, are defined by the following conditions:

u′(cb0) = 1,

γs
∂E(Xs, I1s)

∂Xs

= −∂C(Xs, I1s)

∂Xs

.

Proof. See Appendix A.1

In the first-best allocation, the optimal abatement equates the marginal gain from

lower emissions to the marginal cost of abatement. The borrower’s consumption is at

a level that ensures the marginal utility is equalized across agents and time. Crucially,
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there are no liquidations because liquidations are inefficient by Assumption 2.9 The next

section shows that this may be different in the competitive equilibrium, where financially

constrained borrowers may need to liquidate some of their initial investment.

3 Competitive Equilibrium

This section solves the problem of borrowers and defines a competitive equilibrium given a

state-contingent emissions tax τs. We analyze optimal emissions taxes and compare the al-

location to an equilibrium with financial regulation and other policy tools in later sections.

3.1 Borrower Problem

The borrower’s expected utility is given by

E[U b] = u(cb0) +
∑

s∈{G,B}

qs
(
cb1s + cb2s − γusE

a
s

)
.

Borrowers maximize their expected utility subject to the following constraints:

cb0 = A0 − e ≥ 0, (1)

cb1s = (I0 − I1s)µ+ d1s − (I0 − e)− C(Xs, I1s) ≥ 0, (2)

cb2s = R(I1s, E
a
s )− τsE(Xs, I1s)− d1s + Ts ≥ 0, (3)

d1s ≤ θR(I1s, E
a
s )− τsE(Xs, I1s) + ψTs, (4)

I1s ∈ [0, I0]. (5)

Equations (1), (2) and (3) are non-negativity constraints on consumption at t = 0, 1, and

2, respectively. Eq. (4) is a financial constraint that ensures t = 1 borrowing does not ex-

ceed pledgeable income, which implies borrowers have no incentive to abscond at t = 2.10

Throughout the paper, we focus on the case in which optimally d0 < µI0 (which holds as

long as u′(A0 − (1− µ)I0) is not too high), because otherwise borrowers would prefer to

forgo the project and consume all of their initial endowment. This also implies that bor-

rowers have no incentive to default on t = 0 debt at t = 1, as we show in Appendix A.2.2.

9Assuming that liquidations are inefficient allows us to cleanly distinguish between efficient abatement
spending Xs and inefficient liquidations. In reality, a mix of liquidation and abatement may be optimal.

10Eq. (4) is equivalent to an incentive-compatibility condition cb2s ≥ (1− θ)R(I1s, E
a
s ) + (1− ψ)Ts.
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Additionally, we explore regulatory constraints on t = 0 debt in Section 5.

Using the budget constraints to eliminate cb0, c
b
1s, c

b
2s, d0, and d1s, the borrower’s prob-

lem can be formulated as a Lagrange function of e,Xs, I1s with Lagrange multipliers λs for

the t = 1 financial constraint in state s, and κ’s serving as multipliers for lower and upper

bounds on variables. The Lagrangian is formally stated in Eq. (17) in Appendix A.2.1.

3.2 Borrower Decisions at t = 1

At t = 1 borrowers observe the realization of the aggregate state s and the corresponding

tax τs, and then choose Xs and I1s according to the following conditions.

(1 + λs)

(
τs
∂E(Xs, I1s)

∂Xs

+
∂C(Xs, I1s)

∂Xs

)
= 0, (6)

r(τs, Xs, I1s) + λsr̃(τs, Xs, I1s)− κIs + κIs = 0, (7)

λs[θR(I1s, E
a
s )− τsE(Xs, I1s) + ψTs + e− I0 + µ(I0 − I1s)− C(Xs, I1s)] = 0. (8)

The first order condition with respect to Xs in Eq. (6) shows that borrowers choose

abatement trading off a reduction in the emissions tax bill against the cost of abatement.

Eq. (7) is the first order condition with respect to I1s, and it reflects the trade-off between

increasing the private net return and relaxing the financial constraints, captured by r(·)

and λsr̃(·) respectively. Together with Eq. (8), which combines the complementary slack-

ness conditions of the financial constraint (4) and non-negativity constraint of cb1s (2),

these conditions define the optimal state-contingent t = 1 allocations I1s, Xs, and λs for

a given τs and e (the optimality condition for equity is derived below).

Lemma 1. Borrowers do not liquidate any investment if the financial constraint (4) is

slack. That is, if λs = 0, then I1s = I0. In contrast, if λs > 0, then borrowers liquidate

some investment so that I1s < I0.

Proof. In Appendix A.2.3

Lemma 1 follows from Assumption 2, which implies that the net marginal return

is positive and therefore it is optimal to continue the project without any liquidations,

i.e., the optimum is a corner solution with I1s = I0 and κIs > 0. By contrast, if the

financial constraint is binding, λs > 0, the pledgeable income under the full investment

scale is insufficient to support the required borrowing. Since liquidations relax financial
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constraints (by Assumption 2.2), in this case borrowers reduce the investment scale at

t = 1 by choosing I1s < I0.

3.3 Borrower Decisions at t = 0

At t = 0 borrowers decide on their capital structure by choosing the optimal inside equity

e (debt financing follows as the residual d0 = I0 − e). The first order condition of the

borrower’s problem w.r.t. e is given by

u′(A0 − e) =1 + qGλG + qBλB. (9)

Condition (9) shows that borrowers contribute equity trading off the marginal utility cost

of lower t = 0 consumption on the left-hand side against the marginal utility of t = 1

consumption plus the expected shadow cost of the financial constraint on the right-hand

side. The first order conditions and complementary slackness condition together define

the competitive equilibrium:

Definition 2. Given a state-contingent emissions tax τs, the competitive equilibrium

is the set of allocations I∗1s(τs), X
∗
s (τs), λ

∗
s(τs), e

∗(τG, τB), defined by Equations (6), (7),

(8), and (9). Aggregate emissions are given by Ea
s (τs) = E(X∗

s , I
∗
1s). The allocations

cb∗0 (τG, τB), c
b∗
1s(τs), c

b∗
2s(τs), and d

∗
0(τG, τB) follow as residuals from Eqs. (1), (2), (3), and

d0 = I0 − e.

For brevity we sometimes omit the dependence of equilibrium allocations on τs. For

instance, we refer to X∗
s (τs) as X

∗
s , or to e

∗(τG, τB) as e
∗.

3.4 Pigouvian Benchmark

Proposition 2. If λ∗s(γs) = 0, ∀s ∈ {G,B}, then the competitive equilibrium with τs = γs

is equivalent to the first-best allocation.

Proof. With λ∗s(γs) = 0, ∀s ∈ {G,B}, it follows from Lemma 1 that I∗1s = I0. This

investment level, as well as the FOCs of borrowers w.r.t. Xs and e in Eqs. (6) and (9),

are then equivalent to those in the first best given in Proposition 1.

Proposition 2 establishes an important benchmark result. If the financial constraint is

slack in all states, then by Lemma 1 borrowers can avoid inefficient liquidations, and the
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optimal Pigouvian emissions tax can implement the first-best allocation. Accordingly,

throughout we refer to a tax τs = γs ∀s ∈ {B,G} as the Pigouvian benchmark. In the

next section we depart from this benchmark and analyze optimal emissions taxes when

the financial constraint binds.

4 Optimal Carbon Pricing

To analyze optimal emissions taxes in the presence of financial constraints, we consider

the problem of an environmental regulator who sets a state-contingent emissions tax τ ∗s

after observing the social cost of emissions at t = 1. We then show under what conditions

the resulting equilibrium allocation is constrained efficient, and ask whether there is a

case to combine emissions taxes with other policy instruments.

4.1 Socially Optimal Emissions Tax

To derive the optimal τs, we solve the problem of a regulator choosing the optimal tax at

t = 1 so as to maximize social welfare. This problem is formally stated in Appendix A.3.3.

The regulator’s first order condition with respect to τs can be written as:

(τs − γs)
∂E(X∗

s , I
∗
1s)

∂X∗
s

∂X∗
s

∂τs
+ r(γs, X

∗
s , I

∗
1s)
∂I∗1s
∂τs

+ κτs = 0, (10)

where κτs is the Lagrange multiplier on the non-negativity constraint τs ≥ 0.

The regulator trades off the effect of the tax on welfare through its impact on emis-

sions, reflected in the first term in Eq. (10), against the welfare implications of the change

in the final investment scale induced by the tax, captured in the second term of the equa-

tion. In this condition, the final investment scale I∗1s and abatement X∗
s are optimal

choices by private agents that respond to changes in emissions taxes.

4.1.1 The Effect of Taxes on Equilibrium Allocations

Higher emissions taxes increase the cost of polluting, which incentivizes borrowers to

invest more in abatement. But higher emissions taxes also affect the tightness of financial

constraints, which may induce borrowers to abate less. Through this indirect effect,

emissions taxes can have a perverse effect and decrease abatement due to tightening
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financial constraints. To focus on the interesting case in which emissions taxes are a

useful tool to incentivize abatement to begin with, we introduce parameter assumptions

that ensure the direct effect of emissions taxes on abatement dominates.

Assumption 3. Model parameters are such that ∂X∗
s

∂τs
> 0 ∀τs, as characterized in Ap-

pendix A.3.1.

The following Lemma additionally clarifies how liquidations and therefore the equi-

librium investment scale I∗1s responds to emissions taxes.

Lemma 2. If the financial constraint is slack, λ∗s(τs) = 0, then
∂I∗1s
∂τs

= 0 and ∂X∗
s

∂τs
> 0. Un-

der Assumption 3, if λ∗s(τs) > 0, then ∂X∗
s

∂τs
> 0 and there exists a threshold γ̂p(τs) such that

• ∂I∗1s
∂τs

< 0 if γps < γ̂p(τs),

• ∂I∗1s
∂τs

= 0 if γps = γ̂p(τs),

• ∂I∗1s
∂τs

> 0 if γps > γ̂p(τs).

Proof. See Appendix A.3.2

Only if the financial constraint binds, λ∗s(τs) > 0, borrowers need to liquidate invest-

ments to be able to roll-over their debt. Interestingly, higher emissions taxes can result

in more or less liquidations, depending on how strongly asset values are affected by phys-

ical climate risk, as captured by γps . The overall effect of emissions taxes on the final

investment scale follows from totally differentiating (8) with respect to τs:

∂I∗1s
∂τs

=

Direct effect︷ ︸︸ ︷
(1− ψ)E(X∗

s , I
∗
1s)+

Collateral externality︷ ︸︸ ︷
(θγps − ψτs)

∂Ea
s

∂X∗
s

∂X∗
s

∂τ

r̃(τs(1− ψ) + θγps , X∗
s , I

∗
1s)

(11)

This equation highlights that emissions taxes affect the final investment scale via two

channels that operate through financial constraints. First, changes in the tax directly

affect the size of the tax bill and the tax rebate. Since only a fraction ψ of the tax

rebate is pledgeable this direct effect of the emissions tax on the tightness of the financial

constraint is proportional to (1− ψ)E(X∗
s , I

∗
1s).

Second, changes in abatement also affect the aggregate level of emissions, which im-

pact borrowers’ pledgeable income via two collateral externalities. Physical climate risk

represents a negative collateral externality because higher aggregate emissions result in
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larger physical damages to borrowers’ assets, decreasing pledgeable income by θγps . As a

result, higher emissions taxes partly relax financial constraints. At the same time, there is

a positive collateral externality because tax rebates are a function of aggregate emissions.

Lower aggregate emissions reduce the tax rebate, decreasing pledgeable income by ψτs.

Overall, the effect of emissions taxes on financial constraints and liquidations depends

on the relative strength of the direct effect of taxes on pledgeable income, and the indirect

effects due to collateral externalities.11 When borrowers’ exposure to physical climate risk

is low such that γps < γ̂p, the direct effect and tax rebate externality dominate, so that

higher emissions taxes imply tighter constraints and more liquidations. If borrowers’

exposure to physical climate risk is high such that γps > γ̂p, the equilibrium effect of

emissions taxes that lowers the physical risk dominates, so that higher emissions taxes

relax financial constraints and result in fewer liquidations.

4.1.2 Optimal Emissions Tax

Because emissions taxes interact with financial constraints, the regulator considers not

only the direct effect of taxes on emissions, but also their side effect on asset liquidations.

Proposition 3. The optimal emissions tax τ ∗s solves (10). If λ∗s(γs) = 0 or γs = 0,

then τ ∗s = γs. If λ∗s(γs) > 0 and γs > 0, then the optimal tax depends on the strength of

physical risk γps , and on the pledgeability of tax rebates ψ and cash flows θ. If ψ ≥ θ, the

optimal emissions tax is below the direct social cost of emissions: τ ∗s < γs. If ψ < θ, then

• τ ∗s < γs if γ
p
s < γ̂p(τ ∗s ),

• τ ∗s = γs if γ
p
s = γ̂p(τ ∗s ),

• τ ∗s > γs if γ
p
s > γ̂p(τ ∗s ),

where the threshold γ̂p(τ ∗s ) is defined in Lemma 2 (Appendix A.3.2).

Proof. See Appendix A.3.3

With binding financial constraints, λ∗s(γs) > 0, the optimal emissions tax generally

differs from the Pigouvian benchmark equal to the direct social cost of emissions γs.

11Note that, because higher taxes induce an endogenous change in abatement by borrowers, they also
affect abatement costs. On one hand, higher abatement increases abatement costs, tightening financial
constraints. On the other hand, higher abatement reduces emissions and thereby the tax bill, easing
financial constraints. Therefore, an additional term that shows up in the numerator of Eq. (11) is

−
(

∂C(X∗
s ,I

∗
1s)

∂X∗
s

+ τ
∂E(X∗

s ,I
∗
1s)

∂X∗
s

)
∂X∗

s

∂τ . However, by the borrower’s optimal abatement choice in Eq. (6), this

term is equal to zero, so that this channel has no marginal effect on financial constraints and drops out
from Eq. (11).

