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Abstract

We explore the asset pricing implications of shocks that allow firms to extract more
rents from consumers. These markup shocks directly impact the representative house-
hold’s marginal utility and the firms’ cash flow. Using firm-level data, we construct a
measure of aggregate markup shocks and show that the price of markup risk is nega-
tive, that is, a positive markup shock is associated with high marginal utility states.
Markup shocks generate differences in risk premia due to their heterogeneous impact
on firms. Firms with larger exposures to markup shocks are less risky and have lower
expected returns. We rationalize these findings in a general equilibrium model with
markup shocks.

Keywords: Production-based asset pricing, imperfect competition, time-varying markups, cross-

section of stock returns, recursive preferences.
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1 Introduction

The last two decades saw a sharp increase in the average price markup in many developed economies.1

Higher markups increase the wedge between the price charged to customers and the marginal cost

of production, allowing firms to boost profits at the expense of consumers. While the roots and

consequences of the secular trends in markups is still debated,2 exogenous markup shocks have

proven quite successful in explaining business cycle fluctuations and have been adopted as a stan-

dard feature of many dynamic stochastic general equilibrium models (e.g., see Smets and Wouters

(2003) and Ireland (2004)). Surprisingly, the asset pricing implications of markup shocks and their

impact on the cross-section of firms have received little attention in the literature. The goal of this

paper is to explore those implications – both theoretically and empirically.

We first formalize our predictions on the asset pricing implications of markup shocks in a

real business cycle model, augmented with imperfect competition and markup shocks. The model

also features endogenous long-run risks and recursive preferences to match the asset market data,

jointly with macroeconomic dynamics quantitatively. Long-run risks in consumption and dividend

growth are generated by a non-stationary process that features an exogenous component (e.g., Croce

(2014)) and an endogenous component that depends on the accumulation of aggregate capital (e.g.,

Romer (1990)). We assume a representative household with Epstein and Zin (1989) utility and a

preference for an early resolution of uncertainty. In equilibrium, this preference specification implies

a large price of risk for shocks that impacts long-run consumption growth, such as productivity or

markup shocks.

Markup shocks affect the firm’s elasticity of demand and thus alter the trade-off between the

optimal quantity and price chosen by the firm. A positive markup shock gives the firm more

market power, which leads to an increase in the output price and a reduction in the quantity

supplied. When markups are persistent, the reduction in future output leads to a persistent drop

in the firm’s investment and hired labor. At the aggregate level, the fall in investment forecasts

1De Loecker et al. (2020) find that the revenue-weighted average markup in the United States climbed
from about 1.2 in 1980 to 1.6 in 2016. De Loecker and Eeckhout (2018) find similar results for Europe.

2Recent examples of papers in this literature include Gutiérrez and Philippon (2017), Farhi and Gou-
rio (2018) Greenwald et al. (2019), Crouzet and Eberly (2019), Corhay et al. (2020b), Barkai (2020) and
Gutiérrez et al. (2021).
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low future consumption growth. In an economy with recursive utility and a preference for early

resolution of uncertainty, it is bad news for the representative household. In short, the model

predicts that the price of markup risk is negative.3

Markup shocks might not impact firms equally in the cross-section. For example, a new in-

formation system technology that allows firms to collect more data on consumers can increase the

potential for price discrimination. This positive markup shock can benefit larger firms relatively

more than smaller firms because of the enormous potential for data collection. In this scenario,

large firms would have higher positive markup exposures while small firms would have lower or even

negative markup exposures. We explore the asset pricing implications of allowing for differential

firm-level exposures to the aggregate markup shock and find that it generates substantial cross-

sectional differences in asset prices. Firms with a high (low) markup exposure earn, on average, a

lower (higher) expected return. Thus, our model predicts that markup risk is an important driver

of the cross-section of stock returns.

The asset pricing implications of firms’ exposure to markup shocks contrast with those related

to the average level of a firm’s markups. We highlight this difference by allowing for heterogeneity

in both the average level and the sensitivity of markups. We show that although a higher markup

is associated with a higher expected return, a higher markup exposure is associated with a lower

expected return. This can be explained as follows. A higher level of price markup endogenously

increases the firm’s exposure to aggregate productivity risk, because monopolistic rents make firms’

profits more pro-cyclical. In other words, the level of markup positively impacts the firm’s pro-

ductivity beta. Because aggregate productivity carries a positive price of risk, high markup firms

are more risky.4 Rather, this paper identifies a new source of priced risk that exogenously impacts

firms’ markup and carries a negative price. Our paper thus provides a new channel through which

markups can affect asset prices.

To test these new predictions, we construct an empirical series for the aggregate price markup

shocks. Our procedure follows a bottom-up approach. First, we estimate markup surprises at the

3While the combination of long-run risk and a preference for early resolution of uncertainty allows us to
get reasonable asset pricing implications. Our results are robust to using alternative utility functions, such
as habits (Campbell and Cochrane (1999)). In addition, our results are robust to allowing for sticky price
in a standard New-Keynesian model á la Gaĺı (2015).

4See, for example, Bustamante and Donangelo (2017), and Corhay et al. (2020a).
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firm level. The strategy to estimate firm-level markups builds on the production approach pioneered

by Hall (1988). This approach obtains firm-level markups by exploiting the cost-minimization of a

variable input for production. The price markup is computed as the revenue share of the variable

input, multiplied by the output elasticity of the variable input. Obtaining the elasticity, however,

requires the estimation of a production function, which we estimate using publicly available data

from Compustat following the procedure in De Loecker et al. (2020). We then compute markup

surprises for each firm and year using a predictive model that uses a series of characteristics shown

to explain firm markups. The aggregate markup shock is constructed by aggregating firm-level

shocks each year.

Our constructed series of aggregate markup shocks has business cycle properties consistent with

the predictions of most business cycle models. In particular, we show that a surprise increase in

markups is associated with a decline in economic activity as measured by future consumption,

GDP, and investment. Higher markups are also associated with higher future inflation. Notably,

while an increase in markups is associated with bad news for the economy, we show that firm

valuations increase in response to the shock. This pattern appears because markups increase the

present value of future rents of the firm. These results highlight an important contrast between

the business cycle properties of standard productivity shocks and markup shocks and suggest that

markup shocks contain important information about aggregate risk not contained in traditional

aggregate productivity measures.

We find strong empirical evidence that the price of markup risk is negative, as predicted by

the model. We estimate a two-factor linear asset pricing model with the market factor and the

constructed markup shock. While the price of market risk is positive, the estimated factor loading

on the markup shock is negative and significantly different from zero. The economic magnitude is

also large. Our estimation implies the price of markup risk to be around -1, which corresponds to

about 15% of the estimated price of market risk. The two-factor model significantly improves the

performance of the one-factor model. Indeed, adding the markup shock reduces the mean pricing

absolute pricing errors by 50%. In short, we provide novel empirical evidence that markup shocks

are an important source of priced risk.

Markup shocks have heterogeneous effects in the cross-section of firms. We estimate exposures
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to the aggregate markup shocks using asset pricing data, i.e., markup betas, for various portfolios

formed based on standard characteristics in the literature, such as book-to-market, size, investment,

and profitability. We show that the exposures to markup shocks differ a lot across firms, and they

can explain the documented return spreads for many standard portfolios. For example, large

firms have a larger markup beta than smaller firms. Since the price of markup risk is negative,

this implies that larger firms have lower expected returns than smaller firms, which is consistent

with the documented size premium. Similarly, value firms load negatively on the markup shock

while growth firms load positively, which explains the value premium. We also build portfolios

by sorting firms based on their stock returns’ markup betas and find that the portfolio that goes

long high-markup betas and short low-markup betas earn a significant return of about -3.50% per

annum. Thus, the exposure to markup shocks can explain a wide range of portfolio sorts previously

documented in the literature and is consistent with the model predictions.

In the model, we argue that the fundamental force driving the impact of markup shocks in

the cross-section of firms stems from individual firms’ markup exposures to the aggregate markup

shock. In order to bring additional corroborating evidence for this key economic channel, we

directly estimate markup exposures by regressing firm-level markup surprises on the aggregate

markup shock series. Thus, we do not rely on asset price data to estimate the exposure to the

markup shock. We then build portfolios by sorting firms based on their fundamental markup

exposures. In line with the results from return-based markup betas, we find that the portfolio

with high markup exposure earns a significantly lower return than the portfolio with low markup

exposure. These findings suggest that the dynamics of markups at the firm level, especially their

exposure to the markup shocks, is an important characteristic driving the cross-section of asset

prices.

Finally, we test the model predictions on the relation between the level of expected markup and

risk, and contrast it with our novel channel working through the exposure to markup shocks. In

particular, we run cross-sectional Fama-MacBeth regressions using the markup beta, the expected

markup, and a battery of controls. Consistent with the model predictions and the previous results,

firms with higher markup betas earn lower future returns. We also find that consistent with

the existing literature (e.g., Corhay et al. (2020a)), a higher expected markup is associated with
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higher future returns. Importantly, we show that both effects remain statistically significant when

considered together. Our results suggest that it is important to account for both the level of

markups and the exposure to markup shocks to fully understand the relation between a firm’s

market power and assets prices.

Our analysis is intentionally agnostic about the fundamental forces driving the exogenous

markup process and why firms have different exposure to that shock. The objective is to have

the simplest framework to help us understand the asset pricing implications of shocks that increase

the wedge between the price and the marginal cost – whatever their sources. The literature has

come up with several potential channels that could endogenize our assumptions. Some examples

include intangible capital (e.g., Crouzet and Eberly (2019) and Crouzet and Eberly (2021)), the

ability to collect and exploit data (e.g., Begenau, Farboodi, and Veldkamp (2018), and Eeckhout

and Veldkamp (2021)), firms’ monopsony power (e.g., Manning (2013)), or barriers to entry (e.g.,

Gutiérrez, Jones, and Philippon (2019)). Providing micro-foundations goes beyond the scope of

this paper, but we hope that our findings will spur additional research aimed at understanding the

fundamental sources behind markup shocks and their impact on firms.

