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Responsible Consumption, Demand Elasticity,

and the Green Premium

Abstract

We study equilibrium asset prices in a model where investors favor “green” over “brown” goods. We

show that demand elasticity of goods crucially affects assets’ riskiness. When demand elasticity is high,

brown assets are safer than green, because they hedge against consumption risk. The opposite holds

when goods’ demand elasticity is low. Our model therefore predicts that the “green minus brown”

stock return spread (green premium) varies in the cross section and increases in the price elasticity

of demand. We test this novel prediction on US stocks and find that over the 2012–2022 period the

annual green premium is 11.7% for firms with high demand elasticity, while it is much smaller and

insignificant for firms with low demand elasticity. The high green premium for high demand elasticity

firms is robust to standard risk adjustments and to alternative measures of demand elasticity; it cannot

be explained by unanticipated shocks to investors’ environmental concerns, and remains strong after

using option-implied measures of expected returns. These findings underscore the critical role of goods’

demand elasticity for understanding the impact of responsible consumption on asset prices.

JEL Classification: G11, G12

Keywords: Responsible consumption, Demand elasticity, ESG investing, Deep-habits, Equilibrium

asset prices



1 Introduction

Individuals manifest their preference for social responsibility through their investment and consump-

tion decisions. Socially responsible investors aim at achieving pro-social objectives by divestment or

shareholder engagement. Similarly, socially responsible consumers aim to influence corporate behavior

through their purchasing decisions.1 Spurred by the widespread attention to environmental, social,

and governance (“ESG”) concerns in investment decisions, the finance literature has directed its focus

toward exploring the impact of socially responsible investments on asset prices. Much less attention,

however, has been devoted to the financial repercussions of socially responsible consumption. This gap

in the literature is surprising given the pervasive and frequent nature of households consumption de-

cisions and their economic relevance.2 Tariq Fancy, BlackRock’s former global chief investment officer

for sustainable investing effectively underscores the relevance of responsible consumption: “. . . 10% of

the market not buying your stock is not the same as 10% of your customers not buying your product.”3

In this paper we study the implications of responsible consumption for asset prices. In an equi-

librium consumption-based asset pricing model where agents prefer goods produced by socially-

responsible firms, we show that the price elasticity of demands for goods is a crucial determinant of the

riskiness of “green” (socially responsible) and “brown” stocks. Specifically, the return spread between

green and brown stocks is increasing in the price elasticity of demand. Empirically, we find that a

large part of the documented outperformance of green stocks over the last decade can be attributed

to firms facing high demand elasticity. Our empirical results suggests that responsible consumption

plays an important role in the cross sectional pricing of securities in the US equity market.

To illustrate the main mechanism of our model, consider an endowment economy with two types

of goods, “green” and “brown” and a consumer who prefers green over brown goods. Assume also

that the agent can trade green and brown stocks, representing financial claims on the green and brown

good endowments, respectively. The agent holds financial assets as a way to smooth consumption and

maximize lifetime utility. Our main result is that responsible consumption affects the risk of green and

1The Free-produce Movement, an international boycott of goods produced by slave labor or the late 1700s, is credited
as one of the earliest form of responsible consumption in the US, see, Glickman (2004). Notable instances of responsible
consumption include movements such as the boycott against South African goods during Apartheid, the 1960s consumer
rights movement in the United States, and more recent campaigns promoting ethical sourcing and sustainability in
consumer products.

2Final goods consumption expenditure represents 68.21% of GDP in the US (OECD, 2023).
3https://medium.com/@sosofancy/the-secret-diary-of-a-sustainable-investor-part-1-70b6987fa139.

https://medium.com/@sosofancy/the-secret-diary-of-a-sustainable-investor-part-1-70b6987fa139
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brown assets differently, depending on the level of the price elasticity: when goods’ demand elasticity

is high, green stocks are riskier than brown and vice-versa when demand elasticity is low.

To understand this result, suppose that the economy is in a state where the green endowment is

scarce relative to the brown. Because the consumer favors the green good, states of the world where

the green endowment is scarce are “bad” for the consumer, relative to states where the brown good is

scarce. If demand elasticity is high, the consumer can easily substitute green for brown goods, making

the green good is less “special”. A green stock is therefore risky as the drop in quantity occurring in

bad states is not compensated by an increase in desirability of the green good. Although brown goods

are less desirable to the consumer, when demand elasticity is high, they act as a good substitute for

green goods in bad states. Therefore, brown stocks provide a natural hedge against the risk of green

goods shortages. In sum, when demand elasticity is high, green stock are riskier than brown. The

opposite is true when demand elasticity is low. In this case green goods are difficult to substitute with

brown, making them very valuable in states where they are in short supply. In this case green stocks

are safer, as they deliver the highly desirable green goods in bad states of the economy while brown

stocks are riskier. The mechanism at play is similar to the “terms of trade hedge” in international

finance, e.g., Cole and Obstfeld (1991) and Martin (2010), that is, price response (terms-of-trade) can

provide insurance against output shocks. Hence a key prediction from our theory is that the“green

premium”—that is, the difference between the expected return of green and brown stocks—is an

increasing function of goods’ demand elasticity.

We first illustrate the main idea in a two-period model where a representative agent has constant

elasticity of substitution (CES) preferences over two consumption goods. We explicitly show that the

demand elasticity determines the relative riskiness of assets in the economy. When demand elasticity

is greater than one, the asset that produces the favored good is riskier than the asset that produces

the disfavored good. The opposite is true when demand elasticity is less than one. While informative

about the effect of demand elasticity on asset prices, the simple CES model implies that all goods

in the economy have the same demand elasticity, which corresponds to the elasticity of substitution

across goods. Because of this limitation, the CES endowment model cannot capture the heterogeneity

in goods demand elasticity observed in the data.

To break the link between elasticity of substitution and demand elasticity in the simple CES

model, we propose a general equilibrium model with multiple goods where the agents form habits

over individual goods, as in Ravn, Schmitt-Grohé, and Uribe (2006) and van Binsbergen (2016). The
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presence of good-specific habits allows us to generate a representative cross section of goods’ demand

elasticities, consistent with reality. As in van Binsbergen (2016), goods with high habit level have

low demand elasticity and hence the asset producing such goods hedges against aggregate shocks. In

equilibrium, these assets are less risky than those producing goods with low habit levels. If consumers

favor some goods over others, the positive relation between demand elasticity and expected returns

becomes “steeper” for the asset assets producing favored goods (e.g., green asset) than for assets

producing disfavored goods (e.g., brown assets). We provide an analytical characterization of the

equilibrium in a static model with deep habits and then generalize the model to an infinite-horizon

economy. The key prediction of the model is that the expected return spread between green and

brown stocks, the green premium, is increasing in demand elasticity. This result is general. To the

extent that consumers exhibit a bias in favor a class of goods and against others, the risk premium of

a portfolio that longs the favored asset and short the unfavored one is an increasing quantity of the

goods’ demand elasticity.

We empirically investigate our model predictions using US stock return data from CRSP and ESG

scores from MSCI. Following van Binsbergen (2016), we use cumulative price changes (CPC) as a

proxy of demand elasticity: decreasing product price are signals of high price competition and hence

high demand elasticity. We sort firms into portfolios based on their demand elasticity and their ESG

score. Specifically, for each demand elasticity portfolio, we form a zero-cost portfolio that shorts firm

with low ESG scores and long firms with high ESG score. We refer the spread return on this portfolio

as the Green Minus Brown (GMB) spread, or green premium. Similar to Pastor, Stambaugh, and

Taylor (2022), we find that over the 2012–2022 sample period green stocks outperform brown in our

sample period with a cumulative return difference of 68.3%. However, we also find that virtually

all of this out-performance comes form stocks in the high-demand elasticity tercile. From our time

series analysis we estimate that the annual equal-weighted GMB spread for high demand elasticity

stocks is 11.7% and statistically significant. In contrast, the GMB spread for low demand elasticity

stocks is 2.6% and statistically insignificant. The positive GBM spread in the high demand elasticity

portfolios remains economically and statistically significant after controlling for exposures to common

asset pricing factors, such as the CAPM, the Fama and French (1993) three-factor model and the

Fama and French (2015) five-factor model. This results is striking and confirms that consumption

preferences and demand elasticity have a first order effect in the determination of the green premium

in the cross section of US stocks.
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The relatively short sample period, 2012–2022, raises the concern that our results, based on realized

returns might not be informative of the theoretical predictions of our model, that instead refer to

expected returns. To address this concern, we also perform our analysis using two alternative measures

of expected returns provided by the existing literature. First, following Pastor, Stambaugh, and Taylor

(2022) we estimate expected return based on the intercept of the regression of realized returns on shocks

to climate concerns and earnings to obtain a “counterfactual”, or purified, measure of the GMB spread.

Second, we construct a measure of conditional expected returns at the stock level from forward-looking

information contained in traded option contracts, as in Martin (2017) and Martin and Wagner (2019).

We find that, while the unconditional GMB spread can be explained by climate and earning

surprises, the same cannot be said for the GMB spread within high demand elasticity stocks. Unan-

ticipated shocks to climate concerns and firms’ earnings only explain approximately half of the GMB

spread and the counterfactual spread remains positive and significant. Fama-Macbeth regressions of

option-implied expected returns further show that, unconditionally, firms with high ESG scores have

low expected returns. These results confirm the finding of Pastor, Stambaugh, and Taylor (2021) and

Pastor, Stambaugh, and Taylor (2022) that the recent outperformance of green over brown stocks is

largely driven by “surprises” and that the expected GMB return is negative. However, our analysis

also shows that the relation between ESG scores and expected returns is negative for low demand

elasticity and positive for high demand elasticity. These findings provide novel evidence that GMB

spread varies across demand elasticities, suggesting the existence of a risk compensation channel, as

predicted by our model.