17



Put differently, in this case optimal emissions taxes differ from the Pigouvian benchmark

because borrowers are “too levered for Pigou”.

To disentangle the results in Proposition 3, we discuss three polar cases: (i) tax

rebates are not pledgeable and physical climate risk has no effect on collateral values

(ψ = γps = 0); (ii) tax rebates are not pledgeable but physical climate risk has an effect

on collateral values (ψ = 0, γps > 0); and (iii) tax rebates are pledgeable and physical

climate risk has an effect on collateral values (ψ > 0, γps > 0).

(i) No physical risk (ψ = γps = 0). With non-pledgeable tax rebates and absent

physical climate risk effects, there is no collateral externality and emissions taxes affect

financial constraints only through their direct effect on pledgeable income. In this case,

higher taxes trigger inefficient liquidations (see Lemma 2). Internalizing this undesired

side effect, an environmental regulator sets an emissions tax below the direct social cost

of emissions, τ ∗s < γs. Intuitively, regulators set a lower carbon tax because they under-

stand that higher taxes constitute a realization of climate transition risk for financially

constrained borrowers.

(ii) Physical risk (ψ = 0, γps > 0). Physical climate risk implies that emissions taxes

affect borrower’s financial constraints not only through their direct effect, but also through

a collateral externality. The relative importance of this effect depends on how strongly

collateral values are exposed to physical climate risk, as measured by γps . If γ
p
s < γ̂p, the

direct effect dominates and the trade-off resembles the one in case (i) above. This case

applies when climate transition risks dominate physical climate risk effects, for example

in economies with large polluting industries. By contrast, if the effect of physical climate

risk on collateral values is sufficiently high such that γps > γ̂p, then higher emissions

taxes ease financial constraints (see Lemma 2). As a result, the trade-offs faced by an

environmental regulator change fundamentally, implying optimal emissions taxes above

the direct social cost of emissions, τ ∗s > γs.
12 Such a case may apply to economies that

are heavily exposed to the risk of weather disasters such as droughts or floodings.

12Simpson (1995) and Heider and Inderst (2022) highlight other reasons why the optimal emissions tax
may be above a Pigouvian benchmark. In Simpson (1995), this is the case if the tax allocates production
from less to more efficient firms in a Cournot competition model. In Heider and Inderst (2022) an
emissions tax above a Pigouvian benchmark can be beneficial because it improves margins earned by
green producers in the product market.

18



(iii) Plegeability (ψ > 0, γps > 0). With (partially) pledgeable tax rebates, the over-

all collateral externality effect of emissions taxes depends not only on the impact due

to physical climate risk, but also due to changes in the size of tax rebates. The latter

represents a positive collateral externality of emissions, thereby counteracting the nega-

tive collateral externality due to physical risk. Which of the two collateral externalities

dominates depends on whether tax rebates or asset returns have a greater pledgeability.

If ψ ≥ θ, tax rebates are more pledgeable than the firm’s asset returns, and the positive

collateral externality due to tax rebates dominates. In this case, optimal emissions taxes

are unambiguously below the direct social cost of emissions, τ ∗s < γs, irrespectively of

the level of γps . By contrast, if ψ < θ the optimal emissions tax may be above the direct

social cost of emissions if γps is sufficiently large, as discussed under case (ii) above.

An interesting implication is that, in economies where firms’ assets have a low pledge-

ability (such as knowledge-based economies with much intangible capital), optimal emis-

sions taxes are lower because the effect of physical risk on collateral values is less relevant

(small θ). Similarly, emissions taxes may be optimally lower in economies where tax

rebates are more pledgeable (large ψ; for example, due to stronger institutions).

Generalized Pigouvian Tax. Previous literature on collateral externalities focuses

primarily on pecuniary externalities, whereby borrowers do not internalize how their

choices affect the financial constraint of other agents through their impact on prices (for

a detailed discussion, see Dávila and Korinek, 2018). By contrast, in our setting collat-

eral extenalities can emerge because agents do not internalize their impact on aggregate

emissions. Consequently, the total social cost of emissions includes not only the direct

social cost of emissions γs, but also the indirect costs due to collateral externalities driven

by physical climate risk, λsθγ
p
s , and the pledgeability of tax rebates, −λsψτs. Therefore,

another useful benchmark to compare the optimal emissions tax to is a generalized Pigou-

vian tax, defined as the emissions tax that equalizes the private cost of emissions τs to

the total social cost of emissions γs + λsθγ
p
s − λsψτs.

Proposition 4. Let the generalized Pigouvian tax be defined as

τGPs =
γs + λ∗sθγ

p
s

1 + ψλ∗s
.

With λ∗s > 0 and γs > 0, the optimal emissions tax is τ ∗s = τGPs if ψ = 1, and τ ∗s < τGPs
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if ψ < 1. With λ∗s = 0 or γs = 0, the optimal emissions tax is τ ∗s = τGPs = γs.

Proof. See Appendix A.3.4

While the optimal emissions tax may be above a standard Pigouvian benchmark equal

to the direct social cost of emissions γs (see Proposition 3), Proposition 4 shows that, if tax

rebates are not fully pledgeable, the optimal emissions tax is always below a generalized

Pigouvian benchmark that accounts for collateral externalities. This highlights that, even

with τ ∗s > γs, the adverse direct effect of emissions taxes on financial constraints can limit

the regulator in setting a tax that accounts for all direct and indirect social costs of emis-

sions. The next subsection shows this has implications for the efficiency of the allocation.

4.2 Efficiency

To evaluate efficiency, we compare the allocation that can be implemented with the

optimal emissions tax τ ∗s to the constrained-efficient allocation in which a social planner

can choose Xs, I1s and e directly, subject to the same resource and financial constraints as

private agents. This constrained-efficient allocation is formally defined and characterized

in Appendix A.3.5.

Proposition 5. If ψ = 1, then the competitive equilibrium with a socially optimal emis-

sions tax equal to the generalized Pigouvian tax τGPs = γs+λ∗sθγ
p
s

1+λ∗s
is constrained efficient.

If ψ < 1 and the financial constraint binds in some state, λ∗s > 0, then the competitive

equilibrium with a socially optimal emissions tax τ ∗s is not constrained efficient.

Proof. See Appendix A.3.5

We show in Appendix A.3.5 how a constrained planner sets the optimal level of abate-

ment trading off direct and indirect social benefits and costs. In contrast to a social

planner, the environmental regulator cannot choose abatement directly, but instead uses

emissions taxes as a policy instrument to incentivize abatement. If tax rebates are fully

pledgeable, the regulator can implement the constrained-efficient abatement level without

introducing additional distortions to the final investment scale by setting the emissions

tax equal to the generalized Pigouvian tax τGPs . However, if tax rebates are not fully

pledgeable, ψ < 1, taxes have a direct adverse effect on financial constraints because

τsE(Xs, I1s) − ψTs > 0, and the regulator needs to set an emissions tax below τGPs (see
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Proposition 4). As a result, emissions taxes can only implement the constrained-efficient

allocation if tax rebates are fully pledgeable.

This result implies that, when ψ < 1, there may be scope to improve welfare by using

policy tools other than carbon taxes. The following subsections discuss two potential

alternatives: a cap-and-trade system with tradable pollution permits (Section 4.3) and

green subsidies (Section 4.4). Since borrowers’ initial leverage directly affects the tightness

of the collateral constraint, ex-ante leverage regulation is another natural candidate policy

we consider in Section 5.

4.3 Cap and Trade

An alternative policy tool that can curb emissions is a cap-and-trade system with a limited

quantity Qs of tradable pollution permits (similar to the EU ETS). Absent other frictions,

such pollution permit markets are equivalent to emissions taxes, and the Coase Theroem

implies that the initial allocation of pollution permits does not affect the equilibrium level

of emissions (see Coase, 1960; Montgomery, 1972). In what follows we show that this is

not necessarily the case in the presence of financial constraints, and explore whether a

cap-and-trade system can achieve higher welfare than emissions taxes.

For each unit of emissions the borrower needs to surrender a permit to the regulator

at t = 2. We assume that a share ϕ of all permits Qs is freely allocated to borrowers

ex-ante, and that the remaining (1−ϕ)Qs permits need to be purchased by the borrower

at the market price ps.
13 Borrowers can trade permits with each other at the market

price ps. Note that with freely allocated permits borrowers retain the same incentives

to invest in abatement because of the opportunity cost of selling unused permits. For

now, the regulator takes the freely allocated share ϕ as given. Later we discuss the

welfare-maximizing level of ϕ.

4.3.1 Mapping Cap-and-Trade to Emissions Taxes

The budget constraints of the borrower and the first order conditions under the cap-and-

trade system are stated in Appendix A.4.1. The FOCs are equivalent to those in the

13To simplify the exposition, we assume here that the proceeds from permit sales accrue to investors.
Internet Appendix IA.2.1 shows that the insights on the sensitivity of welfare to initial allocation of
permits and cap-and-trade being able to implement the constrained efficient allocation hold also when
the permit sale proceeds are distributed back to borrowers lump-sum.
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baseline problem, with ps taking the place of τs. The borrower’s FOC with respect to

abatement determines the relationship between the privately optimal level of abatement

Xs and the permit price ps, and mirrors Eq. (6) of the original problem:

(1 + λs)

(
ps
∂E(Xs, I1s)

∂Xs

+
∂C(Xs, I1s)

∂Xs

)
= 0, (6’)

This condition, together with the market clearing for permits, Qs = Ea
s , jointly determine

a mapping from ps to E
a
s . Thus, the regulator can implement a desired market price of

permits by altering the total quantity of permits. Consequently, we can express the reg-

ulator’s problem as maximizing social welfare by choosing ps in each state s = {B,G}.

Appendix A.4.1 reports the first order condition of the regulator. As in the baseline

setting, the regulator internalizes the effect of the policy on borrowers’ profits and emis-

sions. Comparing the FOCs under the cap-and-trade system with the one in the original

problem yields the following result.

Proposition 6. The allocation implemented with a pollution permit market in which the

quantity of permits is chosen to implement a permit price ps = τs and a fraction ϕ of

permits are allocated freely, is equivalent to the allocation implemented with an emissions

tax τs if the fraction of freely allocated permits is equal to the fraction of tax rebates that

can be pledged, ϕ = ψ.

Proof. See Appendix A.4.1

In both the baseline setting with carbon taxes and the cap-and-trade system the

regulator’s policy amounts to choosing the private marginal cost of emissions represented

either by the tax rate τs or the price of permits ps. The direct effect of the policies on

the financial constraints depend, respectively, on the pledgeability of the tax rebates ψ,

and the share of freely allocated permits ϕ. Pollution permits have a direct effect on

the financial constraint if the borrower needs to purchase some of them ex-ante (i.e. if

1−ϕ > 0). This corresponds to the direct effect of the tax bill on pledgeable income under

emissions taxes. The price of permits also affects the tightness of the financial constraint

through the collateral externalities, which mirror those discussed in Section 4.1.2.

Coasean independence. An implication of the Coase Theorem is that absent other

frictions the initial allocation of the pollution allowances does not affect the equilibrium
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level of externality (see Montgomery, 1972). Proposition 6 combined with our previous

results show that this “Coasean independence” does not hold under financial frictions.14

This result is consistent with recent empirical evidence from the EU ETS that indicates

that Coasen independence holds for large emitters but not for smaller firms (see Zaklan,

2023). As small firms are more likely to be financially constrained, our framework offers

a novel mechanism that may explain these findings.

4.3.2 Free Permits

So far we assumed that the regulator takes the share of freely allocated permits as given.

However, the advantage of using a cap-and-trade system instead of emissions taxes is that

the regulator can choose ϕ optimally. The equivalence result in Proposition 6 implies that

a version of Proposition 5 in which τs = ps and ψ = ϕ holds in the current setting, giving

rise to the following corollary.

Corollary 1. The regulator can implement a constrained-efficient allocation by setting

ϕ = 1 and issuing a quantity of permits that implements a permit price p∗s =
γs+λ∗sθγ

p
s

1+λ∗s
.

The regulator can avoid the problem of the carbon price’s direct effect on borrowers’

financial constraints by allocating all permits for free, i.e., setting ϕ = 1. In this case,

the shadow cost of permits induces borrowers to engage in a constrained-efficient level

of abatement. As in the baseline with ψ = 1, the optimal policy is below the Pigouvian

benchmark p∗s < γs whenever the financial constraint binds (see Proposition 3).

An important policy implication is that a pollution permit market with free allowances

may be a superior policy instrument to carbon taxes in the presence of financial con-

straints. Yet, in practice cap-and-trade systems often do not allocate permits for free.

For example, the EU ETS (the largest emissions permit market in the world), only grants

free allowances equal to a fraction of total emissions, and is gradually reducing the amount

of free allowances over time.15

We acknowledge that there may be considerations outside our model that motivate

these real-life policy choices. For example, it may be difficult for regulators to correctly

14Previous literature points to transaction costs, market power, uncertainty, allowance allocations
being conditioned on past pollution, deviation from cost-minimization by firms, and unequal regulatory
treatment of firms as potential sources of break-down of Coasean independence (Hahn and Stavins, 2011).

15For example, the manufacturing industry received 80% of its allowances for free in 2013. This
proportion had been decreased down to 30% in 2020, see European Commission website.
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allocate free permits if polluters were privately informed about heterogeneous abatement

costs, potentially triggering undesirable distributional consequences. Similarly, deter-

mining the amount of freely allocated permits by past emissions (a policy referred to as

“grandfathering”), may weaken incentives to reduce emissions as firms may want to avoid

a reduction in the amount of freely allocated permits in the future (see Clò, 2010). While

modeling these frictions is beyond the scope of this paper, our results highlight that, when

accounting for these additional forces, regulators should also weigh the adverse impact of

allowance sales on the tightness of financial constraints.