This paper relates to the burgeoning literature in finance studying the impact of markup power

on asset prices in equilibrium models with production and strategic interactions, e.g., Aguerrevere

(2009); Bustamante and Donangelo (2017); Loualiche (Forthcoming); Corhay, Kung, and Schmid

(2020a); Dou, Ji, and Wu (2021a); Dou and Ji (2021); Dou, Ji, and Wu (2021b); Doshi and

Kumar (2021).5 In these studies, market power matters for risk because it amplifies the exposure

to aggregate productivity risk. In contrast, our paper identifies a new source of priced risk –

unrelated, but complementary to productivity risk – that directly impacts price markups in the

cross-section of firms. We show that accounting for this risk is key to fully understand the impact

of market power on asset prices.

Closely related to our paper is Cho, Grotteria, Kremens, and Kung (2021) who use a Campbell

and Shiller (1988) decomposition to decompose the market-to-book ratio into long-run expectations

5Corhay (2017), Chen, Dou, Guo, and Ji (2020), and Dou, Ji, and Wu (2021a) allow for default and find
that accounting for credit risk is important to understand the impact of competition on asset prices. Clara
(2018) examines the implications of demand elasticities in the presence of nominal rigidities on asset prices.
Clara, Corhay, and Kung (2021) study multi-product firms.
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about a firm’s cash flows and long-run expectations about its asset discount rates. They find that

future markups play an important role in explaining the cash-flow components in the cross-section

of firms. Our paper is similar in that we show the importance of future markups for the cross-section

of asset prices but the focus and mechanisms are different. Cho, Grotteria, Kremens, and Kung

(2021) show the importance of future expected markups at the firm level to explain the observed

dispersion in book-to-market ratios via a cash-flow channel. In contrast, we study the asset pricing

implications of the common component that drives firm-level markup shocks. We show that this

shock is priced and that heterogeneous exposures to it can explain portfolios sorted on various

firm-level characteristics.

More broadly, our work is closely related to a growing literature that studies asset prices in

production economies (e.g., Cochrane (1991), Jermann (1998) Zhang (2005)). For the most part,

this literature has focused on aggregate shocks that affects aggregate productivity (e.g., Favilukis

and Lin (2013), Kung and Schmid (2015)), investment-specific shocks (e.g., Kogan and Papaniko-

laou (2014), Knesl (2018)), shocks to fiscal and monetary policies (e.g., Belo and Yu (2013), Croce,

Nguyen, Raymond, and Schmid (2019), Bretscher, Hsu, and Tamoni (2020a)), uncertainty shocks

(e.g., Croce (2014), Bretscher, Hsu, and Tamoni (2020b)), shocks to external financing (e.g., Belo,

Lin, and Yang (2019)), or shocks to capital depreciation (e.g., Ai, Li, and Tong (2022)). In contrast

to this literature, this paper explores the consequences of shocks that affects the wedge between

the output price and the marginal cost on the cross sectional variation of stock returns.

Several studies, however, have documented the importance of aggregate shocks – different from

standard productivity shocks – that jointly affect firms’ market power and asset prices. Loualiche

(Forthcoming) documents that aggregate entry risk is priced in the cross-section of industry portfo-

lios. He finds that industries that are more (negatively) exposed to entry risk command positive risk

premia and estimate the price of entry risk to be negative. This happens because a positive entry

shock increases new firms’ entry, which increases competition and displaces incumbents’ monopoly

rents. Barrot, Loualiche, and Sauvagnat (2019), and Bretscher (2020) document a similar effect for

the risk of output (input) import competition, respectively. In all these papers, the displacement

shock carries a negative price of risk but leads to a decrease in firms’ market power. In other words,

the implied “markup shocks” would carry a positive price of risk. In contrast, we show that markup
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shocks carry a negative price of risk, suggesting that we are capturing a different effect. In addition,

while these displacement shocks explain the cross-section of industry returns, we show that markup

shocks price a wide variety of portfolios sorted on various firm-level characteristics. This suggests

that our markup shock impacts firms at a more granular level than industries. Therefore, we see

our results as providing a different but complementary channel.

We also relate to the literature in macroeconomics that explore the importance of markup

shocks to explain business cycle fluctuations (e.g., Smets and Wouters (2003), Ireland (2004),

Smets and Wouters (2007)). These papers show that markup shocks are important to explain

inflation dynamics but have little explanatory power on macroeconomic quantities such as GDP.

The representative firm assumption inherent in those studies might understate the impact of markup

shocks. In fact, we show that markups shocks have large heterogeneous effects in the cross-section

of firms. Given the importance of markups for the transmission of monetary policy, extending our

framework into a Heterogeneous Agent New Keynesian model (e.g., Kaplan et al. (2018)) appears

an interesting avenue for future research. Also related is Palomino (2012) who shows that the price

of risk for markup shocks depends on the optimal monetary policy. The paper explores asset prices

but only focuses on the term structure of interest rates. In contrast, we explore the impact of

markup risk for the cross-section of stock returns.

The paper is organized as follows. Section 2 presents a dynamic general equilibrium model with

exogenous markup shocks. Section 3 presents the calibration and the main results on the pricing

of markup shocks. Section 4 describes the construction of our empirical measure of markup shock

and tests several model predictions. Section 5 concludes.

2 Model

This section presents a general equilibrium model to study the impact of markup shocks on asset

prices. The model has two sectors. The production sector produces consumption goods using

labor and capital. The household sector is characterized by a representative household who makes

consumption and saving decisions. They own all the assets in the economy. Markup shocks affect

the firm’s ability to extract monopolistic rents from households, which jointly affects the household
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marginal utility and firm valuations.

2.1 Production

Production consists of two layers. The top layer aggregates industry goods to produce the final

consumption good. The bottom layer consists of industries with firms that produce differentiated

products. Each industry is characterized by a monopolistic competition structure. Firms are

subject to two types of aggregate shocks – productivity shocks that affect the marginal productivity

of labor and markup shocks that impact the wedge between the output price and the marginal cost

of production. We introduce heterogeneity across firms through differences in the average level of

markups and their exposure to the aggregate markup shocks.

2.1.1 Final goods

Technology The final consumption good Yt is produced using a two-tier production structure

as in Rotemberg and Woodford (1992)). First, a continuum of industry goods of measure one are

packaged using a constant elasticity of substitution (CES) aggregator:

Yt =

(∫ 1

0
Y

τ−1
τ

j,t dj

) τ
τ−1

, (1)

where Yj,t is the output of industry j at time t and τ > 0 is the elasticity of substitution across

industry goods.

In turn, each industry good Yj,t is a CES aggregator that bundles a continuum of differentiated

products of measure one according to:

Yj,t =

(∫ 1

0
bij y

1
µj,t

ij,t di

)µj,t
, (2)

where yij,t is the output of firm i in industry j and at time t, and bij denotes the share of each

product in the industry-level CES aggregator. The shares across all firms and industries add up to

unity
∫ 1

0 bijdi = 1.

We introduce markup shocks in the model by assuming that parameter µj,t is time-varying
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due to exogenous shocks (e.g., see Justiniano et al. (2010)). As we show later, µj,t directly affects

the wedge between the price charged by the firm and the marginal cost of production. As such,

innovations to µj,t can be interpreted as markup shocks.6

Product demand Solving the cost minimization problem of the final goods producer yields the

following inverse demand function for each industry good:

Yj,t = Yt

(
Pj,t
Pt

)−τ
(3)

where Pj,t is the market clearing price of industry good j and Pt is the aggregate price index, which

we take as our numéraire, i.e., Pt = 1.7

Similarly, solving the cost minimization problem for industry k leads to the following inverse

demand function for each product i in industry j:

yij,t = Yj,t

(
pij,t
Pj,t

)− µj,t
µj,t−1

b

µj,t
µj,t−1

ij . (4)

Therefore the demand function for product i in industry j is given by:

yij,t = YtP

µj,t
µj,t−1

−τ
j,t p

−
µj,t
µj,t−1

ij,t b

µj,t
µj,t−1

ij . (5)

Note that the demand for a firm’s product depends inversely on the price charged by the firm,

that is, the demand schedule decreases in the output price pij,t. The demand elasticity is given by

µj,t
µj,t−1 . The larger this parameter, the more elastic demand is. The limiting case where µj,t → 1

implies an infinitely elastic demand, which corresponds to a perfectly competitive economy. Any

specifications where 1 < µj,t <∞ will grant the firm some degree of market power over the sale of

its product.

6Parameter µj,t is also related to the elasticity of substitution across goods in industry j. Indeed, one
can show that the elasticity of substitution ωj,t is related to µj,t in the following way: ωj,t =

µj,t
µj,t−1 .

7One can show that the market clearing price in industry j is given by: Pj,t =

(∫ 1

0
b

µj,t
µj,t−1

ij p
1

1−µj,t
ij,t dj

)1−µj,t

.

Refer to the online appendix for details.
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2.1.2 Intermediate firms

Technology The firm is equipped with Cobb-Douglas production technology. In particular, the

individual firm’s output is produced using pre-installed capital kij,t and a fully flexible variable

input vij,t as follows:

yij,t = kα
k

ij,t (Zt vij,t)
αv , (6)

where αk and αv represent the share of capital and variable input in the production function,

respectively. Additionally, we assume the production technology is constant returns to scale, such

that αk+αv = 1. In a typical production function, the variable input is labor. However, in general,

it can be any production inputs that the firm can freely adjust, such as the cost of material,

electricity, etc.

The aggregate productivity Zt is a non-stationary process that is the same for all intermediate

firms in the economy. The growth rate of aggregate productivity ∆zt follows a mean-reverting

process:

∆zt =∆z + (1− φx)xt + φx îkt

xt =ρxxt−1 + σxε
x
t ,

(7)

where ∆z is the productivity growth rate in the steady state and the hat-superscript denotes the

log-deviations from the steady state. The time-varying component in aggregate productivity growth

is a weighted average of two terms: a latent exogenous state variable xt as in Croce (2014) and

an endogenous component that depends on the aggregate investment rate, îkt. This specification

is a parsimonious way to introduce long-run risk in the spirit of Bansal and Yaron (2004) without

specifying a fully-fledged endogenous growth model à la Romer (1990). In the quantitative section,

we calibrate φx to match salient features of the growth cycle as documented in Kung and Schmid

(2015).