Our findings have implications for strategies that responsible consumers undertake to impact firms’

behavior. We show that responsible consumption raises the cost of capital for green firms with high

price elasticity of demand and lowers it for green firms with low elasticity. Hence, consumers’ strategies

that target goods with inelastic demand have a greater impact on the cost of capital of the targeted

firms. Such strategies can be an effective tool to incentivize firms to embrace the values championed by

consumers.4 To the best of our knowledge, ours is the first study to document, both theoretically and

empirically, the relevance of responsible consumption and goods’ demand elasticity for asset prices.

4Jagannathan, Kim, McDonald, and Xia (2023) examines the effectiveness of three different strategies used by envi-
ronmental activists, namely Exit, Boycott, and Voice, on asset prices. They find that consumption Boycott is at least
as effective as Exit, and Voice to be the most effective, in that it requires the fewest amount of coordination among
activists.
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Literature. Our paper contributes to two strands of literature. First, we contribute to the rapidly

growing literature investigating the effect of social preferences on returns, starting with the pioneering

contribution of Heinkel, Kraus, and Zechner (2001) who offer a model in which the divestment by

green investors raises the cost of polluting capital. Papers in this literature typically model the

impact of responsible investment on the cost of capital.5 In contrast, our work emphasizes the role

of responsible consumption on asset prices. We show that for a green consumer it might be optimal

to counterintuitively hold a brown asset because it provides insurance against shortages of the green

endowment. Baker, Hollifield, and Osambela (2022) first highlighted this channel in a single-good

economy where environmentalists who dislike pollution optimally hold more shares of polluting firms

for hedging motives. By allowing for good-specific habits, our model shows that the hedging property

of green assets is crucially determined by the demand elasticity. Importantly, we also provide novel

empirical evidence emphasizing the role of goods’ demand elasticities on the relative return of green

and brown assets. In doing so, we offer a theoretically motivated refinement of the existing evidence

on the riskiness of green and brown stocks.

Second, we contribute to the recent literature that studies the market implications of consumption

consciousness. Aghion, Bénabou, Martin, and Roulet (2023) show how responsible consumption in-

duce firms to pursue greener innovations while Kaufmann and Koszegi (2023) shows that responsible

consumption may induce non-price taking behavior in general equilibrium. We add to this literature

by evaluating the implication of responsible consumption on asset return and showing that the rela-

tion between responsible consumption and the green premium is intermediated by the goods’ demand

elasticity. Sauzet and Zerbib (2022) also study the implication of green consumption on asset return

in a general equilibrium model. The key difference from their paper is that our model features a cross

section of goods with heterogeneous demand elasticities, whereas the two goods in their economy have

the same demand elasticity, equal to an exogenously specified elasticity of substitution. Importantly,

we provide extensive empirical evidence that the green premium varies in the cross section, depending

on the price elasticity of demand. Our work also shares commonalities with Albuquerque, Koskinen,

and Zhang (2019), who present an industry equilibrium model where firms invest in corporate social

responsibility (CSR) to increase product differentiation, leading to lower systematic risk. However,

our model differs from theirs in that green firms do not inherently possess a more loyal customer

5See, e.g., Luo and Balvers (2017); Baker, Bergstresser, Serafeim, and Wurgler (2018); Pedersen, Fitzgibbons, and
Pomorski (2021); Pastor, Stambaugh, and Taylor (2021); Landier and Lovo (2020); Berk and van Binsbergen (2021); Pas-
tor, Stambaugh, and Taylor (2022); Bolton and Kacperczyk (2021); Zerbib (2022); Oehmke and Opp (2022); Hartzmark
and Shue (2023).
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base. Instead, by exploiting good-specific habits, our model can generate a cross section of demand

elasticities. This feature enables us to explore the equilibrium relationship between green and brown

returns based on the price elasticity of demand.

The rest of the paper proceeds as follows. Section 2 present a simple two-period model of consump-

tion bias. Section 3 generalize the model by introducing good-specific habits and study equilibrium

asset prices in the presence of heterogeneity in goods’ demand elasticity. Section 4 contains our

empirical analysis. Section 5 concludes.

2 A simple equilibrium model of responsible consumption

In this section, we develop a stylized two-goods static model in which a representative agent trades two

securities, each representing a claim to the goods included in the agent’s consumption basket. The

model illustrates how responsible consumption—modeled as a preference bias in favor of one good

relative to the other affects equilibrium asset prices.

2.1 Setup

We consider an economy with two dates, t = 0, 1, and two assets, or “trees” in unit supply, which

we label as G (“green”) and B (“brown”). At time t = 0, 1 each tree i = G,B produces a random

quantity of perishable good Yi,t. The two assets G and B are tradable in a frictionless financial market

and the two goods are traded in competitive product markets.

The representative agent is endowed with the outstanding shares of the two trees, selects a preferred

consumption plan of the two goods, and chooses a portfolio strategy of the two assets that attains the

desired consumption plan. Assets and goods are priced such that the representative investor’s optimal

strategy is not to trade at either time period and to consume the goods produced by the two trees.

Preferences. The preferences of the representative agent exhibit an “ideological bias” that favor

one type of consumption over the other. We assume that good G is favored over good B. This bias

represents, for example, a preference towards goods produced locally or with an environmentally-

friendly technology, and dislike for goods with negative environmental or social impact, such as such

tobacco or firearms or other “sin” goods.
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We assume that the intertemporal preferences of the representative agent have a standard constant

relative risk aversion (CRRA) representation

C1−γ
0

1− γ
+ βE

[
C1−γ
1

1− γ

]
, (1)

where γ > 1 is the coefficient of relative risk aversion, β a time-preference parameter and Ct denotes a

“composite good” consisting of a constant elasticity of substitution (CES) aggregation of consumption

in each of the two goods, Ci,t, that is,

Ct =
(
1 + ϕG

2
C

1− 1
η

G,t +
1 + ϕB

2
C

1− 1
η

B,t

) 1

1− 1
η , t = 0, 1, (2)

with ϕG = −ϕB = ϕ ∈ [0, 1] and η > 0. The parameter η ∈ (0,∞) denotes the elasticity of substitution

across goods.6 The parameter ϕ represents the agent’s preference bias in favor of good G and against

good B. For ϕ = 0 the agent does not exhibit consumption bias. The bias ϕ is a reduced-form way

to introduce responsible consumption in the model. Large value of ϕ imply strong desire for good G

against good B. The case of ϕ→ 1 can be interpreted as an extreme form of responsible consumption,

such as a boycott campaign against good B.

Equilibrium. An equilibrium consists of asset prices Vi and goods prices Pi,t, i = G,B, t = 0, 1,

such that the representative agent maximizes its lifetime utility (1) and goods and asset markets

clear. Given the preferences representation in equations (1)–(2), constructing an equilibrium in this

economy requires two steps. First, we solve the intertemporal problem of the representative agent by

considering a fictitious model with a single tree, representing a claim to the aggregate quantity of the

composite good Ct. The price of the G and B assets are such that the representative agent holds the

endowed tree. Second, at each time t, we solve the intra-temporal problem of the agent, consisting of

finding the optimal demand for goods and the corresponding market clearing prices.

Asset prices. We consider a fictitious one-tree economy with an endowment processes Yt given by

Yt =

(
1 + ϕG

2
Y

1− 1
η

G,t +
1 + ϕB

2
Y

1− 1
η

B,t

) 1

1− 1
η . (3)

6For η → ∞, Ct → 1+ϕG
2

CG,t + 1+ϕB
2

CB,t, implying that goods G and B are substitute. For η → 0, Ct →
min{CG,t, CB,t} and the two goods are perfect complement. For η → 1, the composite good Ct has the “Cobb-Douglas”

representation Ct = C
1+ϕG

2
G,t C

1+ϕB
2

B,t .
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and a representative investor with the preferences described in equation (1). Imposing market clearing,

Ct = Yt, t = 0, 1, we obtain that the pricing kernel in this fictitious single-tree economy is

M1 = β

(
Y1

Y0

)−γ

. (4)

Goods prices. Without loss of generality, all prices of goods and assets will be expressed in units

of the composite good, Yt. The representative agent maximizes the intraperiod utility (2) under

the constraint that the endowed budget Yt is spent on the purchase of goods G and B, that is,

Yt = PG,tCG,t + PB,tCB,t. The solution of this problem leads to the following demand functions

Cj,t =

(
1 + ϕj

2

)η

P−η
j,t Yt. j = G,B. (5)

Equation (5) show that the demand of both goods have the same price elasticity, that is,

−∂ lnCj,t

∂ lnPj,t
= η, j = G,B. (6)

Therefore, in this economy, the parameter η captures both the elasticity of substitution across good

and the demand elasticity of each good. Imposing market clearing, Cj,t = Yj,t, in equation (5) we

obtain the equilibrium goods prices

Pj,t =
1 + ϕj

2

(
Yj,t
Yt

)− 1
η

, j = G,B. (7)

Because each asset j delivers a payoff of Yj,tPj,t units of the composite good, the expected return of

asset j = G,B at time 0 is

E[Rj ] =
E[Yj,1Pj,1]

E [M1Yj,1Pj,1]
, j = G,B. (8)

Substituting the expression for the pricing kernel from equation (4) and the equilibrium goods prices

from equation (7) in equation (8), we obtain that asset i’s expected return is

E[Rj ] =

E
[
Y

1
η

1 Y
1− 1

η

j,1

]
Y−γ
0 βE

[
Y

1
η
−γ

1 Y
1− 1

η

j,1

] , j = G,B. (9)
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An inspection of equation (9) shows that when η = 1, the expected return on asset G and B are

identical, that is,

E[RG] = E[RB] =
E [Y1]

Y−γ
0 βE

[
Y1−γ
1

] . (10)

The green and brown expected return are aligned when η = 1 because the CES aggregator (2) becomes

Cobb-Douglas and, as a result, the dividend of both the green and the brown securities is linear in

the quantity of composite good Y1.