4.4 Green Subsidies

This subsection considers subsidies. We first analyze a non-redistributive emissions-

reductions subsidy financed by lump-sum taxes on borrowers. We then consider subsidies

financed by investors, which constitute a net transfer from investors to borrowers.

4.4.1 Emissions-Reduction Subsidy

We assume that abatement is non-verifiable, reflecting the difficulty in assessing the opti-

mal technological choices for a specific polluter.16 Regulators can nevertheless implicitly

subsidize abatement investments through a subsidy σs per unit of emissions reductions

below a target level Ēs paid at t = 2. For now, suppose the subsidy is financed by lump-

sum taxes levied on borrowers equal to Ts = σs(Ēs − E(Xs, I1s)), so that the subsidy is

not redistributive. The first order condition with respect to Xs in Eq. (6) is equivalent to

the original first order condition (6) with σs taking the place of τs. Thus, setting σs = τs

the subsidy can achieve the same incentive effect as an emissions tax.

What about the effect of the subsidy on financial constraints? To map the subsidy to

the baseline model, we assume that borrowers can abscond with a fraction 1 − ψ of the

subsidy payment. As a result, the complementary slackness condition (8) becomes

λs
[
θR(I1s, E

a
s ) + ψσs(Ēs − E(Xs, I1s))− Ts + e− I0 + µ(I0 − I1s)− C(Xs, I1s)

]
= 0.

16If abatement was verifiable, regulators could implement the constrained-efficient allocation simply
through a minimum abatement requirement at t = 1 (i.e. using quantity- rather than price-based
regulation). Alternatively, the regulator could pay a subsidy on abatement directly to borrowers at t = 1
to avoid the negative direct effect of the policy on financial constrains. This would be akin to assuming
away the contracting frictions, i.e. setting ψ = 1.
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This condition maps to Eq. (8) with ψTs−τsE(Xs, I1s) replaced by ψσs(Ēs−E(Xs, I1s))−

Ts. Both terms are equal to −(1− ψ)Ts in equilibrium. This implies that the same effi-

ciency properties as in the baseline model apply. Notably, Proposition 5 still holds, so that

the allocation is constrained efficient only if the subsidy is fully pledgeable, i.e., if ψ = 1.

4.4.2 Redistributive Subsidies

A subsidy may dominate emissions taxes if it is financed through taxes raised from

investors. In this case, the subsidy constitutes a net transfer Ts = σs(Ēs − E(Xs, I1s))

from unconstrained to constrained agents, and can implement the first-best allocation if

the transfer is sufficiently large to ensure financial constraints are slack in all states.

Even if regulators were unable to set an emissions reduction target (for example, due

to unobserved heterogeneity), a transfer could nevertheless be implemented in a lump-

sum fashion. In this case, a lump-sum transfer Ts needs to be combined with other

carbon pricing policies that incentivize emissions reductions. For example, consider the

baseline model with an emissions tax τs and a generic transfer Ts to borrowers paid at

t = 1, financed by lump-sum taxes from investors. With this transfer the complementary

slackness condition (8) becomes

λs [θR(I1s, E
a
s )− τsE(Xs, I1s) + ψTs + Ts + e− I0 + µ(I0 − I1s)− C(Xs, I1s)] = 0.

Clearly, if Ts is sufficiently large, then the financial constraint becomes slack. As shown

in Proposition 2, this implies that an emissions tax equal to the Pigouvian benchmark

can implement the first best. The need to combine a green subsidy with a carbon tax

to ensure borrowers have incentives to reduce emissions when emission reduction targets

are difficult to establish may be one reason for the simultaneous use of carrots (green

subsidies) and sticks (carbon taxes) often observed in practice.17

5 Leverage Regulation

Given the central role of financial constraints in the model, and motivated by the recent

debate on whether financial regulation should include climate-related goals (for exam-

17This result relates to Acemoglu et al. (2016), who find that it is beneficial to combine subsidies for
green R&D with carbon taxes, in order to increase the productivity of clean technologies. The difference
here is that green subsidies serve the purpose of relaxing financing constraints.
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ple, see Brunnermeier and Landau, 2021), this section introduces leverage regulation

that could complement emissions taxes. We analyze a leverage mandate that fixes the

borrower’s equity contribution at a level ē, which can be implemented through a direct

mandate, or through taxes and subsidies (see Internet Appendix Section IA.2.2). Such

policies could be applied directly to non-financial firms, or introduced into the Basel

regulatory framework if borrowers are interpreted as financial institutions (see Internet

Appendix Section IA.3). To streamline the discussion, we focus on the case in which the

financial constraint binds when s = B and is slack when s = G.

5.1 Optimal Leverage Regulation

We consider the problem of a regulator who sets a leverage mandate ē at t = 0 and state-

contingent emissions taxes τs at t = 1, so as to maximize welfare. That is, we re-consider

the original optimization problem (23) but allow the regulator to also set e = ē at t = 0.

Each of the policy instruments affects a different decision margin. The emissions tax

affects how borrowers trade off abatement and liquidations at t = 1, for a given tightness

of the financial constraint. In contrast, the leverage mandate affects to what extent the

borrower uses t = 0 resources to consume or to relax the t = 1 financial constraints, as

can be seen from the regulator’s first order condition w.r.t. ē (see Appendix A.4.2 for the

derivation):

u′(A0 − ē)− 1 =
∑

s∈{B,G}

qs

[
r(γs, X

∗
s , I

∗
1s)− (γs − τs)

∂E(X∗
s , I

∗
1s)

∂X∗
s

∂X∗
s

∂I∗1s

]
∂I∗1s
∂ē

. (12)

The first order condition trades off the marginal utility of consumption (on the left-

hand side) against the marginal social value of more financial slack at t = 1 (on the right-

hand side). Notice that, by the envelope theorem, the regulator does not consider the ef-

fect of the leverage mandate on the emissions tax because the tax is set optimally at t = 1.

The marginal social value of financial slack consists of the value due to a higher net

return on the project (captured by r(γs, Xs, I1s) in Eq. (12)), and the value due to the

change in aggregate emissions (captured by the remaining terms in the square brackets).

How the optimal leverage mandate ē∗ is set relative to the privately optimal e∗ depends

on whether the social value of financial slack diverges from the private value. While

both the borrower and regulator account for the effect of equity on the pecuniary return
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generated by the project, the social and private value of emissions may differ.

Proposition 7. If in the competitive equilibrium the borrower’s financial constraint is

slack when s = G and binding when s = B, then equity under the optimal leverage

mandate coincides with the borrower’s choice of equity if and only if

dE(X∗
B, I

∗
1B)

dē
[γB − τ ∗B + λB (θγpB − ψτ ∗B)]︸ ︷︷ ︸

T-SCC wedge

= 0. (13)

If ψ < 1 the T-SCC wedge is positive and the optimal leverage mandate ē∗ is

• ē∗ > e∗(τ ∗G, τ
∗
B) if

dE(X∗
B ,I

∗
1B)

dē
< 0,

• ē∗ = e∗(τ ∗G, τ
∗
B) if

dE(X∗
B ,I

∗
1B)

dē
= 0,

• ē∗ < e∗(τ ∗G, τ
∗
B) if

dE(X∗
B ,I

∗
1B)

dē
> 0.

Proof. See Appendix A.4.2

The left-hand side of Eq. (13) measures the gap in the marginal social and private val-

ues of increasing financial slack by contributing more equity. It consists of the marginal

effect of equity on emissions,
dE(X∗

B ,I
∗
1B)

dē
, and a total social cost of carbon (T-SCC) wedge.

The T-SCC wedge reflects the difference between the direct social and private cost of

emissions, γB − τB, as well as the effect of emissions on pledgeable income due to collat-

eral externalities, λB (θγpB − ψτB). From Proposition 4, the optimal emissions tax is equal

to τGPB if ψ = 1, which implies a zero T-SCC wedge and no motive for leverage regulation.

By contrast, if ψ < 1 the optimal emissions tax is below the generalized Pigouvian bench-

mark, so that the T-SCC wedge is positive and leverage regulation can improve welfare.

Whether the level of equity under the optimal leverage mandate is above or below

the level in the competitive equilibrium depends on the effect of borrower equity on emis-

sions. Higher borrower equity loosens financial constraints. This can affect emissions

in two ways. On one hand, it implies more emissions due to a higher final investment

scale. On the other hand, looser financial constraints affect the optimal abatement choice,

which may result in lower emissions. Appendix A.4.2 shows that whether the effect on

abatement dominates depends on the cross-derivatives of the emissions and abatement

functions (it requires abatement to be more efficient at a higher investment scale).

If the effect of equity on abatement dominates, such that
dE(X∗

B ,I
∗
1B)

dē
< 0, then the

socially optimal equity is above the privately optimal level, ē∗ > e∗. By contrast, if
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dE(X∗
B ,I

∗
1B)

dē
> 0, then higher equity implies higher emissions, and the socially optimal

equity level is below a borrower’s optimal choice of equity in the competitive equilibrium,

ē∗ < e∗.18 Note that ē∗ < e∗ may be optimal even though liquidations are inefficient.

This is because the leverage mandate trades off a high marginal utility of consumption

at t = 0 against slackening the financial constraint at t = 1, while the emissions tax

incentivizes the borrower to optimally distribute the available t = 1 resources between

abatement and avoiding liquidations. If
dE(X∗

B ,I
∗
1B)

dē
> 0, then borrowers consume too little

because they under-value the benefit of higher leverage reducing emissions.

5.2 Including Climate Externalities in Financial Regulation

The finding in Proposition 7 that leverage regulation can improve welfare may not seem

surprising given the large body of literature that shows how financial constraints can

motivate financial regulation (for an overview, see Dewatripont and Tirole, 1994). Yet

the following corollary shows that the financial constraint in itself does not motivate

leverage regulation in our model:

Corollary 2. If γus = γps = 0, then ē∗ = e∗ regardless of whether λ∗B = 0 or not.

Proof. Follows from the result in Proposition 3 that τs = 0 if γus = γps = 0, which implies

a zero T-SSC wedge as defined in Proposition 7.

In our setting, there is no benefit to introducing leverage regulation in the absence of

environmental externalities – irrespective of whether the financial constraint binds or not.

This is important because it implies that financial constraints alone are not enough to mo-

tivate leverage regulation in our model. Instead, the motive for implementing a leverage

mandate ē comes from the interaction between environmental externalities and financial

frictions. By showing under what conditions environmental externalities can motivate

leverage regulation in such a setting, the results in Proposition 7 contribute to the debate

on whether environmental externalities should be included in the mandate of financial

regulatory frameworks (also see Dávila and Walther, 2022; Oehmke and Opp, 2022).

18This result mirrors insights in Dávila and Walther (2022) that, with constraints on the regulation
of some externality-generating activity (here abatement), the optimal second-best regulation of other
choices (here leverage) depends on Pigouvian wedges in the constrained regulation and on how the
perfectly regulated choices affect the imperfectly regulated activity.
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Regulatory Pecking Order. From Proposition 5, a necessary condition for leverage

regulation to improve welfare is that environmental regulation alone cannot implement

a constrained-efficient allocation. Emissions taxes can implement constrained efficiency

if tax rebates are fully pledgeable (ψ = 1, see Proposition 5). Alternatively, from Sec-

tion 4.3, a cap-and-trade system can achieve constrained efficiency if permits are allo-

cated for free. Additionally, Proposition 7 highlights that, even if there is a case for

leverage regulation because other policies cannot achieve constrained efficiency, imple-

menting the optimal leverage mandate can be complicated because it may be optimal to

either discourage or encourage higher leverage, depending on the specific features of the

underlying production and abatement technologies. This suggests a “regulatory pecking

order” whereby regulators should first design carbon pricing in a way that minimizes

the adverse effect on financial constraints before resorting to targeting climate-related

objectives using financial regulation.

6 Financial Instruments

In the baseline model borrowers raise financing using short-term debt. This section con-

siders hedging contracts and socially responsible investors. Long-term debt and external

equity financing are covered in the Internet Appendix (Section IA.1).

6.1 Hedging and Climate-Linked Bonds

In this extension we allow fairly-priced hedging contracts that pay hB in the bad state

and hG in the good state. Such contracts can be implemented through carbon price

derivatives, or through state-contingent financing such as “climate linkers” that write off

the principal by hB when carbon taxes (or the social cost of emissions) are high, in return

for an interest payment hG when taxes are low.19 Fair pricing requires that

(1− qB)hG + qBhB = 0. (14)

19Note that the binary risk-structure in the model implies that emissions taxes and the social cost of
emissions are perfectly correlated. Therefore, it makes no difference whether the contracts are contingent
on the social cost of carbon or the carbon tax.
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Using this expression, the problem of borrowers can be expressed in terms of choosing

the optimal hG, while hB follows as hB = − (1−qB)hG
qB

. The borrower’s problem is formally

stated in the Internet Appendix (Section IA.1.1). The first order conditions are the same

as in the baseline model, except for the new first order condition w.r.t. hG, which states

that borrowers equalize the shadow cost of the financial constraints across states:

λG = λB. (15)

This implies that borrowers optimally shift resources from the good, low SCC state to

the bad, high SCC state. If this allows borrowers to ensure that financial constraints are

slack in both states (λG = λB = 0), then a Pigouvian emissions tax τs = γs,∀s ∈ {B,G}

can implement the first-best allocation (see Proposition 2). By allowing firms to hedge

climate-related transition risk, the financial sector can enable efficient emissions taxation

in equilibrium. This result highlights that hedging of climate-related risks may be an

important role the financial sector can play in supporting the transition to a low-carbon

economy, distinct from socially responsible investing that aims to direct firm policies by

taking into account environmental and social factors in investment decisions (e.g., see

Heinkel et al., 2001; Pástor et al., 2021; Oehmke and Opp, 2023). We also contribute to

the nascent debate on climate-linked securities. Our analysis shows that supporting such

markets can allow more efficient environmental policy in equilibrium, thus pointing to

benefits that go beyond the direct risk-sharing and informational gains discussed so far

(see Chikhani and Renne, 2022).