The variable input is obtained in competitive markets for a unit price of P vt . The firm’s capital

is accumulated through investment iij,t and only becomes productive in the next period, i.e., time-
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to-build. The stock of productive capital accumulates as follows,

kij,t+1 = (1− δk)kij,t + Γ

(
iij,t
kij,t

)
kij,t (8)

where δk is the depreciation rate of capital and Γ(·) captures the idea that capital accumulation

is subject to adjustment costs. Those costs are key to quantitatively match investment dynamics

jointly with asset prices (see Jermann (1998)).

The firm’s dividend is defined as the total revenue minus variable costs, minus investment:

dij,t = pij,tyij,t − P vt vij,t − iij,t, (9)

where pij,t is the price charged by the firm on its product and P vt is the competitive variable input

price, taken as given by the firm.

Optimality conditions The firm’s objective is to choose the level of investment and the quan-

tity and price of its output to maximize the firm’s market value, defined as the present discounted

value of cash-flows

eij,t = max
iij,t,vij,t

dij,t + Et[Mt+1eij,t+1],

where eij,t is the value of firm i in industry j. In doing so, the firm understands that it has local

monopoly power over the sale of its product (firms are monopolistic), and thus, firms will take the

demand as given, as defined in Eq. (5).

The first order condition with respect to the variable input of production yields a factor demand

relation that equates the marginal cost of adding one additional unit of variable input (left-hand

side) to its marginal product (right-hand side):

P vt =
αv

µj,t

pij,tyij,t
vij,t

. (10)

The first order condition with respect to investment yields the familiar Euler equation that equates

the marginal cost of building an additional unit of capital (left-hand side) to the present value of

11



the expected return on investment (right-hand side):

1

Γ′ij,t
= Et

Mt+1

 αk

µij,t+1

yij,t+1

kij,t+1
+

1− δ − Γ′ij,t+1
iij,t+1

kij,t+1
+ Γij,t+1

Γ′ij,t+1

 , (11)

where Γ′ij,t =
dΓ(iij,t/kij,t)

d(iij,t/kij,t)
, and Mt+1 is the one-period stochastic discount factor (to be defined

later). Note that qij,t = Γ′−1
ij,t represents the shadow value of an installed unit of capital, i.e., the

marginal q.

2.2 Markup shocks

We can reorganize the first order condition with respect to the variable input, i.e., Eq. (10), as

follows:

µij,t =
pij,t
P vt vij,t
αvyij,t

. (12)

This expression equates µij,t to the wedge between the output price charged by the firm pij,t and

the real marginal cost of production
P vt vij,t
αvyij,t

. In other words, µij,t is the price markup of firm i in

industry j.

To understand the impact of aggregate markup risk on firms’ stock returns, we introduce an

exogenous aggregate markup process µt that impacts the price markup of all firms in the economy.

We assume, however, that individual firms have heterogeneous exposures to this aggregate shock.

In particular, we assume that firm-level markup obeys the following process in logs:8

log(µij,t) = log(µ̄ij) + λµij × log(µt), (13)

where log(µt) is an AR(1) process with iid innovations εµt ∼ N(0, σµ):

log(µt) = ρµ log(µt−1) + εµt . (14)

8In the model, firm-level markups are the same for all firms within the industry because of our CES
assumption. Thus, the i subscript can be dropped. In the empirical section, however, the exact definition of
an industry is not clear so we directly estimate the markup at the firm-level. We add the firm subscript for
generality.
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Price markups differ across firms for two reasons. First, there is a time-invariant component

that determines the steady-state level of market power of a firm µ̄ij . For example, firms producing

less differentiated products such as orange juice producers are likely to have lower markups than

major high-tech firms such as Apple. Second, firms differ in exposure to the aggregate markup

process µt. For example, a large firm with lots of data might be able to extra more rents from

consumers using advances in artificial intelligence (a markup shock) than a smaller firm. In this case,

large firms would have a higher fundamental markup exposure λµij than smaller firms. Allowing for

heterogeneity in both the level and sensitivity of markups allows us to compare these characteristics’

impact on the cross-section of asset prices.

2.3 Representative household

We assume a representative household with Epstein-Zin preferences defined over aggregate con-

sumption, Ct:

Ut =
C

1−1/ψ
t

1− 1/ψ
+ β

(
Et[U

1−θ
t+1 ]

) 1
1−θ

, (15)

where θ ≡ 1− 1−γ
1−1/ψ , γ captures the degree of relative risk aversion, ψ is the elasticity of intertem-

poral substitution, and β is the time discount rate. In our calibration, we choose ψ > 1
γ , so that

the agent has a preference for early resolution of uncertainty following the long-run risks literature

(e.g., Bansal and Yaron (2004)).

The representative household maximizes lifetime utility by choosing consumption and supplying

the variable input to firms. We normalize the variable input endowment to one (e.g., labor as in

Favilukis and Lin (2016)). The household also participates in financial markets by trading firms’

equity. Accordingly, the budget constraint is:

Ct + PSt St+1 = P Vt Vt + (Dt + PSt )St, (16)

where P Vt is the competitive variable input price, Vt is the total variable input supplied by the

household, normalized to one, Dt is the aggregate payout from the production sector that equals
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∫∫ 1
0 dij,tdidj, P

S
t is the price of the claim to aggregate dividend payout, and St is the stock holding

in period t.

The household’s maximization problem implies the stochastic discount factor (intertemporal

marginal rate of substitution), which is used to price all assets in the economy:

Mt+1 = β

 Ut+1

Et(U
1−θ
t+1 )

1
1−θ

−θ (Ct+1

Ct

)− 1
ψ

(17)

In equilibrium, all factor markets clear, that is, the variable input’s demand equals the sup-

ply, the aggregate capital stock, and aggregate investment are the sum of firm-level capital and

investment:

∫∫ 1

0
vij,tdidj = 1∫∫ 1

0
kij,tdidj = Kt∫∫ 1

0
iij,tdidj = It

where Kt and It denote the aggregate capital and the aggregate investment, respectively.

3 Quantitative results

This section evaluates the model quantitatively. We document that the price of markup risk

is negative. Apart from successfully matching aggregate quantity and asset pricing dynamics, our

heterogeneous firm setup enables us to investigate the relationship between market power, exposures

to markup risk, and equilibrium stock returns, and to formulate new predictions that allow us to

empirically test them in Section 4.9

9In the following, we omit the industry subscript j, unless it is necessary to avoid confusion.
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3.1 Calibration and quantitative performance

Calibration We start with a description of the calibration used in the benchmark model. All

parameters values are summarized in Table 1. The parameters that control household’s risk aversion

γ and intertemporal elasticity of substitution ψ are calibrated to 10 and 2 respectively, and are in

the standard range of values in the long-run risk literature (e.g., Bansal and Yaron (2004)). The

assumption that agent prefers a preference for early resolution of uncertainty (γ > 1
ψ ) is consistent

with asset market evidence as shown in Ai et al. (2020). The time discount rate β is set to be 0.99

to generate a low average risk-free rate.

We set the capital share, αk, and the variable input share, αv, to 0.33 and 0.67, respectively.

These are standard values used in the literature to match the steady-state input shares when the

variable input is labor. The annual depreciation rate for physical capital is 10%, consistent with

the steady-state investment rate. The demand elasticity across the industry, τ is chosen based on

the estimates in Corhay, Kung, and Schmid (2020a). The investment adjustment cost parameters

are set to match the steady-state investment rate and the volatility of the aggregate investment.

The values are standard in the production-based asset pricing literature (e.g., Jermann (1998)).

The two aggregate shocks are calibrated to match their empirical counterparts. In particular the

aggregate productivity growth process include three parameters: the persistence of the unobservable

component ρx, the volatility σx, and the loading of productivity growth on aggregate investment φx.

We choose the persistence parameter ρx to be consistent with the production-based asset pricing

literature (e.g., Croce (2014)). The volatility parameter σx and the loading on the aggregate

investment rate φx are pinned down by jointly matching the volatility of aggregate output and the

unconditional Sharpe Ratio in the data. The parameters that govern the dynamics of the aggregate

markup process are set to match our empirical measure described in section 4.1, that is, we set ρµ

to generate an annual persistence of 0.93 and use a standard deviation for the markup shock of 1%.

We now discuss the parameters driving the cross-section of firms in the model, namely µ̄i and

λµi . To keep the model tractable, we discretize the firm distribution in three groups along those two

parameter dimensions. In other words, we have three level of average markups µ̄i: low, medium,

and high and for each level of markup, three values for the sensitivity parameter λµi , for a total

of nine firm types. We choose the three values for each of the parameters to replicate the firm
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Table 1: Calibrated parameter values

Description Parameter Value

Time discount rate β 0.99
Relative risk aversion γ 10
IES ψ 2

Capital share in production αk 0.33
Variable input share in production αv 0.67
Adjustment cost curvature Γ1 15.5
Capital depreciation rate δk 10%/4
Elasticity of substitution τ 2

Long-run productivity growth ∆z̄ 2%/4
Persistence of productivity shock ρx 0.91/4

Volatility of productivity shock σx 0.24%
Loading of productivity on investment φx 2.5%
Persistence of aggregate markup ρµ 0.93
Volatility of markup shock σµ 1%

This table presents the calibrated parameters used in the benchmark model.

distribution in our sample. In particular, the low-, medium-, and high-markup levels are set to

1.10, 1.27, and 1.47, respectively and the fundamental markup exposures λµi are set to -0.78, 0.86,

and 3.86. Finally, the share parameters bi in the CES aggregator (2) are calibrated so that the

share of revenue for all types of firms is identical.