To build intuitions on how the demand elasticity impacts expected returns when η ̸= 1, consider a

two-state economy where, at time t = 0, the supply of G and B goods are identical, YG,0 = YB,0 = 1

and at time t = 1 the endowment (YG,1, YB,1) is

(YG,1, YB,1) =

(h, 1), if ω = ωG

(1, h), if ω = ωB

, (11)

where h > 1 is a given constant and the two states ωG and ωB are equally likely. The following

proposition shows that the expected return of the green asset in this example is larger than the brown

asset if and only if η > 1.

Proposition 1. Suppose the time t = 1 endowment of green and brown goods is given by equation (11).

If the representative agent’s preferences exhibit a bias ϕ > 0 in favor of green goods, the “green-minus-

brown (GMB)” expected return spread, E[RG]− E[RB] > 0 if and only if η > 1.

To understand the result in Proposition 1, it is helpful to consider how changes in the endowment

Yj,1 affect the asset dividend, Dj,1. In a multi-good economy, the dividend Dj,t represents the pur-

chasing power of composite goods that ownership of asset i entails, that is Dj,t = Yj,t×Pj,t, j = G,B.

Using the equilibrium demand and price functions (5) and (7) and imposing market clearing Cj,t = Yj,t,

we obtain that the sensitivity of asset i’s dividend to shocks to endowment Yj,1 is

∆ lnDj,t = ∆ lnYj,t︸ ︷︷ ︸
quantity effect

+ ∆ lnPj,t︸ ︷︷ ︸
price effect

= ∆ lnYj,t

(
1− 1

η

)
, (12)

where the last equality follows from equation (6) and market clearing. Equation (7) shows that a

positive supply shock to either good j = G or B will always lead to a decrease in the price of that

good. However, by equation (12) the impact of the shock on the dividend is determined by the interplay
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of two opposing forces. The first is a positive force resulting from the increase in the good quantity,

while the second is a negative force resulting from the decrease in price. Equation (12) shows that the

dominance of either force depends on the demand elasticity of the affected good. In particular, when

the demand is inelastic (i.e., η < 1), quantity and dividends move in the opposite direction because

the decrease in price following a positive supply shock may offset the increase in quantity, leading to

a decrease in dividends. On the other hand, when the demand is elastic (i.e., η > 1), quantity and

dividends move in the same direction.

In Proposition 1 we have assumed that the consumption bias ϕ > 0, therefore the state in which

the green endowment is relatively scarce represents a bad state, that is, it exhibits a higher marginal

utility relative to a state where the brown endowment is scarce. Consider a shock to the endowment of

the two goods that leads the economy from the good state ωG to the bad state ωB. By equation (12),

when η > 1, the negative shock ∆YG,1 implies a decrease of asset G’s dividend; on the other hand, the

dividend of asset B (whose endowment is subject to a positive shock) increases. Therefore, asset G is

riskier than B, because it delivers a lower dividend when marginal utility is high. In contrast, asset

B is a hedging asset, as it delivers a higher dividend in the same state. The opposite result obtains

when η < 1. In this case, the asset G is a hedging asset while the asset B is riskier.

Figure 1: GMB spread and consumption bias in Proposition 1

The figure shows the equilibrium GMB spread E[RG] − E[RB ] as a function of demand elasticity for different
values of the consumption bias ϕ. The figure is based on the parameter values: γ = 2, β = 0.98, YG,0 = YB,0 = 1
and, h = 1.4.
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To further explore the role of elasticity and consumption bias on expected returns, Figure 1 shows

the GMB spread E[RG]−E[RB] from Proposition 1 as a function of demand elasticity η. We consider

three different values for the consumption bias: ϕ = 0, ϕ = 0.5 and ϕ→ 1. The figure shows that the

GMB spread is increasing in demand elasticity η: the G asset is riskier than B when η > 1 and safer

when η < 1. Furthermore, the figure shows that consumption bias ϕ amplifies the magnitudes of the

spread. In fact, the spread is zero when ϕ = 0 (black line) and increases, in absolute value, as ϕ → 1

(red line).

In sum, the stylized model of this section highlights that in an otherwise standard endowment

economy with multiple goods, if the representative agent is a responsible consumer, favoring some

goods over others in the consumption basket, then the expected return spread between the asset paying

dividends in the favored good and the asset paying dividends in the disfavored good is increasing in

demand elasticity. This implies that, when green goods are favored over brown goods, our model

predicts that the “green-minus-brown” expected return spread increases with demand elasticity. This

effect is amplified when activism motives are stronger, that is if the agent has a stronger preference

bias ϕ.

3 A model with heterogeneous price demand elasticities

The model of the previous section highlights that goods’ price demand elasticity is a key channel

through which responsible consumption impacts asset prices. However, the model suffers from the

limitation that all goods in the economy have the same demand elasticity, corresponding to the constant

elasticity of substitution η across goods. This assumption fails to capture the heterogeneity in price

demand elasticity that we typically see in the data. In this section, we break this link by generalizing

the model to allow for heterogeneity in price demand elasticity across goods. We show that when

agents’ preferences have a bias towards green goods, the GMB spread varies in the cross section

of demand elasticities. Specifically, green stocks are riskier than brown when goods’ price demand

elasticity is high while they are safer than brown when demand elasticity is low. We formally test this

prediction in the data in Section 4.

To capture the differences in demand elasticity in the cross section, we augment the model of

Section 2 by introducing good-specific (“deep”) habits, as in Ravn, Schmitt-Grohé, and Uribe (2006),

and van Binsbergen (2016). The introduction of deep-habits allows us to break in a parsimonious way
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the link between substitution elasticity η and price-demand elasticity. To illustrate the key intuition,

in this section, we focus on a stylized two-period version of the model. In Appendix D we generalize

the model to a dynamic setting, as in van Binsbergen (2016). Although the introduction of deep

habits allows us to generate variation in price demand elasticities across goods, our key result would

be present in any model that features a cross section of demand elasticities.

Preference and demand functions. As in Section 2, we consider a two-period economy featuring

two types of technologies, or sectors, distinguished by their “greenness,” denoted by j = G,B. Unlike

the model of Section 2, we assume that each technology produces a continuum of goods. Each good

produced by technology j is associated with a “good-specific” habit, which can be interpreted as the

agent’s degree of loyalty for the good. We assume that, for each technology j, there is a continuum of

habit levels H(i, j) ∈ [H,H] with the same distribution in both sectors.cWe allow for the possibility

that multiple goods share the same habit level.7 Therefore, we rank goods according to their habit

levels and refer to i ∈ [0, 1] as the ranking index for habit. This setup allows for a diverse cross-section

of products with varying levels of greenness j and habit level H(i, j). The pair (i, j) distinctly identifies

each differentiable product in this economy. As we show below, heterogeneity in habit levels translates

into heterogeneity in price-demand elasticities in the economy.

The economy consists of a continuum of homogeneous agents with CRRA preferences as in equa-

tion (1) who exhibit a consumption bias in favor of goods produced by green technologies. Similar to

equation (2) the consumption basket is

Ct =
(
1 + ϕG

2
Ĉ

1− 1
η

G,t +
1 + ϕB

2
Ĉ

1− 1
η

B,t

) 1

1− 1
η , t = 0, 1, (13)

where −1 < ϕB < ϕG < 1 represents the agent’s preference in favor of good G. For simplicity, we

assume that ϕG = −ϕB = ϕ > 0 where the parameter ϕ captures consumers’ bias. When ϕ > 0

consumers favor green over brown goods in their consumption basket. The variables Ĉj,t, for j = G,B

represent the habit-adjusted consumption of goods produced by the technology j, defined as

Ĉj,t =

[∫ 1

0

(
Ct(i, j)− θH(i, j)

)1− 1
η

di

] 1

1− 1
η

, j = G,B, (14)

7This implies that there could be a “one-to-many” relation between habit levels and goods. For simplicity, we also
assume that, for each good, the habit level remains unchanged over the two consumption periods.
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with θ ∈ [0, 1] a constant parameter capturing the relevance of habit, or degree of loyalty, towards

good (i, j). In the absence of good-specific habits, θ = 0, then Ĉj,t = Cj,t and the model collapses

to that of Section 2. We take the composite good Ct as the numéraire, implying that all prices are

expressed in units of the composite good.

Consumers takes as given the menu of good prices Pt(i, j) and habits H(i, j) for all goods (i, j)

when forming their demand function. Therefore, we can derive the optimal consumer’s demand Ct(i, j)

for good (i, j) by minimizing the expenditure needed to attain the consumption bundle Ct. The

following proposition characterizes the consumers’ demand Ct(i, j) for good (i, j), which is obtained

by minimizing the expenditure needed to attain the consumption bundle Ct.

Proposition 2. Given good prices Pt(i, j) and the desired habit-adjusted consumption Ct, defined in

equation (13), the demand function for good (i, j) is given by

Ct(i, j) =

(
1 + ϕj

2

)η

Pt(i, j)
−ηCt + θH(i, j), j = G,B, (15)

The price elasticity νt(i, j) of demand of good (i, j) is

νt(i, j) ≡ −∂ lnCt(i, j)

∂ lnPt(i, j)
= ηSt(i, j), (16)

where

St(i, j) ≡
(
Ct(i, j)− θH(i, j)

Ct(i, j)

)
, (17)

represent the relative consumption surplus.