If under optimal hedging λG = λB > 0, then emissions taxes are different from the

Pigouvian benchmark, see Proposition 3. We show in the Internet Appendix that in

this case the efficiency results in Proposition 5 apply, so that emissions taxes alone can

implement a constrained-efficient allocation only if tax rebates are fully pledgeable.

Some degree of hedging climate risks could also be achieved using external equity or

long-term debt. However, we show in the Internet Appendix (Sections IA.1.2 and IA.1.3)

that the risk-sharing benefits are more limited compared to carbon price hedging.
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6.2 Socially Responsible Investing

This subsection introduces socially responsible investors (SRIs). In the spirit of Pástor

et al. (2021), we assume that SRIs have a distaste for providing funding to polluting firms,

which may incentivize emissions reductions by punishing emitters with a higher cost of

funding. For SRIs to have an impact, it must be that borrowers cannot easily substitute

away from SRIs to purely financially-motivated investors. For simplicity, we assume here

that all investors are socially responsible, so that borrowers cannot substitute SRI capital

for cheaper financial capital. This is arguably an extreme case. The main goal of this

section is to show that, even in this case, SRIs may have an adverse effect on emissions

abatement by tightening financial constraints.20

We assume that SRIs derive negative utility proportional to the emissions generated by

the firm they provide funding to, weighted by a preference parameter ω (see Internet Ap-

pendix Section IA.1.4 for a formal statement of investors’ preferences). SRIs’ break-even

requires that d1 = r1d1−ωE(Xs, I1s), where r1 is the gross interest rate that compensates

SRIs for their disutility from investing in a polluting firm. The borrower’s problem now

yields the following FOC for abatement and complementary slackness condition:

(1 + λs)

[
(τs + ω)

∂E(Xs, I1s)

∂Xs

+
∂C(Xs, I1s)

∂Xs

]
= 0, (6”)

λs[θR(I1s, E
a
s )− (τs + ω)E(Xs, I1s) + ψTs − d0 + µ(I0 − I1s)− C(Xs, I1s)] = 0. (8”)

These correspond to the original conditions (6) and (8), with τs + ω taking the place of

τs. Eq. (6”) captures the incentive effect of SRIs on abatement that comes from charging

firms a premium on their financing cost proportional to emissions. This incentive effect

works in the same way as an emissions tax.

A critical difference between the tax and the SRI premium is the effect on financial con-

straints, as seen in the complementary slackness condition (8”). The disutility SRIs derive

from lending to polluters tightens the constraint by ωE(Xs, I1s). By contrast, the effect

20This insight would continue to hold as long as borrowers cannot perfectly substitute away SRI fund-
ing. Oehmke and Opp (2023) show that SRIs can achieve impact even when purely financially-motivated
capital is abundant. A necessary condition is that investors are consequentialists who care about emis-
sions no matter where they are produced, rather than only about the emissions they are directly respon-
sible for. Considering consequentialist SRIs would require analyzing how they internalize their effect on
equilibrium environmental policy, which is beyond the scope of this paper. The SRI preferences here
resemble preferences for value-alignment, consistent with experimental evidence in Bonnefon et al. (2019).

31



of the emissions tax on the financial constraint is (partially) offset by the tax rebate Ts.

Corollary 3. If socially responsible investors derive a disutility ω > 0 from the emissions

of firms they invest in, abatement and liquidations in the laissez-faire allocation (without

emissions taxes) are equivalent to those in the baseline model without socially responsible

investors but with a carbon tax τs = ω and non-pledgeable tax rebates, ψ = 0.

This implies that taxes and SRI premiums are imperfect substitutes in incentivizing

borrowers to abate. In fact, the presence of SRIs may worsen the trade-offs faced by a

regulator setting emissions taxes due to the tightening of borrowers’ financial constraints.

7 Conclusion

This paper provides an analytical framework to shed light on how to design and combine

carbon pricing with other regulatory tools when firms are subject to financial constraints.

We find that emissions taxes alone can only implement a constrained-efficient allocation

if tax rebates are fully pledgeable. Otherwise, welfare can be improved by replacing emis-

sions taxes with a cap-and-trade system with ex-ante freely allocated pollution permits,

or by complementing carbon taxes with leverage regulation. Fostering financial markets

that allow firms to hedge regulatory risk, such as carbon-price derivatives or climate-

linked bonds, can improve equilibrium climate policies by enabling firms to shoulder

higher carbon taxes.

Another important insight is that physical climate risks give rise to a collateral ex-

ternality that affects how emissions taxes interact with financial constraints. Higher

emissions taxes tighten financial constraints if borrowers have carbon-emitting assets,

but emissions taxes can ease financial constraints if they have a positive effect on the col-

lateral value of assets exposed to physical climate risk. Optimal emissions pricing needs

to account for climate-induced collateral externalities, and thus may be either above or

below a Pigouvian benchmark rate equal to the direct social cost of emissions.
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A Appendix

To simplify the notation in parts of the Appendix we use the following definition

N(Xs, I1s, τs) = −τsE(Xs, I1s)− C(Xs, I1s). (16)

To make the expressions more legible we sometimes use the following shorthand notation:

F (X∗
s , I

∗
1s) = F , F ′

X = ∂F (Xs,I1s)
∂Xs

, F ′
I =

∂F (Xs,I1s)
∂I1s

for F = E and F = C. Similarly, we use

N ′′
XI =

∂2N(Xs,I1s,τs)
∂Xs∂Is

.

A.1 First Best (Proof of Proposition 1)

This appendix proofs Proposition 1. The first-best allocation maximizes social welfare

defined as W = U i + U b, subject to aggregate resource constraints at t = 0 and t = 1, 2

in each state s, respectively:

cb0 + ci0 = Ab0 + Ai0 − I0

cb1s + ci1s + C(Xs, I1s) = Ai1 + µ(I0 − I1s)

cb2s + ci2s = R(I1s, E
a
s ) = ρI1s − γsE(Xs, I1s)

Using the resources constraints to eliminate ci0, c
i
1s, c

i
2s, c

b
1s, c

b
2s, the problem can be written

as the following Lagrangian:

max
cb0,I1s,Xs

L = u(cb0) + Ab0 + Ai0 + Ai1 − I0 − cb0

+
∑

s∈{G,B}

qs [µ(I0 − I1s)− C(Xs, I1s) + ρI1s − γsE(Xs, I1s) + κIs(I0 − I1s)] ,

with κ̄Is the Lagrange multiplier on the constraint that I1s ≤ I0. The FOC’s with respect

to cb0, X1s, and I1s are, respectively:

u′(cb0) = 1,

γs
∂E(Xs, I1s)

∂X1s

+
∂C(Xs, I1s)

∂X1s

= 0,

ρ− µ− γs
∂E(Xs, I1s)

∂I1s
− ∂C(Xs, I1s)

∂I1s
− κ̄I1s = 0.
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The first two conditions are the ones stated in Proposition 1. The third condition can be

used to show that κ̄Is > 0, which implies that I1s = I0 as stated in Proposition 1. To see

this, recall that by Assumption 2.1 liquidations are privately inefficient for any τ ≤ τ̄ ,

with τ̄ > γB. This implies that

r(γB, X, I1) = ρ− µ− ∂C(X, I1)

∂I1
− γB

∂E(X, I1)

∂I1
> 0

Hence, the planner’s first order condition w.r.t. I1s can only be satisfied if κ̄Is > 0, which

implies that I1s = I0 in the first-best allocation.

A.2 Competitive Equilibrium

A.2.1 Borrower’s Lagrangian

This appendix formally states the Lagrangian for the borrower’s problem in Section 3.1,

from which the first order conditions in Section 3.2 are derived.

Since u′(0) = ∞ it must be that cb0 > 0. Additionally, the financial constraint

(4) implies cb2s > 0, so that the non-negativity constraint (3) never binds. Thus, after

eliminating cb0, c
b
1s, and c

b
2s using Eqs. (1), (2), and (3), the problem of borrowers can be

stated as:

max
Xs,I1s,d1s,e

L = u(A0 − e)

+
∑

s∈{G,B}

qs [µ(I0 − I1s) + e− I0 − C(Xs, I1s) +R(I1s, E
a
s )− τsE(Xs, I1s) + Ts]

+
∑

s∈{G,B}

qs {λs [θR(I1s, Ea
s )− τsE(Xs, I1s) + ψTs − d1s] + κIsI1s + κIs[I0 − I1s]}

+
∑

s∈{G,B}

qsκc1s [d1s + µ(I0 − I1s) + e− I0 − C(Xs, I1s)] ,

(17)

The first order condition w.r.t. d1s implies that λ1s = κc1s . The remaining FOC’s of the

problem are given in Section 3.2.

A.2.2 Limit on t = 0 Borrowing

This appendix shows that borrowers have no incentive to default on t = 0 debt at t = 1.

Throughout the paper we focus on the parameter ranges in which the optimal initial debt
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is such that d∗0 < µI0, because otherwise borrowers would forgo the project.

To see this, in a first step, note that if the borrower defaults at t = 1, investors lending

at t = 0 can force (partial) liquidation of the project and seize the liquidation proceeds

µ(I0 − I1s). This implies that the maximum amount investors can obtain is µI0, which is

what they receive when forcing full liquidation, I1s = 0. Could borrowers instead repay

d0 by raising new debt d1? No, because by Assumption 2.2, pledgeable income at t = 1

decreases in I1s and is maximized at µI0 when I1s = 0. Consequently, investors are willing

to lend at most µI0 at t = 0, i.e., borrowing is subject to the constraint d0 ≤ µI0.

Would borrowers want to borrow to the point where this constraint just binds, d0 =

µI0? In this case, investors would force liquidation at t = 1 to recoup their initial

debt because µI0 is the highest pledgeable income. Thus, borrower utility is given by

u(A0− I0(1−µ)). But this is dominated by forgoing the project and fully consuming the

endowment at t = 0, which gives the borrower u(A0). Therefore, borrowers would always

forgo the project if the optimal d∗0 ≥ µI0, motivating our focus on the case d∗0 < µI0.

Finally, note that with d0 < µI0 the borrower has no incentive to default on t = 0 debt

at t = 1. If the borrower defaults, investors force liquidation to the point where they fully

recoup their investment, µ(I0 − I1) = d0. The borrower can then decide to continue the

project, choose Xs, I1s, and d1s subject to the constraints listed in the baseline problem

and the additional constraint d0 = µ(I0 − I1). The presence of an additional constraint

implies that defaulting is weakly dominated by repaying d0 at t = 1.

A.2.3 Proof of Lemma 1

With a slack financial constraint, Equation (7) evaluated at λs = 0 is r(τs, Xs, I1s) −

κIs + κIs = 0. By Assumption 2.1 we have that r(τs, Xs, I1s) > 0, which implies that the

solution requires κIs > 0 (i.e., I0 = I∗1s).

With a binding financial constraint, the complementary slackness condition (8) can

be reformulated as

λsS(τs, Xs, I1s, e) = 0, (8’)

where S(τs, Xs, I1s, e) collects the terms in square brackets in Eq. (7). By Assumption 2.2,

liquidating investments eases financial constraints, so ∂S
∂I1s

< 0. If S(τs, Xs, I1s = I0, e) <
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0, the financial constraints binds, λs > 0. In this case, the complementary slackness

condition (8’) requires that borrowers choose I∗1s s.t. S(τs, Xs, I
∗
1s, e) = 0. Thus, if λs > 0

it must be that I∗1s < I0 and κIs = 0.

A.3 Optimal Policy

A.3.1 Characterization of Assumption 3

This appendix characterizes parameter conditions under which ∂X∗
s

∂τs
> 0 ∀τs. Totally

differentiating Eq. (6) with respect to τs allows us to find ∂X∗
s

∂τs
:

∂X∗
s

∂τs
=

∂E(X∗
s ,I

∗
1s)

∂X∗
s

− ∂2N(X∗
s ,I

∗
1s,τs)

∂X∗
s ∂I

∗
1s

∂I∗1s
∂τs

−∂2C(X∗
s ,I

∗
1s)

∂(X∗
s )

2

(18)

where we use definition of N(Xs, I1s, τs) from Eq. (16) and that ∂2E(X,I1)
(∂X)2

= 0 by Assump-

tion 1.3. Next we evaluate whether this derivative is positive.

If the financial constraint is slack, λ∗s(τs, ē) = 0, then I∗1s = I0, so that
∂I∗1s
∂τs

= 0.

Together with the fact that ∂2C(X,I1)
∂X2 > 0 by Assumption 1, this implies ∂X∗

s

∂τs
> 0 in this

case (without further parameter conditions).