Quantitative performance We solve and simulate our model at a quarterly frequency using

a second order perturbation method around the deterministic steady state. We then aggregate

quantities and prices into annual level and report a series of key asset pricing and macroeconomic

moments in Table 2. Our model is consistent with salient features of macroeconomic quantities

and asset prices. In terms of aggregate moments for macro quantities, our model features a low

volatility of consumption growth (1.64%) and a relatively high volatility of investment (3.66%).

Both consumption and investment growth exhibit strong pro-cyclicality as in the data. For asset

pricing moments, our model produces a low risk-free rate (2.34%) and a high equity premium 5.66%

on the levered claim. The risk-free rate is smooth with a low volatility of 0.81%. In short, our
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model provides a good fit to both business cycle quantities and asset prices. We now turn to the

impact of markups shocks in the model.

Table 2: Aggregate moments

Data Model

A. Macroeconomic Quantities

E[∆Y ] 2.05% 2.09%
σ(∆Y ) 3.05% 1.72%
σ(∆C)/σ(∆Y ) 0.83 0.95
σ(∆I)/σ(∆Y ) 2.61 2.13
ρ(∆C,∆Y ) 0.77 0.83
ρ(∆I,∆Y ) 0.89 0.63

B. Asset Prices

E[RM −Rf ] 5.71% 5.66%
σ(RM −Rf ) 17.4% 6.75%
E[Rf ] 1.10% 2.34%
σ(Rf ) 0.97% 0.81%

This table presents moments from the model simulations and the data, at an annual frequency. Panel A

reports several key statistics for macroeconomic quantities, Panel B reports key asset pricing moments.

3.2 The price of markup shocks

In order to shed light on the implications of markup risk for asset prices, we plot the impulse

response functions to a positive markup surprise. The results are reported in Figure 1. An increase

in markup raises firms’ market power and firms optimally cut production to maximize profits.

This leads to a drop in intermediate input demand and capital expenditures, consistent with the

firm’s optimal investment condition (Eq. (11)). The persistent decline in output brings down

aggregate consumption. From the investor’s perspective, a decline in future consumption lowers her

continuation utility, which raises her marginal utility. A positive markup shock is thus associated

with negative news for the representative investor, that is, markup shocks carry a negative price of

risk. As for the firm, the risk exposure to a markup shock is positive because the firm value and

the corresponding excess return increase following the shock.
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Figure 1: Impulse Response Functions for Markup Shocks
This figure plots the impulse-response functions to a positive markup shock (i.e., εµ > 0) for investment

growth (∆I), output growth (∆Y ), consumption growth ∆C, aggregate markup µ is computed as the log

of the sum of firm-level markups weighed by firm sizes, the stochastic discount factor (M), and the excess

return on the aggregate stock market Re. The units of the y-axis are percentage deviations from the steady

state.

To better understand how a contractionary shock can cause an increase in asset prices, it is

useful to decompose the market value of a firm, ei,t into two components: (i) the present value of

rents, and (ii) the value of assets in place. Denoting the market value of firm i by ei,t:

ei,t = di,t + Et[Mt+1ei,t+1]

= pi,tyi,t − P Vt vi,t − ii,t + Et[Mt+1ei,t+1]

= drents
i,t + dassets

i,t + Et[Mt+1ei,t+1]

= erents
i,t + eassets

i,t

where eki,t = dki,t +Et[Mt+1e
k
i,t+1], for k = {rents, assets} is the present value of the rents and assets
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Figure 2: Impulse Response Functions - Firm Value Decomposition
This figure plots the impulse response functions to a positive markup shock (i.e., εµ > 0) for the present

value of the rents claim, the present value of the assets in place claim, and the total stock market value. The

present value of rents and asset in place are defined in equation (18) and (19), respectively. The units of the

y-axis are quarterly percentage deviations from the steady state.

components of the firm. The dividends of the two components are defined as:

drents
i,t = pi,tyi,t − P Vt vi,t −Rki,tki,t (18)

dassets
i,t = Rki,tki,t − ii,t, (19)

where Rki,t = αk

µi,t+1

yi,t+1

ki,t+1
is the shadow rental rate of a marginal unit of capital. drents

i,t denotes the

cash-flow from monopolistic rents. When markets are perfectly competitive, this cash-flow is zero in

each period causing the present value of rents to be equal to zero. The second dividend component,

dassets
i,t represents the income the firms makes on its installed capital. Thus, eassets

i,t represents the

value of assets in place.

Figure 2 examines how each of the firm value components changes in response to a positive
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markup shock. While the total market value increases in response to the shock, the individual

components move in opposite direction. An increase in markup raises firms’ market power and

firms optimally cut production to maximize profits. The reduction in production is associated with

a lower demand for capital which reduces the shadow rental rate of capital and the value of assets

in place. In other words, when firms have a surprise increase in market power, installed capital is

less valuable. In contrast, higher markup power increases the firms’ monopolistic rents and thereby

raises the present value of the rents component. Overall, the net impact of the markup shock

depends on which of these two effects dominate. We find that the change in the rents component

dominates, which explains why the aggregate stock return increases following the markup shock.

3.3 Cross-sectional asset pricing implications

We now turn to investigate the impact of heterogeneous exposures to the aggregate markup shock

on asset prices. As evident from Equation (10) and (11), the price markup, µi,t, plays a key role

in determining the firms’ optimal decisions and asset prices. To study these effects, we compare

the impact of a markup shock on firms with different markup exposures. We consider two firms.

The first firm, the ”low markup exposure” firm, is negatively exposed to the aggregate markup

shock. The second firm, the ”high markup exposure” firm is positively exposed to the aggregate

markup shock.10 Results are plotted in Figure 3. In response to the positive markup shock, the

high markup exposure firm sees its market power increase relatively more, which allows the firm to

extract more monopolistic rents. The firm also cuts on investment. The reduction in investment,

joint with the increase in monopolistic rents contribute to a rise in the dividend and firm valuation.

In contrast, the responses of the low markup exposure firm are opposite.

The firm-level responses in Figure 3 highlight an important result: firm valuations respond very

differently to markup shocks. Given that the price of markup risk is negative, a higher exposure

to the aggregate process should translate into lower expected return. To assess the quantitative

importance of this effect, we sort firms according to their markup sensitivity parameter λµi into

low, medium, and high markup sensitivity portfolios. We then examine the characteristics of these

10We pick the markup sensitivity parameters of the low- and the high-markup exposure firm, i.e., λµL and
λµH , to coincide with the 25% and 75% percentile of the empirical distribution of λµi ’s. More details on the
sample construction for the λµi ’s can be found in section 4.
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Figure 3: Impulse Response Functions - Markup exposure sorted firms
This figure compares the impulse response functions to a one-standard-deviation increase in markup shock

(εµ), conditional on the sensitivity to aggregate markup parameter λµi , for firm investment growth (Ii),

markup (µi), dividend growth (di), and firm value growth vi. The high (low) case corresponds to a firm

with λµi that equals the 75% (25%) percentile in the markup exposure distribution in our simulated data.

All values on the y-axis are percentage deviation from the steady state.

three portfolios in Table 3. The upper panel shows that firms that are more exposed to markup

risk have lower average excess returns. The return difference is economically significant. The high

minus low (H-L) return spread is large, at around -1.2% per annum.

The negative H-L spread is not explained by a differential exposure to the aggregate productivity

shock. To see this, we compute the risk exposures (betas) for each portfolio by running the following

regression:

Reit = αi + βµi ε
µ
t + β∆TFP

i εxt + εit, (20)

where Reit is the excess return of firm i at time t.

The lower panel of Table 3 reports the risk exposure for each portfolio as well as that of the
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H-L portfolio. The H-L portfolio loads positively on the markup shock, but its exposure to the

productivity shock is essentially zero. Thus the negative H-L spread is solely explained by a positive

exposure to markup risk.

Table 3: Portfolios sorted on exposures to markup shocks in the Model

L M H H-L

Portfolio returns

E[Re] 6.86 6.32 5.68 -1.18

Risk exposures

β∆TFP 0.82 0.91 0.84 0.02
βµ -0.32 0.39 0.80 1.12

This table reports the characteristics of value-weighted portfolios sorted on measures of firms’ exposure to

the markup shock, using model simulated data. For each measure, we report the lowest (L), medium (M),

and highest (H) markup exposure portfolios. We also report the difference between the highest and lowest

portfolios (H-L). We consider two markup exposure measures: the fundamental markup exposure λµi (left

panel) and the return-based markup beta βµi (right panel). Panel A reports the average excess return for

each portfolio. Panel B reports the portfolio risk exposures to the TFP shock and markup shock. The risk

exposures are estimated using linear regression: Reit = αi +βµi ε
µ
t +β∆TFP

i ∆TFP t + εit. The rolling window

for estimating exposure to shocks is 12 years as in the data. We generate a long sample with 4000 years of

observations.

The asset pricing implications of firms’ exposure to markup shocks contrast with those related

to the average level of firms’ markups. To see this, we run a series of Fama-MacBeth cross-sectional

regressions of future returns on both the level of expected markups and the exposure to markup risk.

Results are reported in Table 4. Column (1) shows that a higher expected markup is associated

with higher future returns, consistent with the idea that the degree of market power increases firm

risk (e.g., Corhay et al. (2020a)). Intuitively, the level of price markup endogenously increases the

firm’s exposure to aggregate productivity risk because monopolistic rents make firms’ profits more

pro-cyclical. In contrast, column (2) shows that higher markup exposure is associated with lower

future returns, which echoes the results in Table 3. Importantly, column (3) shows that both effects

remain significant and of similar magnitude when included together. These results suggest that

both the level and the dynamics of markups are important to understand the impact of market

power on asset prices and offers a very different risk mechanism. While the level of markups affect

the exposure to a positively priced source of risk (productivity), the markup exposure mainly loads
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on a negatively priced source of risk (markup risk).