Equation (15) in Proposition 2 shows that the demand function consists of two parts: a price-

sensitive part, with price elasticity equal to η and a price-insensitive part, with price elasticity equal

to zero. Equation (16) shows that the demand elasticity of good (i, j) is equal to the substitution

elasticity η weighted by the consumption surplus St(i, j), that is, consumption in excess of habit, as a

fraction of total demand. Therefore, demand elasticity varies across goods (i, j) because of difference

in good specific habit level H(i, j). In the absence of habits, θ = 0, all good have the same demand

elasticity η, as in Section 2. In contrast, when consumers have good-specific habit, θ > 0, the demand

elasticity varies across goods and, depending on the consumption surplus, can take any value in the

interval νt(i, j) ∈ (0, η). The larger the habit H(i, j), the smaller is the demand elasticity.
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Endowment. The endowment in the economy consists of a continuum of Lucas trees (an orchard).

Each tree produces a dividend Yt(i, j) representing the physical supply of good (i, j) for i ∈ [0, 1] and,

j = G,B. The resulting endowment basket is

Yt =

[
1

2
(1 + ϕG)Ŷ

1− 1
η

G,t +
1

2
(1 + ϕB)Ŷ

1− 1
η

B,t

] 1

1− 1
η (18)

where Ŷj,t represents the habit-adjusted endowment,

Ŷj,t =

[∫ 1

0

(
Yj,t − θH(i, j)

)1− 1
η

di

] 1

1− 1
η

. (19)

We assume that all goods in the same technology class share the same random endowment, i.e.,

Y1(i, j) = Yj,1, for all i ∈ [0, 1]. Without loss of generality, we normalize the date 0 endowments YG,0

and, YB,0 so that ŶG,0 = ŶG,0 = Y0 = 1. To isolate the effect of responsible consumption, we assume

that the random endowments YG,1 and YB,1 are independent and identically distributed so that the two

sectors are symmetric in all aspect except for how they impact the representative investor preferences.

Markets and equilibrium. The households in our economy can trade securities that represent

claims on the endowments of each individual good (i, j). These securities are in unit supply and are

traded in a frictionless market. We denote by Vt(i, j) the stock price of firm (i, j) atime t and by

Dt(i, j) = Pt(i, j)Yt(i, j) (20)

the dividend paid by the firm at time t.

An equilibrium is a set of good prices Pt(i, j) and equity prices Vt(i, j) such that household maximize

lifetime utility in equation (1), goods market clear, Ct(i, j) = Yt(i, j), where Ct(i, j) is the optimal

demand of good (i, j) derived in equation (15), and equity markets clear. From the market clearing

condition Ct(i, j) = Yt(i, j) for all (i, j), we have that in equilibrium Ct = Yt and Ĉj,t = Ŷj,t, for

j = G,B. Therefore, in equilibrium, the stochastic discount factor M is

M = β

(
Y1

Y0

)−γ

, (21)
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where Yt is defined in equation (18). Optimality of equilibrium and market clearing implies that asset

returns satisfy the Euler equation

E [MRi,j ] = 1, where Ri,j =
D1(i, j)

V0(i, j)
, for all i, j. (22)

Numerical illustration. Figure 2 shows the model’s implications for the pricing of green and

brown stocks. The model features two sources of aggregate shocks, represented by the shocks to the

endowments. Therefore the expected return of an asset depends on its exposure to the two risk factors

and on the factors’ price of risk. To produce the figure, we assume that the growth in endowment

ln(Yj,1) − ln(Yj,0) is a truncated normal distribution N (µ, σ2Y ) and that habits follow the uniform

distribution H(i, j) ∼ U(H,H) for j = B,G. Appendix C provides the details of the numerical

implementation.

The top-left panel of Figure 2 shows that the equilibrium risk premium of stock (i, j), µei,j , is

increasing in demand elasticity, consistent with van Binsbergen (2016). This occurs because firms

facing elastic demand cannot raise their product prices to offset low endowments, as consumers can

switch to alternative products. As a result, when demand elasticity is high, the firm is more exposed

to endowment risk. Consistent with the result of Figure 1, the top right panel shows that the spread

between the green and brown risk premium (GMB spread) increases in demand elasticity, ν and is

more pronounced for high value of the green consumption bias ϕ. The remaining two panels of Figure 2

show the risk loadings βki,j , where we denote by k = G,B the factor to which firm (i, j) is exposed.

The two panels show that the firm’s s exposure to the endowment shocks of the sector where the firm

operates is increasing in demand elasticity. Moreover, the exposure of a firm to endowment shocks of

the other sector is insensitive to changes in elasticity.

Figure 3 shows the risk prices λk of the green and brown factors, as a function of the green

consumption bias ϕ. In the absence of responsible consumption, ϕ = 0, the risk prices are identical,

λG = λB. Responsible consumption implies the price of risk associated with the green endowment is

higher than that of the brown endowment, that is, λG > λB. The price of green risk factor is larger

because the green risk factor is riskier than the brown risk factor. Intuitively this happens because

the utility impact of a bad/good realization of the green risk factor is amplified by the preference bias

associated with the green goods.
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Risk premium, µei,j GMB spread

Green stocks’ risk loadings, βki,G Brown stocks’ risk loadings, βki,B

Figure 2: GMB portfolio returns and cumulative price changes
The top-left panel shows firm (i, j)’s equilibrium risk premium, µe

i,j , as a function of demand elasticity. The
top-right panel shows the GMB spread as a function of demand elasticity for different level of consumption
bias intensity, ϕ. The bottom two panels show stocks’ risk loadings, βk

i,j . Parameters values: γ = 3, µ = 0.03,
σY = 0.1, β = 0.98, θ = 1, η = 2, and ϕ = 0.5 (except for the top-right panel). Appendix C provides details of
numerical implementation.

Combining the risk loadings from Figure 2 and the risk prices from Figure 3 we note that the

primary source of risk premium for both the brown and the green stocks stem predominantly from

exposure to the green factor. This result is implied by responsible consumption since in the absence

of preference bias, both risk factors would have an equal impact on risk premia.
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Risk prices

Figure 3: Risk prices
The figure shows risk prices λk as a function of demand elasticity Parameters values: γ = 3, µ = 0.03, σY = 0.1,
β = 0.98, θ = 1, η = 2, and ϕ = 0.5. Appendix C provides details of numerical implementation.

Inspecting the mechanism. To understand the numerical results in Figure 2, we provide a log-

linearized version of the model that allows us to obtain analytical solution. Specifically, under the

assumption that the SDF and asset returns are jointly log-normal, the following proposition provides

an intuitive characterizations of assets’ risk loadings and factors’ risk prices.

Proposition 3. If the SDF M and asset returns Ri,j are jointly log-normal, then the expected log

excess return µei,j of firm (i, j), i ∈ [0, 1], j = G,B can be written as

µei,G = βGi,Gλ
G + βBi,Gλ

B (23)

µei,B = βGi,Bλ
G + βBi,Bλ

B (24)
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where µei,j ≡ E[ri,j ] − rf + 1
2σ

2
i,j with rf the log risk-free rate and σi,j the volatility of firm (i, j)’s log

return. The factors’ prices of risks and firm (i, j)’s risk exposures are given by

λj =
1 + ϕj

2
ξγσ2Y , j = G,B (25)

βki,j ≡


1+ϕk
2η ξ +

(
1− 1

ν0(i,j)

)
, if k = j

1+ϕk
2η ξ, if k ̸= j

, j, k ∈ {G,B}, (26)

where −1 < ϕB < ϕB < 1, ϕG+ϕB = 0; ξ ≡ ∂ ln Ŷj,0/∂ lnYj,0 > 0 is the elasticity of the habit-adjusted

endowment with respect to the physical endowment, given explicitly in equation (B14); and σ2Y is the

variance of log endowment growth.

The proposition shows that the excess expected return of firm (i, j) obeys a standard two-factor

beta pricing restriction, equations (23)–(24). Equation (25) show that the price of risk λj , j = G,B is

linear in the consumption bias parameter ϕj . Bias in favor of the green good, that is, ϕG > ϕB implies

that the price of risk associated to the green endowment is larger than that of the brown endowment,

that is, λG > λB as illustrated in Figure 3.

Equation (26) in Proposition 3 characterizes (i, j)’s firm “own beta”, k = j and “other beta”, k ̸= j.

Intuitively, firm (i, j) own beta captures the exposure of firm (i, j)’s dividend to the endowment shocks

of the technology in which the firm’s operates. In contrast, firm (i, j) other beta captures the exposure

of firm (i, j) dividend to the endowment shocks of the technology in the sector where the firm does not

operate. The former is a direct, partial equilibrium effect, as the firm’s dividend are directly affected

by shocks to the own technology. The second is an indirect, general equilibrium effect, as a shock to

one sector affects product prices in both sectors.

Equation (26) shows that the demand elasticity, ν0(i, j), impacts the expected return solely through

the stock’s own beta. Intuitively, when demand elasticity is high, the price of goods responds less to

endowment shocks. Consequently, firm (i, j)’s dividend is predominantly driven by shocks to the

j endowment, thus making the stock more exposed to its own endowment risk. Equation (26) also

shows that the demand elasticity has no effect on the beta of the other stock. Moreover, Equation (25)

indicates that the price of risk of the green factor is larger than that of the brown factor. Therefore,

with an increase in demand elasticity, green stocks exhibit a higher loading on green risk, while brown

stocks show a higher loading on brown risk. Given that the price of green risk surpasses that of
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the brown risk, the expected return on green stocks increases more than that of brown stocks when

demand elasticity increases. Consequently, the GMB expected returns increases in demand elasticity.