If the financial constraint is binding, λ∗s(τs, ē) > 0, the sign of ∂X∗
s

∂τs
is less straightfor-

ward. In this case,
∂I∗1s
∂τs

follows from totally differentiating Eq. (8) with respect to τs:

∂I∗1s
∂τs

=
(1− ψ)E(X∗

s , I
∗
1s)− (ψτs − θγps )

∂E(X∗
s ,I

∗
1s)

∂X∗
s

∂X∗
s

∂τ

r̃(τs(1− ψ) + θγps , X∗
s , I

∗
1s)

(19)

We combine (18) and (19) to isolate the terms
∂I∗1s
∂τs

and ∂X∗
s

∂τs
:

∂I∗1s
∂τs

=
(1− ψ)EC ′′

X2 + (ψτs − θγps )(E
′
X)

2

r̃(τs(1− ψ) + θγps , X∗
s , I

∗
1s))C

′′
X2 + (ψτs − θγps )E ′

XN
′′
XI

, (20)

∂X∗
s

∂τs
=

(1− ψ)EN ′′
XI − r̃(τs(1− ψ) + θγps , X

∗
s , I

∗
1s))E

′
X

r̃(τs(1− ψ) + θγps , X∗
s , I

∗
1s))C

′′
X2 + (ψτs − θγps )E ′

XN
′′
XI

, (21)

where we simplified the expressions using the shorthand notation for E ′
X , C

′
X , N

′′
XI , etc.,

introduced at the beginning of the Appendix.

Assumption 3 requires the model parameters to be such that ∂X∗
s

∂τs
> 0. This holds if

the numerator and denominator of (21) have the same sign. While it is not possible to

provide explicit parameter conditions under which this is always the case, it can easily
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be seen that the denominator of (21) is negative if ψ = 0 and γps = 0, because C ′′
X2 > 0

and r̃(τs, X
∗
s , I

∗
1s) < 0 by Assumptions 1.3 and 2.2 respectively. Therefore, we focus on

parameter ranges such that both the denominator and the numerator of (21) are negative.

This implicitly defines the parameters required for Assumption 3.

To further characterize the conditions for Assumption 3, note the denominator is

negative if and only if r̃(τs(1 − ψ) + θγps , X
∗
s , I

∗
1s)C

′′
X2 < −(ψτs − θγps )N

′′
XIE

′
X . For the

numerator, we can use Definition 1 to expand r̃(τs(1−ψ)+θγps , X∗
s , I

∗
1s) = r̃(θγps , X

∗
s , I

∗
1s)−

(1−ψ)τsE
′
I . Using this in the numerator of (21), we can see that it is negative whenever

r̃(θγps , X
∗
s , I

∗
1s)E

′
X > (1 − ψ)(τsE

′
IE

′
X + EN ′′

XI). This condition is satisfied whenever

ψ = 1, using Assumption 2.2. Since the RHS of this inequality is monotone in ψ,

the numerator of (21) is negative for any ψ if the inequality holds for ψ = 0, i.e. if

r̃(θγp, X∗
s , I

∗
1s)E

′
X > τsE

′
IE

′
X + EN ′′

XI .

Thus, Assumption 3 can be restated as ∀X∗
s (τs), I

∗
1s(τs), τs < τ̄ :

• r̃(θγps , X
∗
s , I

∗
1s)

∂E(X∗
s ,I

∗
1s)

∂X∗
s

> τs
∂E(X∗

s ,I
∗
1s)

∂X∗
s

∂E(X∗
s ,I

∗
1s)

∂I∗1s
+ E(X∗

s , I
∗
1s)

∂2N(X∗
s ,I

∗
1s,τs)

∂X∗
s ∂I

∗
1s

• r̃(τs(1− ψ) + θγps , X
∗
s , I

∗
1s)

∂2C(X∗
s ,I

∗
1s)

∂(X∗)2
< −(ψτs − θγps )

∂2N(X∗
s ,I

∗
1s,τs)

∂X∗
s ∂I

∗
1s

∂E(X∗
s ,I

∗
1s)

∂X∗
s

A.3.2 Proof of Lemma 2

The derivative
∂I∗1s
∂τs

is defined in Eq. (20). The denominator of (20) is the same as that

of ∂X∗

∂τs
, i.e. negative under Assumption 3. Lemma 2 follows from observing that the

numerator of Eq. (20) is negative if γps > γ̂p(τs) and positive if γps < γ̂p(τs), where

γ̂p(τs) ≡
ψ

θ
τs +

(1− ψ)E(X∗
s , I

∗
1s)

∂2C(X∗
s ,I

∗
1s)

(∂Xs)2

θ
(
∂E(Xs,I∗1s)

∂Xs

)2 (22)

A.3.3 Proof of Proposition 3

The regulator’s problem is to set the emissions tax τs so as to maximize welfare at t = 1

W1s = ci1s + ci2s + cb1s + cb2s − 2γusE
a
s , subject to the non-negativity constraint on τs. We

eliminate cb1s, and cb2s using Eqs. (2) and (3), and substitute ci1s = Ai1 + d1s − d0, and

ci2s = d1s, to write the regulator’s problem as the following Lagrangian:

max
τs

ρI∗1s + µ(I0 − I∗1s)− γsE(X
∗
s , I

∗
1s)− C(X∗

s , I
∗
1s) + κτsτs. (23)
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The first order condition with respect to τs is given by:

(
γs
∂E(Xs, I1s)

∂Xs

+
∂C(Xs, I1s)

∂Xs

)
∂X∗

s

∂τs
=

(
ρ− µ− γs

∂E(Xs, I1s)

∂I1s
− ∂C(Xs, I1s)

∂I1s

)
∂I∗1s
∂τs

+ κτs

Using (6) and the definition of r(τ,X, I1) the FOC above simplifies to (10). In Eq. (10),

the term
∂E(X∗

s ,I
∗
1s)

∂X∗
s

∂X∗
s

∂τs
< 0 under Assumptions 1 and 3, while r(γs, Xs, I1s) > 0 by

Assumption 2. Consequently, for Eq. (10) to hold the optimal tax must be:

• lower than the direct social cost of carbon τs < γs if
∂I∗1s
∂τs

< 0 and γs > 0

• equal to the direct social cost of carbon τs = γs if
∂I∗1s
∂τs

= 0 or if
∂I∗1s
∂τs

< 0 and γs = 0

• higher than the direct social cost of carbon τs > γs if
∂I∗1s
∂τs

> 0

The result in Proposition 3 in terms of the threshold γ̂p(τs) follows from using Lemma 2

to determine the sign of
∂I∗1s
∂τs

and noting that if γs = 0 then γps = 0 ≤ γ̂p(τs) so
∂I∗1s
∂τs

< 0.

A.3.4 Proof of Proposition 4

Using Eq. (11) in Eq. (10) and simplifying yields the following condition characterizing

the optimal emissions tax:

r(γs, X
∗
s , I

∗
1s)(1− ψ)E(X∗

s , I
∗
1s) + κτs r̃(τs(1− ψ) + θγps , X

∗
s , I

∗
1s) =

[γs − τs + λ∗s(θγ
p
s − ψτs)]

∂E(X∗
s , I

∗
1s)

∂X∗
s

∂X∗
s

∂τs
r̃(τs, X

∗
s , I

∗
1s)

(24)

The RHS of Eq. (24) is zero if τs = τGPs ≡ γs+λ∗sθγ
p
s

1+ψλ∗s
. The RHS is positive whenever

τs < τGPs , since ∂E(Xs,I1,s)

∂Xs
< 0, r̃(τs, X

∗
s , I

∗
1s) < 0 and ∂X∗

s

∂τs
> 0 under Assumptions 1.1, 2.2

and 3 respectively.

In the interior solution, κτs = 0 and τs > 0. If ψ = 1, then the LHS of (24) is

equal to zero, so the optimal emissions tax must be τs = τGPs . If ψ < 1, then the LHS is

positive, so the optimal emissions tax must satisfy τs < τGPs .

In the corner solution, κτs > 0 and τs = 0. Proposition 3 implies that if γs = 0,

then τ ∗s = 0. Evaluating τGPs at γs = 0 yields τGPs (γs = 0) = 0. To complete the proof

we also need to consider the case when τ ∗s = 0 while γs > 0.

We first show that this can only happen if ψ < 1. We do it in two steps: (i) show that

if ψ = 1 and γs > 0, then τ ∗s = 0 cannot be an equilibrium and (ii) show that if ψ < 1

and γs > 0, then τ ∗s = 0 is a feasible equilibrium. Then we show that when ψ < 1 and

γs > 0, the equilibrium tax satisfies τ ∗s < τGPs as stated in the Proposition 4 (iii).
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(i) Notice that when τs = 0 and γs > 0, then the RHS of Eq. (24) is positive. If ψ = 1,

the LHS of Eq. (24) is weakly negative, since r̃(τs(1−ψ) + θγps , X
∗
s , I

∗
1s) < 0 and κτs ≥ 0.

Thus, if ψ = 1 and γs > 0, τ ∗s = 0 cannot be an equilibrium.

(ii) If ψ < 1, the LHS of Eq. (24) can take any sign, depending on the relative size of κτs .

Since the RHS of Eq. (24) is positive whenever τ ∗s = 0 < γs, such equilibrium is feasible.

(iii) Since τGPs (γs) > 0 ∀ γs > 0, it follows that τ ∗s = 0 < γs when ψ < 1 is consistent

with τ ∗s < τGPs

A.3.5 Proof of Proposition 5

We define the constrained-efficient allocation in which a social planner can choose Xs, I1s

and e directly without any policy instruments, but subject to the same constraints as

private agents. We eliminate cb0, c
b
1s, and cb2s using Eqs. (1), (2), and (3), and use ci0 =

Ai0−d0, ci1s = Ai1+d1s−d0, and ci2s = d1s, to write the planner’s problem as the following

Lagrangian:

max
Xs,I1s,e

L = u(A0 − e) + e− I0 + Ai0 + Ai1

+
∑

s∈{B,G}

qs {R(I1s, Ea
s ) + µ(I0 − I1s)− γusE(Xs, I1s)− C(Xs, I1s)}

+
∑

s∈{B,G}

qs
{
λSPs [θR(I1s, E

a
s ) + µ(I0 − I1s)− C(Xs, I1s) + e− I0]

+
[
κSPIs I1s + κSPIs (I0 − I1s)

]}
.

(25)

The constrained-efficient levels of ISP1s , X
SP
s , λSPs , eSP are pinned down by the FOCs with

respect to Xs, I1s, and e and the complementary slackness condition:

−(γs + λSPs θγps )
∂E(Xs, I1s)

∂Xs

− (1 + λSPs )
∂C(Xs, I1s)

∂Xs

= 0, (26)

r(γs, Xs, I1s) + λSPs r̃(θγps , Xs, I1s) + κSPIs − κSPIs = 0, (27)

−u′(A0 − e) + 1 + qGλ
SP
G + qBλ

SP
B = 0, (28)

λSPs [θR(I1s, E
a
s ) + µ(I0 − I1s)− C(Xs, I1s) + e− I0] = 0. (29)

To check whether the equilibrium is constrained efficient, we compare the planner’s

FOCs to the borrowers FOCs (6), (7), (9), and the complementary slackness condition

(8). The equilibrium is constrained efficient if and only if X∗
s (τ

∗
s ) = XSP

s , I∗1s(τ
∗
s ) = ISP1s ,
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e∗(τ ∗G, τ
∗
B) = eSP and λ∗s(τ

∗
s ) = λSPs . This is the case if (6) is equivalent to (26), (7)

is equivalent to (27), (9) is equivalent to (28), and (8) is equivalent to (29). To check

whether this is the case, we postulate thatX∗
s (τ

∗
s ) = XSP

s , I∗1s(τ
∗
s ) = ISP1s , e∗(τ ∗G, τ

∗
B) = eSP

and λ∗s(τ
∗
s ) = λSPs , and verify that each of the borrower-planner FOC pairs are equivalent

given τ ∗s ∀s defined in Proposition 4.

Case ψ < 1.

• If (29) is satisfied at XSP
s = X∗

s , I
SP
1s = I∗1s, e

SP = e∗ for all s, then (8) is satisfied

if and only if τ ∗sE(X
∗
s , I

∗
1s)− ψT ∗

s = 0 for all s. This is the case only if τ ∗s = 0 and

T ∗
s = 0 for all s.

• If ISP1s = I∗1s, e
SP = e∗, then (26) is equivalent to (6) if and only if τ ∗s = γs+λSP

s θγps
1+λSP

s
≡

τSPs .

Thus, for XSP
s = X∗

s , I
SP
1s = I∗1s, e

SP = e∗ and (29) to be equivalent to (8) for all s it must

be that τSPs = 0 for all s, which is the case only if γs = 0 for all s. Since γB > 0, this

does not hold, hence if ψ < 1, the competitive equilibrium is not constrained efficient.

Case ψ = 1. We proceed in four steps:

1. (8) & (29): When ψ = 1, then −τ ∗sE(X∗
s , I

∗
1s) + ψT ∗

s = 0. This implies (8) is

equivalent to (29).

2. (6) & (26): The two conditions are equivalent if τ ∗s = γs+λSP
s θγps

1+λSP
s

≡ τSPs . Propo-

sition 4 implies the optimal emissions tax is given by τ ∗s = τGPs = γs+λ∗sθγ
p
s

1+λ∗s
when

ψ = 1. This implies that τ ∗s = τSPs whenever λ∗s(τ
∗
s ) = λSPs . We show that this

holds below.

3. (9) & (28): the two conditions are equivalent whenever λ∗s(τ
∗
s ) = λSPs . Below we

show that this holds at τ ∗s = τSPs .

4. (7) & (27): in the interior solution for I1s the two conditions are equivalent if and

only if λSPs = − r(γs,XSP
s ,ISP

1s )

r̃(θγps ,XSP
s ,ISP

1s )
= − r(τ∗s ,X

∗
s ,I

∗
1s)

r̃(τSP
s ,X∗

s ,I
∗
1s)

= λ∗s(τ
∗
s ).

Verifying that λSPs = λ∗s(τ
∗
s ) at τ

∗
s = τSPs also establishes that (6) is equivalent to

(26) (see step 2), and (9) is equivalent to (28) (see step 3).