Table 4: Fama-MacBeth regression: Model-simulated data

(1) (4) (5)

log(expected markup) 2.83*** 2.82***
(23.05) (36.23)

βµ -0.65*** -0.57***
(-8.60) (-7.66)

Observations 35,100 35,100 35,100
R-squared 0.21 0.79 0.95
Controls Yes Yes Yes
Industry FE Yes Yes Yes

This table reports the results of Fama-MacBeth regressions using the model-simulated data. We simulate

the economy such that the sample is comparable to the empirical counterpart. We regress firm-level returns

on lagged markup betas and controls. The markup shock exposure is obtained by regressing firm-level

returns on the markup shocks, with the market factor as the control variable. It is estimated using a

rolling window of 12 years. The markup exposure measures are standardized to have zero mean and a unity

standard deviation. The excess returns are in annualized percentage terms. We report Newey-West adjusted

t-statistics in parentheses, allowing for 4 lags. The t-statistics are in parenthesis, and *, **, and *** indicate

significance at the 10%, 5%, and 1%, respectively. We generate a sample consistent with the data sample in

Table 10.

In short, the results in this section show that markup risk is an important source of economic

fluctuations that is priced in financial markets. It also highlights an important difference between

the level and exposure of markups in terms of asset pricing implications.

3.4 Testable predictions

Our model generates a series of new predictions on the asset pricing implications of markup shocks,

which we summarize in this section. First, a surprise increase in markups depresses investment and

production input demand and leads to a drop in output. At the same time, the aggregate stock

market increases following a markup shock. This happens because higher market power increases

the firms’ present value of rents. This yields the following testable prediction:

Prediction 1. A positive markup shock is associated with a contraction in macroeconomic ag-

gregates, but an increase in aggregate stock market valuations.
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Accordingly, positive markups shocks are associated with bad news for the representative in-

vestor and thus high marginal utility states. This yields the second prediction:

Prediction 2. The price of markup risk is negative.

If the representative investors commend a negative premium for bearing markup risk, then firms

with different exposures to markup risk should have different expected returns. This leads to our

third prediction:

Prediction 3. Firms who are more exposed to markup shocks earn lower average stock returns.

Prediction 4. Upon an increase in the aggregate markup shock, firms who are more exposed

to markup shocks experience higher growth rates in markup, cash flow, and market capitalization.

Their investments decrease more than firms with lower exposure to markup shocks.

In the next section, we formally test those three model predictions using a series of empirical

asset pricing tests.

4 Empirical evidence

In this section, we build an empirical measure for the aggregate markup shock. We then test the

impact of markup shocks on asset prices and aggregate quantities. Importantly, we show that

markup risk is priced in the cross-section of equity returns and carry a significant negative price of

risk, consistent with the model predictions.

4.1 Construction of markup shocks

The aggregate markup shock series is built in three steps. First, firm-level markups are estimated

following the production approach as in De Loecker, Eeckhout, and Unger (2020). Second, we

remove the predictable component of firm-level markups to isolate markup surprises for each indi-

vidual firm in the sample. Finally, the aggregate markup shock series is obtained by aggregating

the firm-level markup surprises. We explain each step in more details in the sections below.
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Data sources We first characterize the data used for the empirical analysis. Estimating firm-

level markups requires accounting data. We obtain those from the Compustat Annual Database,

for the period 1955 to 2020. Following standard practice in the literature, we exclude utility firms

(SIC codes between 4900-4999) and financial firms (SIC codes between 6000-6999). We also drop

observations with negative or missing sales item, cost of goods sold (COGS), or physical capital

(PPEGT). Firm-level variables are deflated using the GDP deflator, obtained from the Bureau of

Economic Analysis (BEA). Data on firms’ stock return and market capitalization are obtained from

CRSP database.

Macroeconomic variables are obtained from the Federal Reserve Economic Data Database main-

tained by the St. Louis Fed. Inflation is defined as the log change in the core Consumer Price Index.

Real output is defined as the aggregate GDP divided by the GDP deflator. Consumption is defined

as real personal consumption expenditures. Real investment is defined as the real gross private

domestic investment. The relative price of investment goods to consumption goods ratio is calcu-

lated as investment deflator divided by consumption deflator. The aggregate series for Total Factor

Productivity (TFP) is downloaded from the Federal Reserve Bank of San Francisco. We obtain the

market factor and risk-free rate from Ken French’s website and the returns of 25 portfolios formed

on size and book-to-market, 10 portfolios formed on asset growth rates, and the Fama-French 10

industry portfolios. The 10 portfolios formed on return-on-asset are obtained from Hou, Xue, and

Zhang (2015). The sample period is from 1963 to 2020.

Firm-level markups The first step consists of obtaining estimates of firm-level markups. Mea-

suring markups at the firm-level is a difficult task as it requires obtaining data on marginal cost

of production and output prices, which are not readily available. In this paper, we follow the pro-

duction approach to estimate firm-level markup, pioneered by Hall (1988). This approach obtains

firm-level markups by exploiting the cost-minimization of a variable input of production. To see

this more clearly, one can rearrange the first order condition with respect to the variable input of
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production in the model, i.e., Equation (12), to obtain:11

µi,t =
αvi
svi,t

,

where svi,t =
P vt vi,t
pi,tyi,t

is the share of variable input expenses as a proportion of total firm’s revenues.

The expression above says that the price markup can be estimated as the wedge between a

variable input’s production elasticity and that specific input’s expenditure share in revenue. Thus

according to the production approach, the firm-level markup can be identified using any variable

input, v, observed by the econometrician. In order to accurately measure firm markups in the data,

one needs to first obtain data on a flexible production input. De Loecker, Eeckhout, and Unger

(2020) use the Compustat item COGS as a measure of v. The idea is that COGS should include

all relevant variable costs attributable to the sale of a unit of output, such as the cost of material,

electricity, labor, etc. However, Traina (2018) argues that simply using COGS could underestimate

the true cost structure of a firm’s variable input over time. This happens because firms have

increasingly devoted more of their inputs toward marketing and management costs, which are not

recorded under COGS, but under the Compustat item SG&A (selling, general and administrative

expenses). Therefore in this paper, we define the total variable input of the firm by adding 70% of

SG&A expenses to the reported COGS.12

An important variable to compute markups is the elasticity parameter αvi . We closely follow

the procedure in De Loecker et al. (2020) and estimate αvi using the standard production function

estimation techniques. The firm production function is assumed to be Cobb-Douglas as in the

model (see Eq. 6), with a variable input bundle V and a predetermined capital stock K (defined by

Compustat item PPEGT). Following the literature, the elasticities are estimated by pooling firms

at the two-digit NAICS level. This assumption is reasonable as firms in the same industries are

likely to have similar production technologies. In addition, it allows to have more observations to

more precisely estimate the elasticity parameters.

A well-known challenge is that the unobserved firm productivity may correlate with the produc-

11We ignore the industry subscript for simplicity.
12The choice to add 70% of SG&A is consistent with the literature on intangible capital that argues that

roughly 30% of SG&A can be capitalized as organizational capital. Gutiérrez and Philippon (2017) also do
a similar adjustment to obtain their measure of total variable costs.
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tion inputs, leading to biased estimates of the production elasticities. We follow standard practice

in the literature (e.g., see Levinsohn and Petrin (2003)) and use a control function approach with a

law of motion for unobserved productivity to obtain a consistent estimate of the output elasticities.

The detailed estimation procedure can be found in Appendix A. At the end of the first step, we ob-

tain a panel of around 150,000 firm-year observations of price markups.13 We report the summary

statistics for our sample in Table 5.

Table 5: Summary statistics of firm-level markup measures

mean median std Observations

µ 1.18 1.17 0.28 157,273

This table reports the summary statistics of the estimated firm-level markup measures. The sample is from

1962 to 2020. The detailed estimation procedure can be found in Appendix A.

Firm-level expected markups and markup surprises The second step consists of purg-

ing the expected component in firms’ markups in order to estimate surprise changes in markups.

We compute the expected markup for each firm i, Et−1[µi,t] using a predictive regression approach.

In particular, we run the following predictive regression at the 4-digit NAICS code industry level:

µi,t = ηi + ρµi,t−1 + βZi,t−1 + εµi,t, (21)

where ηi denotes firm fixed effect, Zi,t−1 is a vector of lagged control variables, and εit is the

markup surprise. The control variables include size, cash flow to asset ratio, book-to-market ratio,

and productivity. The productivity is obtained from the estimating firm-level markup, please see

details in Appendix A. The choice of control variables is motivated by the empirical findings in De

Loecker et al. (2020) that firms’ markups are closely related to size and profitability.

Table 6 reports the results of the predictive regression performed on the whole sample and

shows that it does a reasonable job at predicting firms’ subsequent markups. The high R2, around

13To ensure that we capture well the common components in price markups, we require at least 100
observations for each year. This is a problem for the early sample where data is often missing. Thus, our
markup measures starts in 1962.
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Table 6: Expected Markup

Predictor µ log(ME) CF/AT BM TFP R2

Coefficients 0.410 0.002 0.040 0.003 0.011 0.801
(19.48) (1.14) (2.95) (3.71) (1.01)

This table reports the predictive regression as in Equation (21). The lagged control variables include markup

µ, the logarithm of market capitalization log(ME), cash flow to asset ratio CF/AT , and book-to-market

ratio BM . We also include firm fixed effect. The sample is from 1962 to 2020. We report t-statistics in

parentheses. Standard errors are clustered by firm and year.

80% on average, demonstrates that our choice of predicting variables can explain a large fraction

of variations in markups.14

We interpret the difference between the firm-level realized and expected markup as the surprise

markup shock. More formally, the firm-level markup shock series is obtained as follows:

εµi,t = µi,t − ̂Et−1[µi,t]. (22)

Aggregate markups and markup shocks We are ultimately interested in obtaining a

series for the markup shock that affects all firms in the aggregate. Thus, our last step consist of

aggregating the markups and markup shocks series.