To see this more explicitly, using equations (23)–(26), it can be shown that the GMB expected

return spread, conditional on demand elasticity ν is given by

GMB(ν) ≡ µei,G
∣∣
ν(i,G)=ν

− µei,B
∣∣
ν(i,B)=ν

=
γξσ2Y
2

(ϕG − ϕB)

(
1− 1

ν

)
. (27)

Therefore, the GMB spread is increasing in demand elasticity ν when agents have consumption bias

that favor the green good, ϕG > ϕB.

4 Empirical Analysis

In this section, we investigate the key empirical predictions of our model: green stocks are riskier than

brown when goods’ demand elasticity is high and are safer than brown when elasticity is low. This

implies that the GMB return spread increases in demand elasticity. Section 4.1 describes the data;

Section 4.3 provides a first test of our main prediction using realized stock returns as a main dependent

variables; Section 4.4 extends the analysis to expected returns which we construct by purifying realized

returns from climate concerns and earning surprises and by using option-implied bounds.

4.1 Data and Measurements

U.S. Bureau of Economic Analysis Producer Price Index. We obtain the industry-level

price index between January 1926 and November 2022 from the Producer Price Index (PPI) program

published by the U.S. Bureau of Economic Analysis. The U.S. Bureau of Economic Analysis started

to publish the PPI program as of 1902.8 The PPI program’s original intent was to measure changes

in prices received for goods sold in primary markets.9 In the early years, the PPI program mainly

covers the price index in goods-producing sectors: agriculture, forestry, fisheries, mining, scrap, and

manufacturing. In recent years, the PPI has extended coverage to many of the non-goods producing

sectors of the economy, including transportation, retail trade, insurance, real estate, health, legal,

and professional services. New PPIs are gradually being introduced for the products of industries

in the utilities, finance, business services, and construction sectors of the economy.10 Since 2003,

8Until 1978 the index was known as the Wholesale Price Index, or WPI.
9Source: https://www.bls.gov/opub/hom/pdf/ppi-20111028.pdf

10Source: https://www.bls.gov/ppi/

https://www.bls.gov/opub/hom/pdf/ppi-20111028.pdf
https://www.bls.gov/ppi/
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producer prices by sector are based on NAICS codes. We use PPI data based on six-digit NAICS

codes, resulting in monthly observations for 900 NAICS industries from 2003 to 2022. Following van

Binsbergen (2016), we use the cumulative price change (CPC) as a measure of product price change

and take this measure as a proxy for goods’ demand elasticity. In Appendix D we show that, within

a dynamic version of the equilibrium model with habits of Section 3, CPC can serve as a proxy for

demand elasticity, in the study of asset returns in the cross section.

Specifically, after removing positive outliers from the PPI database,11 we compute the geometric

mean of the overall price changes from the time the industry PPI appears in the database using an

expanding window. For industry i, entering the PPI database at time s, the cumulative price change

CPCi,t at time t is measured as

CPCi,t = (Pi,t/Pi,s)
1

t−s − 1. (28)

MSCI ESG scores. We obtain stock-level ESG ratings from MSCI, the largest provider of ESG

ratings (Eccles and Stroehle, 2018). MSCI ESG rating data are used by more than 1,700 clients,

including pension funds, asset managers, consultants, advisers, banks, and insurers. Furthermore,

MSCI covers more firms than other ESG raters, such as Asset4, KLD, RobescoSAM, Sustainalytics,

and Vigeo Eiris (Berg, Koelbel, and Rigobon, 2022). MSCI’s coverage increases dramatically in

October 2012, when MSCI began covering small U.S. stocks.12 Hence, as in Pastor, Stambaugh, and

Taylor (2022), we choose November 2012 as the start of our sample period. Our sample of ESG ends

in December 2022.

4.2 Summary Statistics

We match stock return data in CRSP with CPCi,t in PPI price data by using six-digit NAICS codes.

On average, during our sample period, about 70% of the firms in CRSP can be matched. Then, we

merge CRSP and MSCI by CUSIP, resulting in about 1,500 observations every month.

11In certain time intervals, we identify notable positive outliers within the PPI database. To address the impact of
these outliers, we exclude the most significant 1% price change for each interval. This approach bears resemblance to the
technique employed by van Binsbergen (2016), who eliminates the most substantial 10% of price changes in each interval;
however, we exercise a more conservative approach. The results are unaffected if, instead of truncating, we winsorize
price changes at the 1% level.

12According to Pastor, Stambaugh, and Taylor (2022), before October 2012, MSCI covered only the largest 1,500
companies in the MSCI World Index, plus large companies in the UK and Australia MSCI indexes. In October 2012
MSCI added many smaller U.S. firms when it began covering also the MSCI U.S. Investible Market Index.
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The sorting procedure we discuss in the next section takes the BLS and CRPS industry classification

as given. Merging on the basis of this classifications may lead to measurement errors. Large firms

(conglomerates) may have business in multiple industries that are harder to classify into a single

NAICS industry compared to smaller firms. Classification differences between the two sources would

then weaken the channel identified in our model. For example, suppose a large firm has relevant

businesses in two industries: one industry has a CPC ranking of 1 while the other has CPC (elasticity)

ranking of 3. The firm is actually of approximate elasticity ranking 2. However, because the firm

has to be assigned to one of the two groups, it will be defined as either CPC 1 or 3. Value-weighting

will exaggerate this error because it allocates more weight to large firms, which are more likely to be

misclassified. Because small firms are less likely to be misclassified, we follow van Binsbergen (2016)

and use an equal-weighting scheme when forming portfolios unless otherwise specified.

4.3 Demand elasticity and the green premium: realized returns

Our model predicts that the green premium increases in the price elasticity of demand. To test this

prediction, we sort the universe of US stocks into three portfolios according to demand elasticity—

proxied by the CPC measure in equation (28)—as of month t−1, and then, within each CPC portfolio

we sort socks based on their ESG scores as of the first day of month t. For ease of exposition, we will

refer to low (high) CPC portfolios as high (low) demand elasticity portfolios.

For each demand elasticity tercile, we form a zero-cost portfolio that longs firms in the top green-

ness quartile and shorts firms in the bottom greenness quartile. Hence for each demand elasticity

tercile we obtain a GMB (green minus brown) zero-cost portfolio. Figure 4 shows the cumulative

equally-weighted return of the GMB portfolio in the top (red line) and bottom (blue line) demand

elasticity terciles. For reference, we also report the unconditional GMB (dashed black line). Similar

to Pastor, Stambaugh, and Taylor (2022),13 we find that the cumulative return of GMB portfolio is

68.3%. However, virtually all of this out-performance comes form stocks in the high demand elastic-

ity tercile (red line). The GMB portfolios in the top demand elasticity tercile outperforms that in

the bottom tercile by 195.9 − 27.7 = 168.2 percentage points over this period. This results is strik-

13While the GMB return in Pastor, Stambaugh, and Taylor (2022) is based on the environmental pillar of the ESG
score, our results are based on the overall score. We obtain similar results if we construct GMB returns using only the
environmental score. Specifically, the unconditional cumulative GMB return is 42%. This return spread is largely driven
by firms in the high demand elasticity tercile (62.5%) with firms in the low demand elasticity tercile earning a negative
spread (3.8%). The E score is positively correlated with CPC ranking. Repeating our analysis with independent sorts
to account for this fact, we find that the unconditional cumulative GMB return is 50.0%, largely driven by firms in the
high demand elasticity tercile (99.4%) with firms in the low demand elasticity tercile earning a negative spread (-6.1%).
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ing and confirms that consumption preferences and demand elasticity have a first order effect in the

determination of the GMB spread, as predicted by our model.
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Figure 4: Cumulative GMB returns and cumulative price changes
The figure reports the cumulative returns to the GMB portfolio conditional on cumulative price changes. The
red (blue) line reports the GMB spread for firms with low (high) cumulative price changes. The dashed black
line is the unconditional GMB spread.

In Table 1 we provide summary statistics of the characteristics of stocks for demand elasticity

portfolios (Panel A) and, for ESG portfolios, within the set of firms with high demand elasticity

(Panel B).

Panel A shows that stocks with high demand elasticity tend to have lower ESG score overall. Over

our sample period, CPC and ESG ratings have a correlation of 0.128. This correlation is largely driven

by the environmental pillar—the average E score for firms in high CPC tercile (low demand elasticity)

is 27% higher than that for firms in low CPC tercile (high demand elasticity): 4.8 vs 3.8, t-statistic:

12.24. High-demand elasticity firms are similar in term of size to low-demand elasticity firms but tend

to have higher book to market and lower asset growth. High demand elasticity portfolio tend to have

low Herfindhal-Hirschman Index (HHI). This is consistent with Corhay, Kung, and Schmid (2020) who

show that, in a general equilibrium model with production, high market concentration is associated

with low demand elasticity.14 The positive correlation between CPC and HHI documented in Table 1

14Similar to Corhay, Kung, and Schmid (2020), we compute HHI by summing all firms’ squared market share in
the same 4-digit SIC industry and multiplying the sum by 1000. The firm’s market share is define as the firm’s sales
(Compustat Quarterly item SALE) scaled by the sum of the sales of the its peers.
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lends support to the validity of CPC as a proxy for demand elasticity. Given the relation between

HHI and demand elasticities, we should therefore expect the GMB spread to be higher for stocks in

low HHI industries, as we document in the robustness Appendix A.

Panel B shows characteristics of ESG portfolios within the class of high-demand elasticity firms.

Within this class, high ESG firms tend to be larger, growth firms, more profitable and with low asset

growth. This underscores the importance of adjusting for related asset pricing factors when assessing

GMB returns. For instance, the observation that companies in the “G” leg exhibit larger size and

lower book-to-market ratios implies that, upon accounting for SMB (Small Minus Big) and HML (High

Minus Low) factors, the GMB spread might potentially be stronger than the raw GMB return.