To verify that λ∗s(τ
SP
s ) = λSPs , we first find τSPs and then plug it into borrower’s FOC (7)

to find λ∗s(τ
SP
s ).
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In the interior solution I1s > 0, (27) implies that λSPs =
r(γs,XSP

s ,ISP
1s )

r̃(θγps ,XSP
s ,ISP

1s )
, using this in

the expression for τSPs yields:

τSPs =
γsr̃(θγ

p
s , X

SP
s , ISP1s ))− θγpsr(γs, X

SP
s , ISP1s ))

r̃(θγps , XSP
s , ISP1s ))− r(γs, XSP

s , ISP1s ))
=
ρθ(γs − γps )− w(γs − θγps )

ρ(θs − 1)− (θγps − γs)E ′
I

(30)

where the last step simplifies the expression by substituting w =
∂C(XSP

s ,ISP
1s )

∂ISP
1s

+ µ and

E ′
I =

∂E(XSP
s ,ISP

1s )

∂ISP
1s

.

Using the expression for τSPs in (9) to find λ∗s(τ
SP
s ) :

λ∗s(τ
SP
s ) = −r(τ

SP
s , X∗

s , I
∗
1s)

r̃(τSPs , X∗
s , I

∗
1s)

= − ρ− w − τSPs E ′
I

θρ− w − τSPs E ′
I

= − ρ2(θ − 1)− ρ(θγp − γ)E ′
I − wρ(θ − 1) + w(θγp − γ)E ′

I − ρθ(γ − γp)E ′
I + w(γ − θγp)E ′

I

θρ2(θ − 1)− θρ(θγp − γ)E ′
I − wρ(θ − 1) + w(θγp − γ)E ′

I − ρθ(γ − γp)E ′
I + w(γ − θγp)E ′

I

= − ρ2(θ − 1)− wρ(θ − 1)− ργs(θ − 1)E ′
I

θρ2(θ − 1)− wρ(θ − 1)− ρθγps (θ − 1)E ′
I

= − ρ− w − γsE
′
I

θρ− w − θγpsE ′
I

= − r(γs, X
SP
s , ISP1s )

r̃(θγps , XSP
s , ISP1s )

= λSPs

where we use that X∗
s = XSP

s , I∗1s = ISP1s and the last step follows from the definition of

λSPs for the interior solution of I1s in Eq. (27). This completes the proof that λ∗s(τ
SP
s ) =

λSPs for the interior solution I1s > 0.

In the corner solution with full liquidations I∗1s = ISP1s = 0, so the complementary

slackness conditions (8) and (29) pin down e∗ = I0(1−µ) and eSP = I0(1−µ) respectively.

Notice that if the investment is in the corner solution in state s, it must be in the interior

solution in state −s, as otherwise borrowers would be better off not initiating the project

at t = 0. But we already show above that in the interior solution λ∗−s(τ
SP
s ) = τSP−s . Using

this together with e∗ = I0(1−µ) in (9) and eSP = I0(1−µ) in (28), implies that λ∗s = λSPs .

Thus, if I∗1s = ISP1s = 0, then e∗ = eSP and X∗
s = XSP

s , so the equilibrium is constrained

efficient.

A.4 Other Policies

A.4.1 Cap-and-Trade

This appendix derives the borrower’s problem under the cap-and-trade system laid out

in Section 4.3, and derives the optimal permit price. We assume here that the proceeds

from the sale of permits are distributed to investors (Internet Appendix IA.2.1 shows

that the insights on implementing the constrained efficient allocation are robust if sale

44



proceeds are distributed to borrowers, instead). The budget constraints of the borrower

under the pollution trading scheme are:

cb1s = µ(I0 − I1s) + d1s + e− I0 − C(Xs, I1s) ≥ 0, (2’)

cb2s = R(I1s, E
a
s )− (1− ϕ)Qsps + ps(Qs − E(Xs, I1s))− d1s ≥ 0, (3’)

d1s ≤ θR(I1s, E
a
s ). (4’)

The borrower’s problem is analogous to the one with emissions taxes, but with the pol-

lution permit price ps taking the place of the tax τs, as shown in the budget constraints

above. The FOCs and the complementary slackness condition are:

(1 + λs)

(
ps
∂E(Xs, I1s)

∂Xs

+
∂C(Xs, I1s)

∂Xs

)
= 0, (6’)

ρ(1 + λsθ)− (1 + λs)

[
µ+

∂C(Xs, I1s)

∂I1s
+ ps

∂E(Xs, I1s)

∂I1s

]
− κIs + κIs = 0, (7’)

u′(A0 − e)− 1− (1− q)λG − qλB = 0, (9’)

λ[θR(I1s, E
a
s ) + I0 + µ(I0 − I1s) + e− C(Xs, I1s) + ps(ϕQs − E(Xs, I1s))] = 0. (8’)

Regulator Problem. The regulator sets the amount of emissions Qs. Condition (6’),

together with the market clearing for permits, Qs = Ea
s , jointly determine a mapping

from ps to E
a
s . Thus, the regulator can implement a desired market price of permits by

altering the total quantity of permits. Consequently, we can solve the regulator’s problem

as maximizing social welfare at t = 1 by choosing ps in each state s = {B,G}, analogous

to the regulator problem with emission taxes in Eq. (23). The first order condition of the

regulator is:

r(γs, X
∗
s , I

∗
1s)
∂I∗1s
∂ps

− (γs − ps)
∂E(X∗

s , I
∗
1s)

∂X∗
s

∂X∗
s

∂ps
+ κp = 0 (10’)

To find ∂X∗
s

∂ps
, we take a total derivative of (6’) with respect to ps. This yields:

∂X∗
s

∂ps
=

∂E(X∗
s ,I

∗
1s)

∂X∗
s

− ∂2N(X∗
s ,I

∗
1s,ps)

∂X∗
s ∂I

∗
1s

∂I∗1s
∂ps

∂2C(X∗
s ,I

∗
1s)

∂(X∗
s )

2

(18’)
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To find
∂I∗1s
∂ps

take a total derivative of (8’) with respect to ps, keeping in mind that

ϕQs = ϕEa
s .

∂I∗1s
∂ps

=
(1− ϕ)E(X∗

s , I
∗
1s)− (ϕps − θγps )

∂E(X∗
s ,I

∗
1s)

∂X∗
s

∂X∗
s

∂ps

r̃(ps(1− ϕ)− θγps , X∗
s , I

∗
1s)

(19’)

We define ∂X∗
s

∂τs
= gX(τs, ψ) and

∂I∗1s
∂τs

= gI(τs, ψ). Comparing (18) with (18’) and (19) with

(19’), it is straightforward that ∂X∗
s

∂ps
= gX(ps, ϕ) and

∂I∗1s
∂ps

= gI(ps, ϕ). Thus, the first order

condition of the regulator’s problem in the baseline model (10) is equivalent to the first

order condition of the problem of choosing Qs to implement ps taking as given ϕ, given

by (10’). The two problems are exactly the same if ψ = ϕ. This proofs the statement in

Proposition 6.

A.4.2 Leverage Regulation (Proof of Proposition 7)

Consider the problem of a regulator who maximizes social welfare by choosing ē at t = 0

and τs at t = 1. The first order condition with respect to τs is given by Eq. (10). The

first order conditions of the regulator with respect to ē is:

u′(A0 − ē)− 1 =
∑

s∈{G,B}

qs

[(
ρ− µ− γs

∂E

∂I1s
− ∂C

∂I1s

)
∂I∗1s
∂ē

−
(
γs
∂E

∂Xs

+
∂C

∂Xs

)
∂X∗

s

∂ē

]
(31)

To get Eq. (12) in the main text, combine this FOC with the borrower’s FOC w.r.t. Xs,

(6), and totally differentiate (6) with respect to ē to find:

∂X∗
s

∂ē
=
∂X∗

s

∂I∗1s

∂I∗1s
∂ē

. (32)

Effect of equity on liquidations and abatement. To derive the result in Proposi-

tion 7, we first find
∂I∗1s
∂ē

and ∂X∗
s

∂I∗1s
, which are needed to further expand Eq. (31). Totally

differentiating (6) with respect to I∗1s allows us to find:

∂X∗
s

∂I∗1s
=

∂2N(X∗
s ,I

∗
1s,τs)

∂X∗
s ∂I

∗
1s

∂2C(X∗
s ,I

∗
1s)

∂(X∗
s )

2

(33)

where we use N(Xs, I1s, τs) = −τsE(Xs, I1s)− C(Xs, I1s).

If λ∗s(τs) = 0, then I∗1s = I0, so
∂I∗1s
∂ē

= 0 and ∂X∗
s

∂ē
= 0. If λ∗s(τs) > 0, the interior
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solution of I∗1s(τs) is pinned down by (8). Totally differentiating (8) with respect to ē

yields:

∂I∗1s
∂ē

=
−1− (ψτs − θγps )

∂E(X∗
s ,I

∗
1s)

∂X∗
s

∂X∗
s

∂I∗1s

∂I∗1s
∂ē

r̃(τs(1− ψ) + θγps , X∗
s , I

∗
1s)

(34)

Combining (32) and (34) and using the shorthand notation, yields:

∂I∗1s
∂ē

=
−C ′′

X2

r̃(τs(1− ψ) + θγps , X∗
s , I

∗
1s)C

′′
X2 + (ψτs − θγps )E ′

XN
′′
XI

(35)

∂X∗
s

∂ē
=

−N ′′
XI

r̃(τs(1− ψ) + θγps , X∗
s , I

∗
1s)C

′′
X2 + (ψτs − θγps )E ′

XN
′′
XI

(36)

The denominator of (35) and (36) is negative by Assumption 3. The numerator of (35)

is negative because C ′′
X2 > 0 by Assumption 1. This implies that

∂I∗1s
∂ē

> 0.

From (35), ∂X
∗
s

∂ē
> 0 if and only if the cross-derivative N ′′

XI =
∂2N(Xs,I1s,τs)

∂Xs∂Is
> 0 (defined

in Eq. (16)). The economic interpretation of this cross-derivative being positive is that

the net benefit of abatement is greater at a higher investment scale, for example, because

there are economies of scale in that it is cheaper to reduce emissions on a larger project.

However, the effect of higher equity can alternatively be negative if N ′′
XI < 0.

Comparing private and socially optimal equity choice (Proposition 7). Focus-

ing on the case where the financial constraint binds only in the bad state and using (7),

(35), and (36), we can further rewrite the planner’s FOC (12) and the borrower’s FOC

(9) as, respectively:

u′(A0 − ē)− 1 =
−r(τB, X∗

B, I
∗
1B)C

′′
X2 + (γB − τB)[E

′
IC

′′
X2 + E ′

XN
′′
XI ]

r̃(τB(1− ψ) + θγpB, X
∗
B, I

∗
1B)C

′′
X2 + (ψτB − θγpB)E

′
XN

′′
XI

, (37)

u′(A0 − e)− 1 =
−r(τB, X∗

B, I
∗
1B)

r̃(τB, X∗
B, I

∗
1B)

. (38)

Comparing the two, borrowers choose a lower level of equity than the regulator if and

only if:

−r(τB, X∗
B, I

∗
1B)C

′′
X2 + (γB − τB)[E

′
IC

′′
X2 + E ′

XN
′′
XI ]

r̃(τB(1− ψ) + θγpB, X
∗
B, I

∗
1B)C

′′
X2 + (ψτB − θγpB)E

′
XN

′′
XI

>
−r(τB, X∗

B, I
∗
1B)

r̃(τB, X∗
B, I

∗
1B)
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Note that under Assumption 3:

r̃(τB(1− ψ) + θγpB, X
∗
B, I

∗
1B, X

∗
B, I

∗
1B)C

′′
X2 + (ψτB − θγpB)E

′
XN

′′
XI < 0,

and by Assumption 2: r̃(τ,X∗
B, I

∗
1B) < 0. Thus with some algebra, the condition can be

rewritten as:∂E(X∗
B, I

∗
1B)

∂I∗1B
+
∂E(X∗

B, I
∗
1B)

∂X∗
B

∂2N(X∗
B ,I

∗
1B ,τB)

∂X∗
B∂I

∗
1B

∂2C(X∗
B ,I

∗
1B)

(∂X∗
B)2

[
(γB − τB)−

r(τB, X
∗
B, I

∗
1B)

r̃(τB, X∗
B, I

∗
1B)

(θγpB − ψτB)

]
︸ ︷︷ ︸

T−SCC wedge

< 0.

Borrowers choose a lower level of equity than the regulator if the LHS is smaller than

zero. Conversely, borrowers choose a higher level of equity if the LHS is greater than zero,

and the same level if it is equal to zero. Notice that, since λB = − r(τB ,X
∗
B ,I

∗
1B)

r̃(τB ,X
∗
B ,I

∗
1B)

, the term in

the square bracket corresponds to the total social cost of carbon wedge (T-SCC wedge)

defined in Proposition 7. The T-SCC wedge is equal to zero when τ ∗B = τGPB and is positive

when τ ∗B < τGPB . Hence, Proposition 4 implies that the T-SCC wedge is zero when ψ = 1

(in this case there is no motive for leverage regulation) and is positive whenever ψ < 1.

To arrive at condition (13) in Proposition 7 we use (33) to restate the first term of

the condition above as:

∂E(X∗
B, I

∗
1B)

∂I∗1B
+
∂E(X∗

B, I
∗
1B)

∂X∗
B

∂2N(X∗
B ,I

∗
1B ,τB)

∂X∗
B∂I

∗
1B

∂2C(X∗
B ,I

∗
1B)

(∂X∗
B)2

=
∂E(X∗

B, I
∗
1B)

∂I∗1B
+
∂E(X∗

B, I
∗
1B)

∂X∗
B

∂X∗
B

∂I∗1B

≡ dE(X∗
B, I

∗
1B)

dI∗1B

Finally, notice that, since
∂I∗1B
∂ē

> 0 whenever λ∗B > 0, we can express the condition in

terms of
dE(X∗

B ,I
∗
1B)

dē
as in (13), by using

dE(X∗
B ,I

∗
1B)

dē
=

dE(X∗
B ,I

∗
1B)

dI∗1B

∂I∗1b
∂ē

.