Following Edmond, Midrigan, and Xu (2018), we define the aggregate markup series by cost-

weighting the firm-level observations. In particular, the aggregate and expected markup series are

obtained as follows:

µt =
∑
i

wi,tµi,t (23)

Et−1[µt] =
∑
i

wi,tEt−1[µi,t], (24)

where wi,t is the total variable input of firm i, divided by the total variable input for all firms at

time t.

The upper panel in Figure 4 presents the evolution of the aggregate and expected markup

14The lagged markup alone can explain more than 60% in an OLS regression without fixed effects.
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over time. Consistent with the findings in De Loecker et al. (2020), aggregate markups started to

rise in the 1980s. Our average level of markup is lower, on average, which is consistent with the

results documented in Traina (2018). The expected markup series follows a very similar pattern as

the realized markup, which suggests that our predictive model captures a lot of the variations in

markups.

Next, the aggregate markup shock measure is obtained by cost-weighting the markup surprises

at the firm level:

εµt =
∑
i

wi,tε
µ
i,t. (25)

To ensure that the aggregate markup shocks is orthogonal to standard productivity shocks, we

project the markup shock series on the contemporaneous changes in TFP and keep the residual as

our measured aggregate markup surprises. The volatility of the resulting aggregate markup shocks

series is 0.9% per annum, and the persistence is 0.16.

The lower panel of Figure 4 plots the times series of markup shocks. Several points are worth

noticing. First, markups shocks tend to be high before economic recessions. This is true, even

after controlling for the business cycle variations in TFP. This suggests that markup shocks might

have important effects on macroeconomic aggregates as predicted by the model. We formally study

the business cycle properties of markups shock series in the next section. Second, the markup

shock series has experienced several large positive shocks in the later part of the sample. This

suggests that some of the forces driving the secular trends in markups are unrelated to changing

firm’s characteristics or total factor productivity, but driven by another process affecting all firms’

markups in the cross-section.

4.2 Markup shocks and the business cycles

Our paper argues that markup risk is an important driver of asset prices. In order to ensure that

our constructed series does indeed capture variations in aggregate markups, it is useful to compare

the business cycle fluctuations to those inferred from the model (see Figure 1). An increase in

markup is associated with a decrease in investment, labor and output. We test these relations in
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Figure 4: Aggregate Markup and Markup Shocks
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This figure presents the time series of the realized and expected aggregate markup (top panel) and the time

series of the aggregate markup shocks (bottom panel). Shaded bars represent NBER recession years. Data

are annual from 1963 to 2020.

the data by running the following predictive regressions:

∆xt→t+h = α+ βeε
µ
t + γΓt + εt+h, (26)

where ∆xt→t+h =
∑h

s=1 ∆xt+s denotes the h-year ahead growth rate of the variable of interest, Γt

is a vector of lagged macroeconomic variables used as controls.

We standardize the markup shock to help interpret the results. As shown in Panel A, a one-

standard-deviation increase in the markup shock is associated with a 0.5% to 2% standard deviation

decrease in consumption growth rates in the next one to two years. The coefficients are large and
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Table 7: Markup shocks and aggregate variables

Panel A: Predicting macroeconomic quantities

∆ct→t+1 ∆ct→t+2 ∆ct→t+3 ∆yt→t+1 ∆yt→t+2 ∆yt→t+3

βe -0.005** -0.013*** -0.019*** -0.002 -0.007*** -0.014***
(t) (-2.52) (-4.18) (-3.57) (-0.89) (-3.15) (-3.64)

R2 0.412 0.182 0.165 0.396 0.172 0.164

∆it→t+1 ∆it→t+2 ∆it→t+3 πt→t+1 πt→t+2 πt→t+3

βe -0.002 -0.017 -0.036*** 0.004** 0.009*** 0.012**
(t) (-0.16) (-1.54) (-2.68) (2.55) (2.70) (2.42)

R2 0.320 0.220 0.219 0.864 0.665 0.643

Panel B: Correlation with market valuations

∆Qt RM
t

βe 0.028* 0.41*
(t) (1.92) (1.76)

Panel A reports the result of predictive regressions between markup shocks and business cycle variables.
Specifically, it reports slope parameter βe of markup shocks in Equation (26). Panel B presents the con-
temporaneous correlations between markup shocks and measures of market valuations, using the same set
of control variables. We use the growth rate of aggregate Tobin’s q (∆Q) and market excess returns (RM )
to measure market valuations. ∆Qt is defined as the growth rates of the aggregate market capitalization
to private nonresidential fixed capital ratio. The controls include lagged consumption growth ∆ct−1, lagged
output growth ∆yt−1, lagged investment growth ∆it−1, and lagged core inflation πt−1. The markup shock
is normalized to have a standard deviation of unity. The Newey-West adjusted t-statistics are reported in
parentheses, computed using six lags. We use *, **, and *** to indicate significance at the 10%, 5%, and
1%, respectively. The sample is from 1963 to 2020.

statistically significant. The responses of output and investment growth have similar economic

magnitudes. Therefore, a positive shock to markups is associated with a contraction in real quan-

tities, consistent with the model. Importantly, the response of inflation to an increase in markups

is positive and statistically significant, which suggests that the forcing process causing the reces-

sion also leads to inflationary pressure.15 Panel B shows the relation between markup shocks and

valuation ratios. A positive markup shock is associated with an increase in the aggregate Tobin’s

15Note that the results are robust to using other measures of inflation, such as total CPI or the GDP
deflator.
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Q, which corroborates one key prediction from the model: markup shocks are contractionary but

lead to an increase in firms’ valuations. The reason why an increase in markups lead an opposite

effect in aggregate quantities vs. asset markets comes from the fact that higher markups increase

the present value of future rents, which boosts firm valuations at the expenses of households (see

Figure 1).

Overall, the findings in this section show that the business cycle properties of the markup shocks

are in line with those produced by an exogenous markup shock. In the next section, we study the

asset pricing properties of markup shocks.

4.3 The price of markup risk

In this section, we formally test the second prediction of the model concerning the impact of

markup shocks on asset prices, namely, the price of markup risk is negative. To do so, we perform

a standard linear factor asset pricing test (e.g., see Cochrane (2009)). The model features two

sources of aggregate risk, namely aggregate productivity shocks and markup shocks. Accordingly,

in our empirical tests, we consider a two-factor asset pricing model with the stock market excess

return as a proxy for aggregate productivity risk as in Belo, Lin, and Yang (2019) and the markup

shock as the second factor. We specify the following stochastic discount factor (SDF):

Mt = 1− bMKT ·MKTt − bµ · εµt . (27)

The equation above states that investors’ marginal utility is driven by two aggregate shocks, the

market factor MKTt and the markup shock εµt . The parameters bMKT and bµ denote the loadings

on the market factor and markup risk, respectively.

Our goal is to estimate the prices of risk, bMKT and bµ, which is possible using a cross-section

of traded assets. In particular, imposing the standard asset pricing moment restrictions, we obtain

the following equilibrium condition, which must hold in the absence of arbitrage:

E[
(
1− bMKT ·MKTt − bµ · εµt

)
Reit] = 0, (28)
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where Rei,t is the excess return on a traded asset i in year t. The factor loadings on the two aggregate

shocks (bMKT and bµ) are estimated by the generalized methods of moments (GMM). We also

consider the special case of a single-factor model with only the market factor, i.e., the CAPM,

to compare it with the full specification in (28). This will help assess the relative importance of

markup shocks to capture systematic risk in the economy.

We estimate Eq. (28) using a broad set of testing portfolios, namely, 25 portfolios sorted on size

and book-to-market ratio, 10 capital growth (∆K) portfolios, 10 return-on-asset (ROA) portfolios,

and 10 industry portfolios. This large set of portfolios – 55 in total – allows us to improve on the

precision of the risk loadings estimates and establish the importance of markup shocks for asset

prices. Table 8 reports the GMM estimates of the risk factor loadings and implied mean absolute

pricing errors (MAE), obtained from the estimation of the two asset pricing models, using different

sets of test assets. The table shows that the estimated factor loadings on the markup shock are

negative and significantly different from zero across all the different sets of test assets. In contrast,

the factor loading on the market factor is positive. The economic magnitude of the estimated

factor loading is large at around -1.5 and quantitatively similar across specifications but somewhat

reduces when industry portfolios are included. This suggests that markup shocks affect firms at

a more granular level than industries. One can also convert the factor loadings to price of risks

estimates.16 The corresponding market prices of risks for the market factor and the markup shock

are around 10 and -1.5, respectively.

Table 8 also reports the MAE for each asset pricing model. The two-factor model does a better

job explaining the returns than the CAPM model as the MAE is about 50% lower than those

of the CAPM model. For robustness, we consider a specification that includes investment-specific

technology (IST) shocks (Papanikolaou (2011)) as a third risk factor in our linear SDF test. The IST

shock is defined as the growth rate of the relative price of investment goods to consumption goods.

The results in Table 8 show that after controlling for IST shocks, the negative price of markup risk

is still statistically significant. Consistent with Papanikolaou (2011), the slope coefficient bIST is

negative, which suggests that investment-specific shock carries a negative price of risk.

Taken together, the results in Table 8 show that markup risk is an important source of aggregate

16See Cochrane (2009) for details.
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Table 8: Price of risk of markup shocks

25 SZ-BM 10 ∆K 10 ROA

bMKT 0.54 0.58 0.43 0.74 0.36 0.64
(t) (3.34) (1.98) (2.76) (1.87) (2.30) (1.03)
bµ -1.17 -1.72 -1.92
(t) (-2.07) (-1.71) (-1.70)
MAE 2.39 1.98 1.44 1.06 2.23 1.40

45 SZ-BM, 55 SZ-BM, 55 SZ-BM,
∆K, ROA ∆K, ROA, Industry ∆K, ROA, Industry

bMKT 0.45 0.60 0.46 0.53 0.46 0.61
(t) (3.18) (1.59) (3.15) (2.16) (3.15) 1.54
bµ -1.41 -0.74 -1.47
(t) (-2.10) (-2.59) (-2.22)
bIS -0.04
(t) (-0.10)
MAE 2.30 1.72 2.12 1.94 2.12 1.81

This table shows the estimation results of the linear stochastic discount factor, as in Equation (27). We

perform the first-stage estimation using the identity matrix as the weighting matrix. We report from the

estimates of the risk factor loadings and the pricing errors. The t-statistics are reported in parentheses,

computed using the Newey-West estimator allowing for six lags. MAE is the mean absolute pricing errors.