In Table 2 we estimate monthly time-series regressions from November 2012 to December 2022.

We regress the GMB return spread on a constant and various factors, capturing different asset pricing

models. MKTRF refers to the Market factor in the CAPM; SMB and HML are the size and value

factors in Fama and French (1993); RMW and CMA refer to the profitability and investment factors

in Fama and French (2015). Panel A reports estimates conditional on high demand elasticity; Panel B

reports estimates conditional on low demand elasticity. In parenthesis we report t-statistics adjusted

for autocorrelation using Newey and West (1987).

Comparing Panel A and Panel B of Table 2, we see that the annual equal-weighted GMB spread

in the low demand elasticity portfolio is 2.6% (t-statistic: 1.454) while the annual GMB spread in the

high demand elasticity portfolio is 11.7% (t-statistic: 2.808). Consistent with the summary statistics in

Table 1, Firms in the “G” leg of the spread have higher size and lower book-to-market ratio than those

in the “B” leg, leading to negative loadings of GMB on SMB and HML. Therefore, the positive GBM

spread in the high demand elasticity portfolios is even larger and more significant after adjusting for

exposures to common asset pricing factors. The results for value-weighted portfolios are qualitatively

similar. Finally, Panel C shows that the difference between GMB spread in high-demand elasticity and

low demand elasticity portfolios is positive and significant. Upon accounting for asset pricing factors,

the disparity in alpha becomes even more pronounced, primarily because of the negative loadings on

these factors.

Figure 5 shows raw and risk-adjusted excess returns of the GMB portfolio for each demand elasticity

tercile. The estimates for the first and third tercile are also reported in Table 2. The figure shows

that, consistent with the prediction of our model, the GMB spread is increasing in demand elasticity.

This figure represents the empirical counterpart of the return spread in Figure 1, from the simple
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(c) Three Factor (FF) Alpha
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(d) Five Factor (FF) Alpha
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Figure 5: GMB portfolio returns and cumulative price changes
Panel (a) reports the equally-weighted GMB spread in each demand elasticity tercile. Panels (b)–(d) show alpha
estimates with respect to the factor models considered in Table 2. The sample period is from November 2012
to December 2022. The solid vertical lines represent 95 percent confidence intervals.

model of Section 2, Figure 2 from the model with heterogeneity in demand elasticities of Section 3,

and Figure D.1, from the dynamic model of Appendix D.

A limitation of the above portfolio analysis is the potential for variations in returns among portfolios

driven by factors other than demand elasticity and ESG scores. For instance, it is conceivable that

certain high-risk stocks coincidentally fall into the top ESG quartile within the high demand tercile,
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thereby driving the GMB spread in that tercile. To address this issue, we exploit the cross-sectional

variation in returns, measured demand elasticity, and other firm well-known stock return characteristics

to explore possible alternative explanations. We conduct monthly Fama-Macbeth regressions at the

individual firm level. Specifically, we standardize the ESG score and demand elasticity measures and,

in each month, we estimate the following cross-sectional regression:15

Ri,t −Rf,t = αt−1 + β1Demand Elasticityi,t−1 × ESG scorei,t−1 + β2Demand Elasticityi,t−1

+ β3 ESG scorei,t−1 + β
′
4Xi,t−1 + εi,t, (29)

where Xi,t−1 is a vector of firm characteristics, including size, book-to-market ratio, profitability, asset

growth and momentum return. The coefficient β1 captures how the sensitivity of expected return

to ESG score varies with demand elasticity. Table 3 reports the average coefficients and associated

t-statistics of the estimated regression, computed over the entire sample. The coefficient β1 is positive

and weakly significant, suggesting that for higher demand elasticities, ESG score is associated with

higher stock returns. Furthermore, we explore whether ESG score has different predictive implications

for stocks in the high demand elasticity tercile compared to the low demand elasticity tercile. The

positive and significant coefficient of ESG score−1 in column (2) and the economically small and

statistically insignificant coefficient in column (3) are consistent with the portfolio analysis above in

which we document a large GMB spread for high demand elasticity and an insignificant spread for

low demand elasticity. The results in Table 3 confirm that the observed pattern regarding GMB and

demand elasticity is consistent across both portfolio analysis and cross-sectional regression analysis.

Finally, in Appendix A we explore the relation between industry concentration and the GMB

spread. Corhay, Kung, and Schmid (2020) show that high industry concentration (HHI) is typically

associated with low demand elasticity. This fact suggest that if the GMB return spread is indeed

driven by demand elasticity, we should also expect that a high GMB return spread in less concentrated

industries, as they tend to feature higher demand elasticity. In Appendix A, we show that this is indeed

the case.

15Specifically, we obtain the measures of demand elasticity by standardizing the negative values of CPC and HHI, that
is, we subtract the sample mean and dividing by the sample standard deviation.
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4.4 Demand elasticity and the green premium: expected returns

Our theoretical model predicts that the expected return spread of green and brown stocks increases in

goods’ demand elasticity. In the previous section, we measured expected returns through time-series

average of monthly realized returns. Because of the relatively short sample period, 2012–2022, there is

an obvious concern that, as pointed out by Pastor, Stambaugh, and Taylor (2022), the realized GMB

returns in past decade are largely driven by “surprises” and hence the results we documented may not

be informative about expected returns. To address this concern, in this section we accomplish this

task in two different ways: (i) by exploiting information about unanticipated shocks that could drive

realized returns, such as surprises in climate concerns and firm earnings, as in Pastor, Stambaugh, and

Taylor (2022); (ii) by constructing a measure of conditional expected return at the stock level from

forward-looking information contained in traded option contracts, as in following Martin (2017) and

Martin and Wagner (2019).

4.4.1 Expected returns from past realizations

We closely follow Pastor, Stambaugh, and Taylor (2022) and use shocks to climate concerns, from the

Media Climate Change Concern index (MCCC) of Ardia, Bluteau, Boudt, and Inghelbrecht (2020),

and earning news from I/B/E/S as explanatory variables in the above regression.

Climate concerns. Building on the work of Engle, Giglio, Kelly, Lee, and Stroebel (2020), Ardia,

Bluteau, Boudt, and Inghelbrecht (2020) construct an index of climate concern gathering information

from eight US newspaper. Following their methodology, we obtain shocks to climate concerns (∆CCt)

as the error from rolling AR(1) models applied to the MCCC index.16

Earning news. As in Pastor, Stambaugh, and Taylor (2022), we use two measures of earning news:

earning announcements returns (EARt) and changes in earning forecasts (∆EFt). The first measure

is designed to capture short-term earning news while the second captures news at a longer frequency.

We measure earning announcement as stock returns in excess of the market during a three-day window

around announcement dates. We measure changes in earning forecasts for a firm in a given quarter t

as the difference between the earliest median analyst forecast of long-term earning growth in quarter

t+ 1 and the latest median earning forecast in quarter t− 1.

16Data source: https://sentometrics-research.com

https://sentometrics-research.com
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After converting the firm-level earning measures into portfolio quantities that mimic the construc-

tion of the GMB spread, we end up estimating the following time-series regressions at the monthly

frequency, separately for high- and low-demand elasticity terciles:

GMBk
t = a+ b1∆CCt + b2∆CCt−1 + b3EARt + b4∆EFt + εt, (30)

where k denotes the demand elasticity tercile. Following Pastor, Stambaugh, and Taylor (2022), we

take the estimate of the intercept â as a measure of the counterfactual monthly GMB spread, that is

the GMB that would be observed in the absence of shocks to climate concerns and earning.

Table 4 presents estimates of the regression equation (30). Panel A shows that for the high

demand elasticity tercile, the coefficients b2 and b4 for the lagged climate concern and earnings forecasts

are positive and significant across most model specifications. This aligns with findings from Pastor,

Stambaugh, and Taylor (2022), and indicates the existence of a “surprise” channel affecting the GMB

at high demand elasticity. Figure 6 illustrates the counterfactual performance of GMB, revealing

that the surprise variables account for approximately half of the cumulative GMB return at high

demand elasticity. However, the GMB spread cannot be fully explained by these surprises. The

counterfactual GMB spread remains positive and significant after controlling for climate concerns and

earning surprises. Finally, Panel C shows that the difference between the counterfactual GMB at high

and low demand elasticity remains positive and significant. Overall, we conclude that the GMB spread

at high demand elasticity is not solely driven by the “surprise” channel but can be attributed in part

to risk compensation, as predicted by our model.

4.4.2 Option-implied expected returns

Our second measure of expected return uses forward-looking information from option prices, following

the methodology of Martin and Wagner (2019). We calculate the risk-neutral volatility for stock i in

month t as

SV IX2
i,t =

2

Rf,t+1S
2
i,t

[∫ Fi,t

0
puti,k(K)dK +

∫ ∞

Fi,t

calli,t(K)dK

]
, (31)

where Si,t denotes the price of the stock, Rf,t+1 the gross risk-free rate, Fi,t the forward price of the

stock, that is, the strike price such that calli,t(Fi,t) = puti,t(Fi,t), and puti,k(K) and calli,t(K) the put

and call prices at the strike K. Martin (2017) and Martin and Wagner (2019) show that, under some
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Panel A: GMB–High demand elasticity
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Panel B: GMB alpha–High demand elasticity
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Figure 6: Counterfactual GMB performance.
The figure reports the counterfactual cumulative returns to the GMB portfolio conditional on high demand
elasticity (low CPC). Panel A shows cumulative, compounded returns on the GMB portfolio. The solid blue
lines represent realized returns. The dashed line show the counterfactual returns derived from Panel A in
Table 4. The counterfacual reurn is defined as the realized return minus the fitted value from the regression
in equation (30). Dotted lines indicate the 95% confidence interval for the counterfactual, computed using the
Bootstrap method, as described in Pastor, Stambaugh, and Taylor (2022). Panel B plots the counterparts of
cumulative, compounded returns on GMB’s Fama-French 5-factor alpha. Alphas are computed as in Table 2.
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conditions17 the expected return on stock i in excess of the risk-free rate Rf,t+1 can be approximated

as follows:

Et[Ri,t+1 −Rf,t+1] = Rf,t+1

(
SV IX2

m,t +
1

2

(
SV IX2

i,t − SV IX
2
t

))
, (32)

where SV IXm,t is the risk-neutral volatility for the value-weighted market portfolio, computed as in

equation (31) and SV IXt is the value-weighted average of SV IXi,t across all the stocks in the market

portfolio.