The effect of equity on emissions. If the financial constraint is slack in state s, then

dE(X∗
s ,I

∗
1s)

dē
= 0. To understand how leverage affects emissions when the financial constraint
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binds in the bad state,
dE(X∗

B ,I
∗
1B)

dē
can be decomposed as follows:

dE(X∗
B, I

∗
1B)

dē
=

 ∂E(X∗
B, I

∗
1B)

∂I∗1B︸ ︷︷ ︸
Direct effect of I∗1B

+
∂E(X∗

B, I
∗
1B)

∂X∗
B

∂X∗
B

∂I∗1B︸ ︷︷ ︸
Indirect effect through X∗

B


︸ ︷︷ ︸

=
dE(X∗

B
,I∗
1B

)

dI∗
1B

∂I∗1B
∂ē

. (39)

Higher borrower equity loosens financial constraints, which allows the borrower to liq-

uidate less, and therefore implies a higher final investment scale,
∂I∗1B
∂ē

> 0. The direct

effect of a higher investment scale is an increase in emissions, captured by the first term

in brackets in Eq. (39). At the same time, looser financial constraints affect the optimal

abatement choice. This effect is captured by the second term in brackets in Eq. (39).

Note that this is an indirect effect that depends on how the marginal cost and benefit of

abatement respond to changes in the final investment scale. As reflected in Eq. (33) the

magnitude and direction of this effect depends on the cross-derivatives of C(X, I1) and

E(X, I1), since
∂2N(X,I1,τ)

∂X∂I1
= −τ ∂

2E(X,I1)
∂X∂I1

+ ∂2C(X,I1)
∂X∂I1

:

• The effect of higher borrower equity on abatement is positive if abatement is more

efficient at a higher investment scale: i.e. if ∂2N(X,I1,τ)
∂X∂I1

> 0

• The effect of higher borrower equity on abatement is negative if abatement is less

efficient at a higher investment scale: i.e. if ∂2N(X,I1,τ)
∂X∂I1

< 0
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IA Internet Appendix

IA.1 Financial Instruments

IA.1.1 Hedging

With hedging as described in Section 6.1, the borrower’s problem can be written as the

following Lagrangian:

max
Xs,I1s,d1,e,hs

L = u(A0 − e) +
∑

s∈{G,B}

qsκc1s [d1s + µ(I0 − I1s) + e+ hs − I0 − C(Xs, I1s)]

+
∑

s∈{G,B}

qs [µ(I0 − I1s) + e+ hs − I0 − C(Xs, I1s) +R(I1s, E
a
s )− τsE(Xs, I1s) + Ts]

+
∑

s∈{G,B}

qs {λs [θR(I1s, Ea
s )− τsE(Xs, I1s) + ψTs + hs − d1s] + κIsI1s + κIs[I0 − I1s]}

(IA.1)

The problem and first order conditions are equivalent to the problem in the main text (17),

except that now additionally borrowers choose hs subject to the fair pricing condition

(14). Using (14) to substitute hB = − (1−qB)hG
qB

, the first order condition w.r.t. hG is given

by

λG = λB.

Constrained Efficiency With hedging, the problem of a constrained social planner is

similar to Eq. (25), but with hs as an additional choice variable, analogous to the updated

borrower problem (IA.1).

max
Xs,I1s,d1s,e,hs

L = Ai0 + Ai1 + u(A0 − e) + e− I0

+
∑

s∈{B,G}

qs {R(I1s, Ea
s ) + µ(I0 − I1s) + hs − 2γusE(Xs, I1s)− C(Xs, I1s)}

+
∑

s∈{B,G}

qsλ
SP
l {θR(I1s, Ea

s ) + hs + µ(I0 − I1s)− C(Xs, I1s) + e− I0}

+
∑

s∈{B,G}

qs [κIsI1s + κIs(I0 − I1s)] .

(IA.2)
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Using (14) to substitute hB = − (1−q)hG
q

, the first order condition w.r.t. hG is equivalent

to the borrower’s first order condition:

λSPG = λSPB .

All other first order conditions are the same as in the model without hedging. This

implies the efficiency properties of the equilibrium allocation are the same as in the

baseline model without hedging, as outlined in Proposition 5.

IA.1.2 External Equity

Some degree of hedging climate risks can also be achieved using external equity or long-

term debt. Similar to hedging contracts, these alternative funding sources could enable

a more efficient environmental policy if they bring down the shadow cost of the financial

constraint in the bad state. However, the capacity to share risks using these contracts is

more limited than that of climate-linked securities, as we show formally here.

Intuitively, equity financing provides less flexible risk sharing compared to hedging

contacts because equity value is proportional to firm value, rather than flexibly designing

the payoffs hG and hB to ensure λB = λG (see Section 6.1 in the main paper).

To see this formally, suppose at t = 0 borrowers raise external equity financing eext

by selling a fraction α of pledgeable firm value. Fair pricing of equity requires that

eext = α

 ∑
s∈{G,B}

qs (θR(I1s, E
a
s )− τsE(Xs, I1s) + ψTs)

 .
This implies that borrower consumption at t = 2 is now given by

cb2s = [R(I1s, E
a
s )− τsE(Xs, I1s) + Ts]− α [θR(I1s, E

a
s )− τsE(Xs, I1s) + ψTs]

= R(I1s, E
a
s )− τsE(Xs, I1s) + Ts − eextβs,

where βs = θR(I1s,Ea
s )−τsE(Xs,I1s)+ψTs∑

k∈{G,B} qk(θR(I1k,E
a
k )−τkE(Xk,I1k)+ψTk)

, with βH ≥ 1 ≥ βL. This implies that

equity financing results in a transfer of eext(βH − βL) from the good state to the bad

state. Consequently, it is equivalent to an allocation where firms raise d0 = eext in debt

financing and additionally write a hedging contract with hG = eext(1 − βH) ≤ 0 and

2



hB = eext(1 − βL) ≥ 0. The benefit of a hedging contract is that borrowers can flexibly

design the payoffs hG and hB to ensure λB = λG (see Section IA.1.1 above).

The efficiency results from our baseline model continue to hold when borrowers fund

themselves with outside equity, whenever the resulting risk sharing does not achieve

λG = λB = 0.

IA.1.3 Long-Term Debt

Long-term debt can only provide risk-sharing capacity if borrowers default on debt in the

bad state as investors are compensated for that risk with a higher interest rate paid in the

good state. As with equity financing, the risk-sharing achieved with long-term debt is less

flexible than that with carbon price derivatives or climate-linked securities. Additionally,

we show here that defaulting on long-term debt can result in a severe debt overhang

problem that hinders abatement investments. This is in contrast to the baseline model

with short-term debt, where borrowers optimally do not default (see Appendix A.2.2).

To see this formally, suppose borrowers can raise long-term debt dLT at t = 0 due at

t = 2, with an interest rate rLT between t = 0 and t = 2. Borrowers can additionally

raise short-term debt.

This appendix first shows that the allocation with risk-free long-term debt is equiv-

alent to the one in the baseline model with short-term debt only. We then show that

long-term debt may result in default in s = B if the face value is high enough. While de-

fault allows for some risk-sharing by shifting repayments from the bad to the good state,

we show below that risky long-term debt comes at the expense of exposing borrowers to

a debt overhang problem that results in borrowers making no abatement investments.

Risk-free debt. We first consider the case in which the long-term debt is risk-free, so

that the promised and realized repayment is rdLT = dLT . With long-term debt I0 =

d0 + dLT + e and the t = 2 budget constraint of borrowers reads:

cb2s = R(I1s, E
a
s )− τsE(Xs, I1s)− d1s − rsdLT + Ts (IA.3)

The borrower also faces an updated financial constraint:

dLT + d1s ≤ θR(I1s, E
a
s )− τsE(Xs, I1s) + ψTs, (IA.4)
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Taking these into account gives rise to the following Lagrangian:

max
Xs,I1s,d1s,dLT ,d0

L = u(A0 − I0 + d0 + dLT )

+
∑

s∈{G,B}

qs [µ(I0 − I1s)− d0 − C(Xs, I1s) +R(I1s, E
a
s )− τsE(Xs, I1s) + Ts − dLT ]

+
∑

s∈{G,B}

qs {λs [θR(I1s, Ea
s )− τsE(Xs, I1s) + ψTs − d1s − dLT ] + κIsI1s + κIs[I0 − I1s]}

+
∑

s∈{G,B}

qsκc1s [d1s + µ(I0 − I1s)− d0 − C(Xs, I1s)] ,

(IA.5)

The FOCs wrt Xs, I1s and d1s are the same as in the original problem. The FOC wrt

d0 and dLT read, respectively,

u′(cb0)− 1− qGλG − qBλB = 0

u′(cb0)− qGλG − qBλB − 1 = 0

Thus, the borrower chooses inside equity e to satisfy u′(cb0) = 1 + qGλG + qBλB, and is

indifferent between short-term and long-term debt if long-term debt is risk-free. This

implies that the allocation with risk-free long-term debt is equivalent to the allocation

with short-term debt in the baseline model.

Risky debt. The possibility of default on long-term debt makes the repayment of debt

state-contingent. As investors need to break even, they will charge a higher interest rate,

thereby allowing borrowers to reallocate resources from s = G to s = B.

Anticipating the default, investors are not willing to provide short-term debt at t = 1

in s = B, so that previous period short-term debt repayment and abatement investments

must be funded by liquidations C(XB, I1B)+d0 = µ(I0− I1B). Using this, the borrower’s

optimal choice of abatement and liquidation at t = 1 in s = B, conditional on defaulting

at t = 2 solves:

max
XB ,I1B

L =(1− θ)R(I1B, E
a
B) + (1− ψ)TB + µ(I0 − I1B)− d0 − C(Xs, I1B)

+ κIBI1B + κIB[I0 − I1B] + κc1B[µ(I0 − I1B)− d0 − C(Xs, I1B)],

4



The FOCs wrt XB, I1B is:

(1 + κc1B)
∂C(XB, I1B)

∂XB

= 0 (IA.6)

(1− θ)ρ+ κIB − κIB + (1 + κc1B)

(
−µ− ∂C(XB, I1B)

∂I1B

)
= 0 (IA.7)

Thus, in s = B the borrower chooses X∗d
B = 0. The borrower chooses minimum liq-

uidations needed to repay the t = 0 short term debt, µ(I0 − I∗d1B) = d0, whenever

(1 − θ)ρ − µ > 0. If (1 − θ)ρ − µ < 0 the borrower liquidates all assets at t = 1

and consumes c1 = µI0 − d0, leaving nothing to the long-term creditors at t = 2. In

this case, risky long-term debt results in a severe debt overhang problem that induces

borrowers to not invest in abatement at all.

Next suppose the borrower does not default at t = 2 in a given state s. In this case,

the choice of abatement and investment at t = 1 follow from

max
Xs,I1s,d1s

L = [µ(I0 − I1s)− d0 − C(Xs, I1s) +R(I1s, E
a
s )− τsE(Xs, I1s) + Ts − dLT ]

λs [θR(I1s, E
a
s )− τkE(Xs, I1s) + ψTs − d1s − rdLT ] + κIsI1s + κIs[I0 − I1s]

κc1s [d1s + µ(I0 − I1s)− C(Xs, I1s)− d0] ,

(IA.8)

The FOCs wrt d1s pins down λs = κc1s, and those wrt Xs, I1s are:

(1 + λs)
∂C(Xs, I1s)

∂Xs

− (1 + λs)τ
∂E(Xs, I1s)

∂Xs

= 0 (IA.9)

ρ(1 + θλs)− (1 + λs)

[
µ+

∂C(Xs, I1s)

∂I1s
+ τ

∂E(Xs, I1s)

∂I1s

]
+ κIs − κIs = 0 (IA.10)

With the complementary slackness constraint:

θR(I1s, E
a
s )− τkE(Xs, I1s) + ψTs + µ(I0 − I1s)− C(Xs, I1s)− rdLT − d0 = 0 (IA.11)

Thus, the choice of abatement and liquidations corresponds to the one in the benchmark

where d0 is substituted by d0 + rdLT . Let these choices be denoted by X∗
s and I∗1s

Comparing the payoffs earned in the case of default and non-default in s = B, we can

find the level of long-term debt at which the debt is indeed risky. If (1 − θ)ρ > µ, this
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level is given by:

d0 + rdLT >

ρI∗1B − (1− θ)ρI∗d1B − θγpBE
a
B + ψTB + µ(I0 − I∗1B)− C(X∗

B, I
∗
1B)− τBE(X

∗
B, I

∗
1B) = d̂LT

If (1− θ)ρ < µ this level is given by:

rdLT > ρI∗1B − γpBE
a
B + TB − µI∗1B − C(X∗

B, I
∗
1B)− τBE(X

∗
B, I

∗
1B) = d̂LT

Focusing on the case when (1 − θ)ρ > µ, the most that the lender can recover from

the borrower in the case of default is θR(I∗d1B, E
a
B, γ

p
B) + ψTB − τBE(X

∗d
B , I

∗d
1B). Thus, the

lender’s participation constraint requires that:

dLT ≤ qGrdLT + qB[θR(I
∗d
1B, E

a
B) + ψTB − τBE(X

∗d
B , I

∗d
1B)]

If (1− θ)ρ < µ long-term lender’s participation constraint is:

dLT ≤ qGrdLT

In both cases, the participation constraint of the lender implies that the risk of default

and the inefficient abatement and/or liquidation choices at t = 1 must be compensated

with a sufficiently high interest rate paid to the lender.