The risk factors considered are the market factor and the markup shocks. We also consider a specification

with an additional factor, the investment-specific technological shocks (IST). We normalize both of the

factors to have a mean zero and a standard deviation of one. The estimation of the asset pricing model is

based on 55 portfolios: 25 portfolios sorted on size and book-to-market ratio, 10 capital growth (∆K), 10

return-on-asset (ROA), and 10 industry portfolios. Data are annual from 1963 to 2020.

risk that is priced in the cross-section of equity returns. Importantly and consistent with the model

predictions, the price of markup risk is large and negative, that is, episodes of unexpectedly high

market power corresponds to high marginal utility states for investors.

4.4 Markup risk and the cross-section of asset prices

The previous section documented that markup shocks are an important source of systematic risk.

As a result, heterogeneous exposures to the aggregate markup shock should result in cross-sectional

differences in stock returns. In this section, we provide a set of empirical tests that support the
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third prediction of the model.

Markup betas and the cross-section of stock returns In the model, the aggregate

markup shock affects firms heterogeneously because firm-level markups have different exposure to

the aggregate markup process. In this section, we provide further evidence for the key economic

channel through which exposures to markup shocks affect the asset prices in the cross-section.

We use stock returns to estimate firms’ exposure to aggregate markup shock βµi,t. It is obtained

by regressing firm-level excess returns on the markup shock, controlling for the market factor. It

is calculated using a 12 year-rolling window. We then sort firms into ten portfolios based on their

level of markup exposures and track their subsequent returns.

Table 9 presents the results. The upper panel shows that firms with higher markup exposures

earn, on average, 6.18% lower returns than firms with lower markup exposures. The return dif-

ferential is large and statistically significant at the usual confidence level. Importantly, as shown

in the lower panel, while the estimated markup betas exhibit an increasing pattern, the market

and IST betas across the different portfolios are mostly flat. Those results are consistent with the

model’s predictions that markup shocks demand a negative price of risk and that the main force

driving cross-sectional differences across markup exposure-sorted portfolios is due to heterogeneous

exposure to markup risk (see Table 3 for the model counterpart table). These results corroborates

the third prediction of the model, namely, heterogeneous exposures to markup risk is an important

driver of the cross-section of asset prices.

We further test the third prediction of the model via Fama-MacBeth cross-sectional regressions

of realized stock returns on lagged markup betas. We also use standard firm characteristics that

have proven successful at explaining the cross-section of stock returns as control variables, such as

the book-to-market, size, ROA, asset growth ∆K, and financial leverage. To ensure that our results

are not driven by the average level of markups, we also include the expected markup as a control

variable. The regression specification is:

Rei,t+1 = aj + b log(Et−1[µi,t]) + cβµi,t + γΓi,t + εi,t, (29)

where βµi,t is the measure of markup exposure, aj is the industry fixed effect, and Γi,t is a vector of
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Table 9: Portfolios sorted on exposures to markup shocks

L 3 6 8 H H-L

Portfolio returns

E[Re] 13.11 9.98 9.41 8.14 6.94 -6.18
(t) (5.30) (4.71) (4.01) (6.19) (3.31) (-2.75)

Risk exposures

α 4.06 1.24 9.88 1.97 -4.82 -8.88
(t) (0.64) (0.27) (5.72) (1.29) (-1.22) (-0.91)
βµ -2.53 -2.20 1.11 1.36 2.79 5.32
(t) (-1.99) (-1.56) (0.91) (1.65) (1.60) (1.93)

βMKT 1.07 0.85 0.78 0.72 1.00 -0.07
(t) (11.73) (13.08) (8.50) (9.79) (5.72) (-0.40)
βIST 0.03 -0.30 3.00 0.25 -0.87 -0.89
(t) (0.01) (-0.17) (3.92) (0.61) (-0.65) (-0.29)

This table reports the characteristics of value-weighted portfolios sorted on measures of firms’ exposure to

the markup shock. We sort firms into 10 portfolios each based on the markup shock exposure measure. We

report the characteristics for selected deciles, as well as the difference between the first and the tenth decile

portfolios (H-L). Panel A reports the average excess return for each portfolio. Panel B estimates the portfolio

risk exposures to the markup shock βµi , the market factor βMKT
i , and the investment-specific technological

shock βISTi . The risk exposures are obtained by the following regression: Reit = αi + βµi ε
µ
t + βMKTMKTt +

βIST ISTt + εit. The Newey-West adjusted t-statistics with 10 lags are reported in parentheses. The sample

period is 1980-2020.

controls. To better interpret our results, βµi,t is standardized to have a zero mean and a standard

deviation of one. The excess returns Rei,t+1 are annualized.

Table 10 presents the results from the Fama-MacBeth regressions for both the markup beta

and the return-based markup beta. The results in column (1) show that the expected markup

positively predicts future returns. This firm-level evidence is consistent with our model findings

and the existing literature that firms with higher markups have a higher risk. The results in column

(2) show that a one-standard-deviation increase in markup exposure is associated with a 1% drop

in returns next year. It is economically and statistically significant. This negative relationship

between exposure to markup shocks and future returns is robust when we control for the expected

markup, as shown in column (3). Additionally, we obtain quantitatively similar results if we use

return-based markup beta instead of the markup beta, as presented in column (4) and (5). Overall,
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Table 10: Fama MacBeth predictive regressions

(1) (2) (3)

log(expected markup) 2.42 2.80
(1.30) (1.25)

βµ -0.94* -0.89*
(-1.88) (-1.71)

Observations 93,114 85,599 66,509
R-squared 0.05 0.05 0.06
Controls Yes Yes Yes
Industry FE Yes Yes Yes

This table reports the results of Fama-MacBeth regressions based on the specification in Equation (29).

The markup beta βµ is obtained by regressing firm-level markup surprises on the markup shocks, with the

market factor as the control variable. It is estimated using a rolling window of 12 years. We standardized

βµ to have zero mean and a unity standard deviation. The control variables include the book-to-market

ratio, size, return on equity, capital growth rate, and debt-to-asset ratio. We also control for industry-fixed

effects using the two-digit NAICS code. The excess returns are in annualized percentage terms. We report

Newey-West adjusted t-statistics in parentheses, allowing for 10 lags. The sample period is 1980-2020. The

t-statistics are in parenthesis, and *, **, and *** indicate significance at the 10%, 5%, and 1%, respectively.

the cross-sectional tests confirm the model predictions on the relation between the level of markup,

the exposure to markup risk, and firms’ expected return presented in Table 4.

The documented results are consistent with earlier studies that have shown that higher market

power is associated with higher expected stock returns. For example, Bustamante and Donangelo

(2017) and Corhay et al. (2020a) show that firms operating in more concentrated industries face a

higher threat from new entrants, resulting in more risk. Corhay (2017) shows that the embedded

put option to default combined with a time-varying competition hedge reduces the cyclicality of

competitive firms’ cash flow, thereby reducing risk. While these papers rely on productivity risk

to explain the relation between markup, industry concentration and returns, our paper identifies

a new and complementary force through which markups impact firms’ risk. In particular, we find

that a larger exposure to markup shocks reduces firms’ risk.

To sum up, using the portfolio sorts and Fama-MacBeth regressions, we provide both portfolio

and firm-level empirical evidence on the negative relationship between exposures to markup shocks

and future returns.
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Risk exposures of testing portfolios The previous section showed that heterogeneous expo-

sures to markup shocks is priced in the cross-section of stock returns. In this section, we investigate

the relation between markup betas and asset prices for a series of portfolios sorted on various firm-

level characteristics that are standard in the empirical finance literature, namely portfolio sorted on

book-to-market, size, asset growth, and profitability. For each portfolio sort, we report the average

return as well as the risk exposures to the markup shock estimated using

Reit = αi + βMKT
i MKTt + βµi ε

µ
t + εit (30)

where αi is a constant term, and βMKT
i and βµi denote the exposures to the market and markup

factors, respectively. The hope is that markup betas explain, at least partially, the well-known

“anomalies”.

Table 11 reports the results. The estimated markup betas vary significantly within each portfolio

sort, usually in a monotonic fashion. Perhaps more interestingly, the markup betas for each portfolio

are well-aligned with their respective portfolio returns. For instance, growth firms underperform

value firms in terms of equity returns, commonly referred to as the value premium. We find that

growth firms are more positively exposed to markup shocks, leading to lower expected returns.

One potential reason for this is that growth firms tend to invest more in R&D and organizational

capital. De Loecker et al. (2020) show that in the data, firms with high markups tend to also

invest more in R&D and advertising expenditures. Therefore, the growth characteristic is likely

correlated with the present value of future rents of the firm, which might cause growth firms to be

more exposed to shocks that affect current and future markups. Because the aggregate markup

shock carries a negative price of risk, growth firms will earn, on average, a lower stock return than

value firms.