After obtaining the expected return for S&P 500 firms with valid option data, we narrow the

sample to S&P 500 firms with non-missing variables to ensure that all firms have traded options with

sufficient liquidity. We then estimate Fama-Macbeth regressions at the individual firm level similar

to the cross-sectional regression in equation (29), where we use instead the option-implied expected

return as dependent variable. The results in Table 5 imply that the sensitivity of expected return to

the ESG score is given by

∂Et−1[Ri,t −Rf,t]

∂ESG scorei,t−1
= β1︸︷︷︸

>0

×Demand elasticityi,t−1 + β3︸︷︷︸
<0

. (33)

Because Demand elasticityi,t−1 has zero unconditional mean, the unconditional sensitivity of expected

return to ESG score is negative, β3 < 0. Combining this result to the positive and significant coefficient

of ESG score in Table 3 confirms the conjecture of Pastor, Stambaugh, and Taylor (2022): the positive

unconditional realized GMB is largely driven by surprises, and likely implies a negative expected

unconditional GMB return. However, as equation (33) shows, this sensitivity increases in demand

elasticity. Therefore, our analysis adds a novel and complementary perspective to the existing literature

by demonstrating that the expected GMB return spread varies in the cross section, depending on the

price elasticity of demand.

5 Conclusion

We develop an asset pricing model to study the effect of responsible consumption on asset prices. We

model responsible consumption as a preference bias in favor of green good varieties and against others.

In an otherwise standard consumption-based asset pricing model with multiple varieties of goods, we

17Specifically, that (i) the range of betas from regressing returns on a growth optimal portfolios is not too wide and
(ii) the variance of the residual from this regression is not persistently different from the value-weighted average. These
conditions are likely satisfied in our cross section of S&P500 stocks.
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show that agents might invest in a brown stock to hedge against consumption risk. We show that

this hedging motive crucially depends on goods’ demand elasticity. For example, when consumers

have a “green” bias, green firms producing high demand elasticity goods are riskier than brown firms

producing high demand elasticity products. The riskiness of these firms flips for firms that produce

low demand elasticity goods.

Our empirical analysis provides supporting evidence for the mechanism highlighted by our model.

After sorting US stocks according to a proxy of demand elasticity and measures of social responsibility

(ESG scores), we find that the green-minus-brown (GMB) spread is increasing in the price elasticity

of demand. Specifically, the annual spread is 2.6% and insignificant in the bottom elasticity tercile

and 11.7% and significant in the top tercile. Common asset pricing factors do not explain the GMB

spread in the high-demand elasticity tercile. Furthermore, we show that the cumulative positive return

spread of green vs. brown stocks over the last decade is mainly attributed to high-demand-elasticity

stocks, with low demand elasticity stocks earning an insignificant spread. Our findings suggest that

responsible consumption, operating through the demand elasticity channel, has a first-order impact

on the cross-section of green premium.

Our study has relevant implications for the efficacy of responsible consumption as a channel to

achieve social and environmental impact through its effect on asset prices. A direct implication of

our model is that strategies of responsible consumption with a negative bias toward low-demand

elasticity brown goods can be effective in increasing the cost of capital of firms producing those

goods. In contrast, a negative bias towards high-demand elasticity brown-goods firms may lead to

the unintended outcome of reducing their cost of capital. Responsible consumption could therefore

counteract other socially responsible strategies, such as divestment. Furthermore, our model also

hints at the possibility that firms manufacturing goods and services with low demand elasticity have

stronger incentive to engage in “greenwashing”, as this will reduce their cost of capital. Our model is

agnostic on the sources of cross-sectional variation in goods’ demand elasticity. Micro-founding such a

heterogeneity in a multi-industry equilibrium is an interesting task that we leave for future research.
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Table 1: Characteristics of demand elasticity and ESG portfolios

Panel A shows summary statistics of characteristics of demand elasticity (CPC) portfolios. The sample is
all CRSP stocks that are list in NYSE, AMEX and NASDAQ and have non-missing CPC and ESG score
variables from November 2012–December 2022. Panel B shows summary statistics of characteristics of
ESG portfolios within top demand elasticity tercile. The sample period is from November 2012–December
2022. t-statistics are adjusted for autocorrelation using Newey and West (1987).

Panel A: Characteristics of demand elasticity portfolios

High Elasticity Low Elasticity High-Low

Mean Median Mean Median Mean t-statistic

ESG

ESG Score 4.374 4.343 4.444 4.470 -0.070 -3.97
E Score 3.783 3.644 4.765 4.875 -0.982 -12.24
S Score 4.262 4.214 4.251 4.256 0.012 0.53
G Score 5.553 5.670 5.290 5.102 0.263 3.95

Demand elasticity measures

CPC (monthly %) -0.356 -0.391 0.306 0.302 -0.661 -28.69
Herfindhal index (HHI) 150.556 149.470 243.895 244.000 -93.339 -39.56

Firm characteristics

ln(ME) 21.844 0.467 21.812 21.725 0.033 0.82
ln(BM) -0.782 0.161 -1.084 -1.097 0.303 21.78
Operating profitability (Yr %) 17.141 17.069 15.214 16.229 1.926 1.48
Asset growth (Yr %) 17.325 17.085 23.070 21.518 -5.745 -4.70

Panel B: Characteristics of ESG portfolios with high demand elasticity

High ESG Low ESG High-Low

Mean Median Mean Median Mean t-statistic

ESG

ESG Score 5.531 5.440 3.206 3.279 2.325 21.26
E Score 5.381 5.372 2.450 2.573 2.930 17.19
S Score 5.484 5.360 3.204 3.226 2.280 21.54
G Score 6.145 6.011 4.738 4.753 1.407 11.86

Demand elasticity measures

CPC (monthly %) -0.272 -0.266 -0.681 -0.811 0.408 8.01
Herfindhal index (HHI) 183.335 180.658 123.987 122.095 59.348 10.47

Firm characteristics

ln(ME) 22.442 22.447 21.472 21.448 0.970 10.35
ln(BM) -1.046 -0.978 -0.571 -0.525 -0.475 -9.38
Operating profitability (Yr %) 22.484 21.692 12.515 14.681 9.969 7.02
Asset growth (Yr %) 15.484 14.108 19.147 20.260 -3.663 -3.46
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Table 2: GMB spread and demand elasticity

The table shows regression results of the GMB return spread on a constant and various factors, capturing
different asset pricing models. GMB is a zero-cost portfolio with a long position in the highest quartile
of the overall ESG score and a short position in the lowest quartile of the ESG score. The portfolio is
rebalanced monthly. MKTRF refers to the Market factor in the CAPM; SMB and HML are the size and
value factors in Fama and French (1993); RMW and CMA refer to the profitability and investment factors
in Fama and French (2015). Panel A shows estimates conditional on high demand elasticity (low CPC);
Panel B shows estimates conditional on low demand elasticity (high CPC); and Panel C shows estimates
of their difference. The sample period is November 2012–December 2022. The underlying portfolio returns
are at monthly frequency, and the estimates of the average excess returns and alphas are annualized by
multiplying by twelve. In parenthesis we report Newey West t-statistics. In the table we report annualized
returns in percentages. *, **, *** indicate significance level at 10, 5, and 1%, respectively.

Panel A: High Demand Elasticity

(1) (2) (3) (4) (5) (6) (7) (8)

Equal weighted excess returns Value weighted excess returns

Constant 0.117*** 0.135*** 0.126*** 0.123*** 0.115** 0.127* 0.108*** 0.104***
t-stat (2.808) (2.802) (3.291) (3.298) (2.038) (1.925) (2.958) (2.816)
MKTRF -0.142 -0.083 -0.048 -0.104 0.025 -0.056
t-stat (-1.054) (-0.821) (-0.497) (-0.719) (0.362) (-0.689)
SMB -0.218 -0.250 -0.559*** -0.356***
t-stat (-1.497) (-1.635) (-5.543) (-2.583)
HML -0.516*** -0.585*** -0.682*** -0.682***
t-stat (-6.408) (-4.246) (-5.171) (-4.749)
RMW -0.133 0.557***
t-stat (-0.760) (3.497)
CMA 0.216 -0.220
t-stat (0.812) (-0.929)

Panel B: Low Demand Elasticity

Equal weighted excess returns Value weighted excess returns

Constant 0.026 0.019 0.017 0.014 0.015 0.010 0.011 0.019
t-stat (1.454) (0.991) (0.988) (0.800) (0.645) (0.336) (0.431) (0.792)
MKTRF 0.061 0.071* 0.052 0.047 0.037 0.039
t-stat (1.272) (1.645) (1.285) (0.561) (0.491) (0.578)
SMB -0.042 0.028 0.072 -0.013
t-stat (-0.661) (0.447) (1.060) (-0.182)
HML -0.085* -0.112** -0.092 0.009
t-stat (-1.843) (-2.155) (-1.287) (0.074)
RMW 0.174 -0.167
t-stat (1.543) (-1.601)
CMA -0.006 -0.174
t-stat (-0.068) (-1.132)