Risk sharing vs debt overhang The potential gains from risk-sharing permitted by

the risky long-term debt come at the expense of exposing borrowers to a debt overhang

problem. As shown above, in the bad state borrowers abscond with resources at t = 2,

and therefore no longer have incentives to maximize the project’s value. As a result,

they choose not to engage in any abatement, as the emissions tax bill is paid out of the

pledgeable income and thus does not affect borrowers’ payoff under default.

In equilibrium investors price in the cost of debt-overhang, demanding a high com-

pensation for holding the long-term debt. Thus, any gains from insurance due to using

risky long-term debt come at a premium relative to hedging contracts or external equity.
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IA.1.4 Socially Responsible Investing

This appendix section solves the model with socially responsible investors, as described

in Section 6.2. We assume that each borrower matches with 1 investor and all investors

are socially responsible, with their utility given by:

U i = ci0 + ci1s + ci2s − γusE
a
s − (ω0Idb0 + ω1Idb1)E(X

b
s , I

b
1s) (IA.12)

Where Idb0 and Idb1 are indicator functions taking the value of 1 if the investor lends to

the borrower at t = 0 and t = 1 respectively. Thus, investors’ break-even conditions for

lending to borrower b are given by:

db0 =r0d
b
0 − ω0E[E(Xb, Ib1)]

db1 =r1d
b
1 − ω1E(X

b
s , I1s)

where r0 and r1 are the gross interest rates on t = 0 and t = 1 debt respectively, that

compensate SRIs for their disutility from investing in a polluting firm.

In the presence of socially responsible investors, borrower’s constraints become:

cb0 = A0 − (I − d0) ≥ 0,

cb1s = (I0 − I1s)µ+ d1s − d0 − ωE[E(X, I1)]− C(Xs, I1s) ≥ 0,

cb2s = R(I1s, E
a
s )− τsE(Xs, I1s)− d1s − ωE(Xb

s , I1s) + Ts ≥ 0,

I1s ∈ [0, I0].

The re-stated financial constraint,

d1s + ωE(Xb
s , I1s) ≤ θR(I1s, E

a
s )− τsE(Xs, I1s) + ψTs,

corresponds to the updated complementary slackness condition in Eq. (8”) in the main

text.
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The Lagrangian of the problem is now:

max
Xs,I1s,d1s,d0

L = u(A0 − I0 + d0)

+
∑

s∈{G,B}

qs [µ(I0 − I1s) + d1s − d0 − ωE[E(X, I1)]− C(Xs, I1s)]

+
∑

s∈{G,B}

qs [R(I1s, E
a
s )− τsE(Xs, I1s) + Ts − d1s − ωE(Xs, I1s)]

+
∑

s∈{G,B}

qsλs [θR(I1s, E
a
s ))− τsE(Xs, I1s) + ψTs − d1s − ωE(Xs, I1s)] + κIsI1s

+
∑

s∈{G,B}

qs {κc1s [d1s + µ(I0 − I1s)− d0 − ωE[E(X, I1)]− C(Xs, I1s)] + κIs[I0 − I1s]} ,

The FOCs w.r.t. d1s, Xs, I1s, d0 are:

−λs + κc1s =0

−(1 + λs)
∂C(Xs, I1s)

∂Xs

− (1 + λs)(τs + ω)
∂E(Xs, I1s)

∂Xs

=0

ρ(1 + θλs)− (1 + λs)[µ+
∂C(Xs, I1s)

∂I1s
+ (τs + ω)

∂E(Xs, I1s)

∂I1s
] =0

u′(cb0)− 1−
∑

s∈{G,B}

qsλs =0

The FOC for Xs corresponds to Eq. (6”) in the main text. The other FOCs are similar

to those in the baseline model, except for the presence of ω. Comparing the FOCs to the

baseline model, they are equivalent if in the baseline model τs = ω (and τs = 0 in the

model with socially responsible investors).

IA.2 Alternative policy implementation

IA.2.1 Cap-and-trade: sale proceeds to borrowers

In the baseline analysis of the cap-and-trade system in Section 4.3 in the main text

we assume that the proceeds from the sale of permits are redistributed to investors. If

the proceeds from sale were distributed to borrowers in the form of a lump-sum rebate

Ts = (1−ϕ)Qsps to the borrower, the t = 2 budget constraint and the financial constraints
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would be:

cb2s = R(I1s, E
a
s )− (1− ϕ)Qsps + ps(Qs − E(Xs, I1s)) + Ts − d1s ≥ 0, (3”)

d1s ≤ θR(I1s, E
a
s ) + ψTs. (4”)

The private FOC’s are unaffected by the rebate. The regulator’s FOC is only altered

through the change in
∂I∗1s
∂ps

which now reads:

∂I∗1s
∂ps

=
(1− ϕ− ψ − ϕψ)E(X∗

s , I
∗
1s)− ((ϕ+ ψ + ϕψ)ps − θγps )

∂E(X∗
s ,I

∗
1s)

∂X∗
s

∂X∗
s

∂ps

r̃(ps(1− ϕ− ψ − ϕψ)− θγps , X∗
s , I

∗
1s)

(19”)

The equivalence between the emissions taxes and the cap-and-trade solution holds now

if and only if ϕ + ψ − ϕψ = ψ. This implies that, as is the case in the baseline, whem

ϕ = 1 the cap-and-trade solution corresponds to the emissions taxes solution with ψ = 1.

IA.2.2 Implementation of the Capital Mandate through Taxes on Leverage

This appendix shows that a capital mandate ē derived in Section 5 can alternatively

be implemented through a tax τd on t = 0 debt (or a subsidy if τd < 0). Given that

capital requirements in the Basel Accord apply to financial institutions, leverage taxes

and subsidies may be a more likely tool seen in the real world if borrowers in the model

are interpreted as non-financial firms (such as manufacturing firms). Tax proceeds are

fully rebated to borrowers via a lump-sum rebate T b0 .

With a leverage tax τd, the t = 0 budget constraint is given by I0 = e+d0(1−τd)+T b0 ,

which can be re-arranged to d0 =
I0−e−T b

0

(1−τd)
. With this budget constraint, the borrower’s

problem (17) is now given by the following Lagrangian:

max
Xs,I1,d1,e

L = u(A0 − e)

+
∑

s∈{G,B}

qs

[
µ(I0 − I1s)−

I0 − e− T b0
1− τd

− C(Xs, I1s) +R(I1s, E
a
s )− τsE(Xs, I1s) + Ts

]
+

∑
s∈{G,B}

qs {λs [θR(I1s, Ea
s )− τsE(Xs, I1s) + ψTs − d1s] + κIsI1s + κIs[I0 − I1s]}

+
∑

s∈{G,B}

qsκc1s

[
d1s + µ(I0 − I1s)−

I0 − e− T b0
1− τd

− C(Xs, I1s)

]
,

(IA.13)
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The first order conditions with respect to Xs and I1s are equivalent to those in the main

text and given by (6) and (7), respectively. By contrast, the first order condition with

respect to equity e is different from the main text Eq. (9), and is now given by

u′(A0 − e) =
1 + (1− q)λG + qλB

1− τd
.

From this equation it is clear that a higher tax on debt induces borrowers to choose a

higher level of e, i.e., lower leverage. By fully rebating the taxes, such that T b0 = τdd0,

a regulator can ensure that the tax does not affect any constraints. Consequently, a

leverage mandate ē∗ can be implemented by setting a leverage tax τ ∗d such that

u′(A0 − ē∗) =
1 + (1− q)λG + qλB

1− τ ∗d
.

IA.3 Interpretation of Borrowers as Financial Institutions

This appendix derives a version of the model in which borrowers are banks that make

loans to non-financial firms. A continuum of firms run by risk-neutral owners have access

to the same investment project as described in Section 2. Firms have no own funds and

must obtain a loan from a bank. Banks have the same preferences and the same limited

endowment A0 as borrowers in the baseline model. Banks can also raise financing from

investors as in the baseline model. In contrast, each firm is matched with a bank and can

only obtain financing through a loan from its bank, i.e., firms cannot obtain funding from

other investors or banks. There is no friction between a firm and its bank, but banks are

constrained by the same financial constraint (4) as borrowers in the baseline model. That

is, banks can fully seize the firm’s assets at t = 2 but can only pledge θR(I1s, E
a
s ) of the

seized asset returns to outside investors. In this version of the model, “borrowers” are

split into a financial and a real sector, where banks finance loans to bank-dependent firms

through bank equity and outside financing, and firms use loans to finance real investment

and abatement. We assume that firm owners are risk-neutral and bank owners have the

same quasi-linear utility as borrowers in the baseline model. For simplicity, we focus on

the case ψ = 0.

Firm problem. Banks make a take-it-or-leave-it offer to firms, offering a loan lt at

t = 0 and t = 1, and repayment D due at t = 2. Firms can decide to accept or reject the
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loan but conditional on accepting take lt and D as given. When rejecting the loan, the

outside option for firms is not to finance the project.

Firms have no own funds, so that I0 = l0. At t = 1 firms can liquidate some initial

investment to generate a liquidation value µ(I0 − I1s), and invest in abatement Xs at a

cost C(Xs, I1s). Firm owner’s consumption is given by

cf0 = l0 − I0

cf1s = µ(I0 − I1s)− C(Xs, I1s) + l1s

cf2s = R(I1s, E
a
s , γ

p
s )− τE(Xs, I1s) + Ts −D

The firm’s problem is to choose I1s and Xs so as to maximize cf0 + cf1 + cf2 subject

to I0 ≥ I1s ≥ 0 and non-negativity constraints on consumption. This problem can be

written as follows:

max
Xs,I1s,l1s,l0

L = l0 − I0

+
∑

s∈{G,B}

qs [R(I1s, E
a
s )− τsE(Xs, I1s) + Ts −D + l1s + µ(I0 − I1s)− C(Xs, I1s)]

+ κcf0
(l0 − I0) +

∑
s∈{G,B}

qsκcf1s
[µ(I0 − I1s)− C(Xs, I1s) + l1s]

+
∑

s∈{G,B}

qs

[
κcf2s

[R(I1s, E
a
s )− τsE(Xs, I1s) + Ts −D] + κIsI1s + κIs(I0 − I1s)

]
.

(IA.14)

The first order conditions with respect to I1s and Xs are, respectively,

(1 + κcf2s
)

(
ρ− τ

∂E(Xs, I1s)

∂I1s

)
− (1 + κcf1s

)

(
µ+

∂C(Xs, I1s)

∂I1s

)
+ κIs − κIs = 0,

(IA.15)

− τs
∂E(Xs, I1s)

∂Xs

− ∂C(Xs, I1s)

∂Xs

= 0. (IA.16)

The first order condition with respect to Xs is the same as in the baseline model, cf.

Eq. (6). By Assumption 2 (liquidations are inefficient) and the fact that κcf2s
≥ 0, it also

follows that (1 + κcf2s
)
(
ρ− τ ∂E(Xs,I1s)

∂I1s

)
−

(
µ+ ∂C(Xs,I1s)

∂I1s

)
> 0. This implies that either

κIs > 0 or κcf1
> 0, so that I1s is either I1s = I0 or is pinned down by cf1 = 0, which

defines I1s(l1s).
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Bank problem. The bank chooses l0, l1s, D, d1s and d0, subject to the financial con-

straint (4).

c0 = A− e

c1 = d1s − d0 − l1s

c2 = D − d1s

Firm participation requires that cft ≥ 0. Banks optimally choose D, l1s and l0 such that

the participation constraints bind, which implies l0 = I0 = e + d0, l1s = −µ(I0 − I1s) +

C(Xs, I1s), and D = R(I1s, E
a
s )− τE(Xs, I1s) + Ts.

If the firm’s investment is pinned down by I1s(l1s) (defined by cf1 = 0), the bank’s

problem can be expressed as:

max
l1s,d1s,e

L = u(A− e)− I0 + e

+
∑

s∈{G,B}

qs [µ(I0 − I1s(l1s))− C(Xs, I1s(l1s)) +R(I1s(l1s), E
a
s )− τsE(Xs, I1s(l1s)) + Ts]

+
∑

s∈{G,B}

qsλs (θR(I1s(l1s), E
a
s )− τsE(Xs, I1s(l1s))− d1s) + κc0(A− e)

+
∑

s∈{G,B}

qs [κc1s (d1s − I0 + e+ µ(I0 − I1s(l1s))− C(Xs, I1s(l1s)))]

+
∑

s∈{G,B}

qs [κc2s (R(I1s(l1s), E
a
s )− τsE(Xs, I1s(l1s)) + T − d1s)] .

(IA.17)

The first order conditions read:

u′(A− e) = 1− κc0 + qGκc1G + qBκc1B (IA.18)

κc1s − κc2s − λs = 0 (IA.19)

− (1 + κc1s)

(
µ+

∂C

∂I1s

)
+ (1 + κc2s)

(
∂R

∂I1s
− τs

∂E

∂I1s

)
+ λs

(
θρ− τs

∂E

∂I1s

)
= 0

(IA.20)

Due to the assumptions on u′(c0), it is never optimal to have A−e = 0, so κc0 = 0. Because

d1s ≤ θR(I1s, E
a
s ) − τsE(Xs, I1s), c2s > 0 and κc2s = 0. It follows that λs = κc1s > 0, so
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the FOCs simplify to:

u′(c0) = 1 + qGλG + qBλB (IA.21)

λs = −r(τs, Xs, I1s)

r̃(τs, Xs, I1s)
(IA.22)

which are the same as the conditions as (9) and (7) in the baseline model (with κ̄Is = κIs =

0. Since also Eq. (IA.16) is equivalent to Eq. (6), in this case all first order conditions

and therefore the equilibrium allocations are the same as in the baseline model.
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