The markup beta also lines up well with the portfolios sorted on firm size (ME). Larger firms

have lower returns and larger markup betas. This is consistent with the argument that larger firms

may benefit more from new data technologies, which increases the market power of such firms at

the expenses of the smaller firms (Begenau et al. (2018)). In fact, we find that small firms have a

negative exposure to the markup shock as opposed to larger firms, suggesting that markup shocks
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Table 11: Risk exposure to markup shocks

L 2 3 4 5 6 7 8 9 H H-L

BM

E[R] 7.14 8.43 7.70 7.38 7.60 8.84 8.07 9.63 11.16 11.63 4.48
(t) (2.55) (3.43) (4.26) (3.92) (4.26) (6.23) (5.06) (6.61) (7.97) (6.23) (1.36)
βµ 0.14 -0.11 -0.31 -0.32 1.13 1.14 -0.31 -0.67 -1.53 -2.41 -2.54
(t) (0.15) (-0.14) (-0.81) (-0.48) (1.89) (1.10) (-0.24) (-0.72) (-2.22) (-2.62) (-1.63)

ME

E[R] 11.34 10.09 10.45 9.71 10.31 9.35 9.60 9.05 8.27 6.86 -4.49
(t) (4.90) (5.67) (6.65) (6.44) (6.79) (5.84) (6.21) (5.43) (4.44) (3.08) (-1.36)
βµ -3.61 -2.98 -1.46 -2.13 -1.63 -1.20 -0.81 -0.37 0.44 0.29 3.90
(t) (-1.82) (-2.36) (-1.94) (-2.98) (-2.30) (-2.47) (-1.68) (-0.75) (0.99) (1.14) (1.87)

∆K

E[R] 9.28 7.64 7.89 7.31 6.51 7.14 6.57 7.32 8.16 5.61 -3.67
(t) (5.48) (5.63) (6.02) (4.45) (3.28) (3.87) (3.21) (3.40) (2.98) (1.86) (-1.41)
βµ -0.50 0.09 0.23 1.21 0.08 -0.01 -0.06 0.23 0.68 1.73 2.23
(t) (-0.52) (0.11) (0.38) (2.42) (0.10) (-0.02) (-0.08) (0.35) (0.65) (1.82) (1.86)

ROA

E[R] 3.55 6.09 6.57 7.55 6.83 8.53 8.39 8.32 8.57 9.54 5.99
(t) (1.14) (3.24) (3.13) (3.96) (3.31) (3.78) (4.74) (4.70) (3.99) (3.46) (2.91)
βµ 2.37 -0.72 0.05 -0.45 -0.19 0.52 -0.67 0.02 0.28 -0.98 -3.35
(t) (1.48) (-0.68) (0.05) (-0.43) (-0.31) (1.27) (-1.37) (0.02) (0.45) (-1.27) (-2.56)

This table reports the testing portfolios’ risk exposures to markup shocks. We report the estimates of the

risk exposure to markup shocks βµi as defined in Equation (30). The Newey-West adjusted t-statistics are

reported in parentheses, allowing for 10 lags.

may have important impacts on the distribution of firms.

Similarly, firms that have experienced a high growth of capital (∆K) are more exposed to

the aggregate markup shock, which explains their lower equity returns observed in the data. A

potential explanation for this finding is as follows. Firms that grow their assets tend to do so

to take advantage of profitable growth opportunities. Those profit opportunities contain a rent

component, which is sensitive to surprise changes to the current and future market power of the

firm. Thus firms with a higher growth rate of assets have a higher equilibrium markup beta, which

explains their lower risk in equilibrium.

Overall, the exposure to markup shocks can explain a wide range of portfolio sorts documented
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in the literature. Although the model is purposely silent on the economic mechanism linking firms’

characteristics to beta exposures, the results in this section provides an interesting avenue for future

studies aiming to provide a micro-founded explanations for the documented markup beta spreads.

4.5 Markup exposures and firm dynamics

This section provides empirical evidence that firms with different markup shock exposures will react

to aggregate markup differently. These results support the fourth prediction of the model.

To study the role of markup shock exposure, we run the following regression:

∆yit = ai + ct + b · εµt × β
µ
it + γβµit + ΓZit + εit, (31)

where ai is the firm fixed effect, ct is the year fixed effect, and εµt is the aggregate markup shock.

The markup shock exposure βµ and markup shock εµ are standardized. Firm-level controls include

size log(ME), book-to-market ratio, book leverage, markup, and return on asset (ROA).17 The

dependent variable ∆yi,t include the growth rate of markup (∆µi,t), cash flow (∆cfi,t), market

capitalization (∆mei,t), and physical capital (∆k). The coefficient of the interaction term b captures

the impact of aggregate markup shock conditional on the firms’ markup exposures.

Table 12 reports the results from estimating the Equation (31). The estimation results show

that firms with higher exposure to aggregate markup shocks experience higher growth rates in

markup, cash flow, and market capitalization. Their investment will be lower than firms with lower

markup shock exposures. In the meanwhile, their investment will fall more. All these results are

consistent with our model’s prediction four that firms with higher markup shock exposure can

extract more monopolistic profits upon a positive markup shock. These results corroborate our

model implications, as shown in Figure 3.

17To avoid multicollinearity, we control for lagged markup and lagged log(ME) when the dependent
variables are their growth rate.
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Table 12: Markup shock exposure and real quantities

(1) (2) (3) (4)
∆µ ∆cf ∆me ∆k

εµ × βµ 0.002*** 0.053*** 0.083*** -0.012***
(2.894) (5.507) (5.124) (-3.415)

Observations 58,254 52,541 62,064 62,100
R-squared 0.491 0.347 0.544 0.317
Controls Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes

This table shows the firm-level real quantities in response to aggregate markup shocks. Specifically, we run

the regression in Equation (31). βµit is the firm i’s return exposure to the aggregate markup shock, it is

normalized to have a standard deviation of 1. Firm-level controls include size log(ME), book-to-market

ratio, book leverage, markup, and return on asset (ROA). We study a broad set of firm-level responses:

∆µ is the growth rate of markup, ∆cf is the growth rate of EBITDA, ∆me is the growth rate of market

capitalization, and ∆k is the growth rate of PPEGT. We cluster the standard errors by firm and year.

Statistical significance level: *** p<0.01, ** p<0.05, * p<0.1.

5 Conclusion

This paper explores the asset pricing implications of markup shocks. We build a new measure of

markup shocks using the common component that drives the cross-section of firms’ markups. We

document two new empirical facts. First, investors require a significant negative risk premium for

bearing markup risk. Second, markup shocks generate large differences in risk premia across firms

that explains many documented anomalies. Taken together, these findings suggest that markup

risk is an important source of aggregate risk that is priced in the cross-section of stock returns.

We rationalize these facts in a real business cycle with heterogeneous firms, imperfect com-

petition, and markup shocks. A positive markup shock allows firms to extract more rents from

consumers. Thus, an increase in markup is bad news for the representative household, which ex-

plains the negative price of risk. Firms, on the other hand, can benefit from markup shocks because

they increase the present value of future rents. In short, the average firm’s markup beta is positive,

which explains the negative risk premium commanded by investors. We calibrate the model to

match the distribution of both the level of markups and the markup exposures to the aggregate
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markup shock and find that it generates substantial cross-sectional return spreads consistent with

the data.

In our model, we adopt a reduced-form approach to model the firm’s heterogeneous exposures

to markup shocks. We view micro-founding those exposures in a partial equilibrium production-

based model (e.g., Zhang (2005)) with markup risk as an important challenge for future research.

Our empirical findings also suggest that markup shocks have important impacts on the distribution

of firms. Given the importance of markups for the transmission of monetary policy, extending our

framework into a Heterogeneous Agent New Keynesian model (e.g., Kaplan et al. (2018)) appears

an interesting avenue for future research.
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Appendix

A Production function estimation

The estimation procedure closely follows De Loecker et al. (2020). We define firm-level markup as

µi,t = αVi
PitYit
PVit Vit

, where PitYit is the firm revenues and P Vit Vit is the total variable input expenses. All

nominal variables are converted to real terms by dividing GDP deflator. The output elasticity of

the variable input αvi can be obtained by estimating the following industry-specific Cobb-Douglas

production functions:18

yi,t = θ0 + αvi vi,t + αki ki,t + ωi,t + εit,

where yi,t is the log real sales, vi,t is the log real variable input, ki,t is the log real capital stock, ωi,t

is the log productivity, and εi,t is the measurement error term.

The estimation follows a two-stage procedure. In the first stage, we compute expected sales by

regressing sales on a second-order polynomial approximation in kit and vi,t.

yit = θ0 + ψ(ki,t, vi,t) + εit, (A1)

where ψ(ki,t, vi,t) =
∑2

m=0

∑2−m
j=0 δ̂mnk

m
i,tv

n
i,t. We then use the estimated polynomial to predict the

firm output as a function of the production inputs, ψ̂(ki,t, vi,t). This allows us to purge the error

term εi,t out of the firm’s output. The underlying assumption is that the firm’s output will respond

to productivity ωi,t but not the measurement error εi,t.

In the second stage, we obtain the estimates for the elasticity parameters, α̂vi and α̂ki . First,

using Equation (A1), we compute a prediction for ωi,t for any candidate value of α̃vi and α̃ki as

18Since we do not separately observe the inputs and output price and quantity, we follow De Loecker
et al. (2020) and use the sales and expenditures directly when estimating the production elasticities. This
approach assumes the equality of marginal and average cost of production. De Loecker et al. (2020) provides
a discussion on the conditions under which this estimation generates consistent estimates of the output
elasticities.
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follows,

ω̂i,t = ψ̂(ki,t, vi,t)− α̃ki ki,t − α̃vi vi,t.

Next, we assume that the productivity process follows an AR(1) process

ω̂i,t = γ0 + γ1ω̂i,t−1 + ξit, (A2)

where ξit is a productivity shock, realized at time t.

The key identification assumption required to estimate the elasticities is that the variable input

and next period capital respond to current productivity shocks, but their lagged values do not.

Therefore, the following moment conditions can identify the elasticity parameters α̂vi and α̂ki :

E

ξit (αv, αk)
 vit−1

kit


 = 0.

50


	Introduction
	Model
	Production
	Final goods
	Intermediate firms

	Markup shocks
	Representative household

	Quantitative results
	Calibration and quantitative performance
	The price of markup shocks
	Cross-sectional asset pricing implications
	Testable predictions

	Empirical evidence
	Construction of markup shocks
	Markup shocks and the business cycles
	The price of markup risk
	Markup risk and the cross-section of asset prices
	Markup exposures and firm dynamics

	Conclusion
	Production function estimation