Panel C: High demand elasticity GMB - Low demand elasticity GMB

Equal weighted excess returns Value weighted excess returns

Constant 0.091** 0.116*** 0.109*** 0.109*** 0.099* 0.118** 0.097** 0.085**
t-stat (2.392) (2.713) (2.867) (2.984) (1.816) (1.984) (2.465) (2.213)
MKTRF -0.203* -0.154* -0.1 -0.151 -0.012 -0.095
t-stat (-1.676) (-1.701) (-1.087) (-1.589) (-0.189) (-1.149)
SMB -0.176 -0.278* -0.631*** -0.343**
t-stat (-1.112) (-1.729) (-6.285) (-2.503)
HML -0.431*** -0.473*** -0.590*** -0.691***
t-stat (-4.822) (-3.690) (-4.768) (-5.782)
RMW -0.307 0.724***
t-stat (-1.428) (3.957)
CMA 0.222 -0.047
t-stat (0.848) (-0.192)
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Table 3: Fama-MacBeth regressions-Realized return

This table shows Fama-MacBeth regression results when monthly returns (in %) are regressed on lagged firm
characteristics. Accounting data come from Compustat. The full sample is all CRSP stocks that are list in
NYSE, AMEX and NASDAQ and have non-missing listed independent variables, ranging from November
2012 to December 2022. “High Demand Elasticity” and “Low Demand Elasticity” are subsample of stocks
that fall into bottom and top CPC tercile in every month, respectively. In parenthesis we report t-statistics
with Newey and West (1987) standard errors.

All Sample High Demand Elasticity Low Demand Elasticity
(1) (2) (3)

ESG score−1 ×Demand elasticity−1 0.098*
(1.703)

Demand elasticity−1 0.008
(0.096)

ESG score−1 0.129*** 0.315*** 0.102
(2.722) (2.951) (1.369)

LogSize−1 0.026 -0.045 0.051
(0.436) (-0.892) (0.730)

LogB/MYr -1 0.011 -0.170 0.088
(0.077) (-0.832) (0.515)

OPYr -1 0.317** -0.040 0.361**
(2.295) (-0.154) (2.400)

LogAGYr -1 -0.137 -0.314 -0.139
(-0.473) (-0.740) (-0.448)

LogReturn−2,−12 0.412 0.283 0.410
(1.419) (0.720) (1.256)

Constant 0.244 1.787 -0.226
(0.154) (1.333) (-0.127)
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Table 4: Dissecting GMB spread

The table shows monthly time-series regressions when realized GMB returns (alpha) are regressed against variables
capturing shocks to climate concerns and earnings as in Pastor, Stambaugh, and Taylor (2022). We estimate GMB
alpha in time series regressions as in table 2 and set it equal to regression’s intercept plus residual. The sample period
is November 2012–December 2022. In parenthesis we report t-statistics with Newey and West (1987) standard errors.
*, **, *** indicate significance level at 10, 5, and 1%, respectively.

Panel A: High Demand Elasticity GMB

(1) (2) (3) (4) (5) (6) (7) (8)

Return CAPM α FF3 α FF5 α Return CAPM α FF3 α FF5 α

const 0.082* 0.103** 0.073** 0.069** 0.070* 0.093** 0.077** 0.074**
(1.790) (2.292) (2.288) (2.223) (1.769) (2.345) (2.390) (2.424)

∆ Climate concerns (same month) 0.011 0.012 0.015 0.014 0.008 0.008 0.015 0.014
(0.733) (0.789) (1.325) (1.276) (0.500) (0.547) (1.238) (1.195)

∆ Climate concerns (prev. month) 0.023* 0.020 0.030*** 0.033*** 0.019 0.016 0.029*** 0.032***
(1.758) (1.490) (2.710) (3.092) (1.500) (1.230) (2.706) (3.095)

∆ Earnings forecasts 0.003** 0.003** 0.000 0.000
(2.224) (2.297) (0.192) (0.063)

Earnings announcement returns 0.001 -0.021 -0.077 -0.092
(0.006) (-0.123) (-0.506) (-0.602)

Panel B: Low Demand Elasticity GMB

Return CAPM α FF3 α FF5 α Return CAPM α FF3 α FF5 α

const 0.028 0.019 0.014 0.009 0.020 0.011 0.005 0.001
(1.335) (0.883) (0.688) (0.447) (1.047) (0.558) (0.286) (0.046)

Climate concerns (same month) -0.002 -0.002 -0.001 0.001 -0.004 -0.004 -0.003 -0.001
(-0.371) (-0.369) (-0.269) (0.168) (-0.856) (-0.916) (-0.784) (-0.234)

Climate concerns (prev. month) -0.003 -0.002 -0.000 -0.001 -0.005 -0.004 -0.002 -0.002
(-0.573) (-0.358) (-0.062) (-0.107) (-0.812) (-0.637) (-0.340) (-0.390)

Earnings forecasts 0.002** 0.002* 0.002** 0.002*
(1.961) (1.845) (2.209) (1.855)

Earnings announcement returns 0.427*** 0.442*** 0.450*** 0.435***
(4.826) (5.203) (5.416) (5.269)

Panel C: Counterfactual High demand elasticity GMB - Low demand elasticity GMB

Return CAPM α FF3 α FF5 α Return CAPM α FF3 α FF5 α

Difference 0.054 0.084** 0.059* 0.059* 0.050 0.082** 0.072** 0.073**
(1.453) (2.293) (1.739) (1.784) (1.381) (2.230) (2.037) (2.128)
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Table 5: Fama-MacBeth regressions–Expected return

This table shows Fama-MacBeth regression results when option-implied expected returns (in %) are regressed on
lagged firm characteristics. Option-implied expected returns are the lower bounds of expected returns from Martin
(2017) and Martin and Wagner (2019). Following Martin and Wagner (2019), we take monthly average of daily
lower bound of expected return for each stock and run regressions at monthly frequency. Accounting data come
from Compustat. The full sample is all S&P 500 stocks with non-missing variables, ranging from November 2012 to
December 2022. In parenthesis we report t-statistics with Newey and West (1987) standard errors.

Return Horizon 30 days 60 days 91 days 182 days 365 days 730 days

ESG score−1 ×Demand elasticity−1 0.244** 0.218** 0.205** 0.186** 0.167** 0.153**
(2.234) (2.139) (2.142) (2.180) (2.268) (2.328)

ESG score−1 -0.309*** -0.293*** -0.285*** -0.270*** -0.260*** -0.267***
(-6.975) (-6.656) (-6.904) (-7.043) (-7.207) (-7.401)

Demand elasticity−1 0.589*** 0.576*** 0.558*** 0.530*** 0.484*** 0.451***
(7.109) (7.752) (8.266) (8.626) (9.526) (9.995)

LogSize−1 -1.089*** -0.928*** -0.822*** -0.737*** -0.677*** -0.659***
(-11.745) (-11.808) (-12.314) (-12.130) (-10.498) (-9.491)

LogB/MYr -1 -0.455*** -0.495*** -0.515*** -0.518*** -0.483*** -0.502***
(-3.266) (-3.739) (-4.062) (-4.575) (-5.050) (-5.972)

OPYr -1 -1.252*** -1.260*** -1.276*** -1.265*** -1.208*** -1.270***
(-4.775) (-4.901) (-5.082) (-5.572) (-6.252) (-7.545)

LogAGYr -1 0.768*** 0.799*** 0.773*** 0.721*** 0.692*** 0.791***
(3.478) (3.607) (3.328) (2.991) (3.094) (3.526)

LogReturn−2,−12 -1.894* -1.651* -1.446 -1.211 -0.993 -0.826
(-1.865) (-1.690) (-1.557) (-1.390) (-1.224) (-1.078)

Constant 31.029*** 27.001*** 24.398*** 22.346*** 20.776*** 19.022***
(10.618) (10.541) (10.922) (11.203) (10.719) (9.987)
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A Industry concentration and GMB spread

In this appendix, we repeat the time series and cross-sectional analysis as in Figure 4, Table 2 and

Table 3 where we replace the cumulative price change (CPC), a measure of demand elasticity, with

the Hirschman-Herfindhal Index (HHI), a measure of industry concentration. The results are reported

in Figure A.1, Table A.1 and Table A.2 respectively. Corhay, Kung, and Schmid (2020) suggest that

high industry concentration is associated with low demand elasticity. Hence, if the variation in GMB

spread is driven by demand elasticity, as implied by our model, we should expect that the GMB return

spread would also vary across industry concentration. Specifically, we should expect that the GMB

spread is more pronounced in industries with low industry concentration (HHI), which tend to have

high demand elasticity. Figure A.1 shows that the GMB spread is positive for low HHI and negative

for high HHI. Similarly, Table A.1 shows that significant and positive GMB spread only shows up for

firms in industries with low concentration. Finally, Table A.2 shows that ESG score is more positively

associated with higher stock returns for firms with lower industry concentration.
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Figure A.1: Cumulative GMB returns and HHI
The figure reports the cumulative returns to the GMB portfolio conditional on the Hirschman-Herfindhal In-
dex (HHI). The red (blue) line reports the GMB spread for firms with low (high) HHI index. The dashed black
line is the unconditional GMB spread.
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Table A.1: GMB spread and industry concentration

The table shows regression results of the GMB return spread on a constant and various factors, capturing different
asset pricing models. GMB is a zero-cost portfolio with a long position in the highest quartile of the overall ESG score
and a short position in the lowest quartile of the ESG score. The portfolio is rebalanced monthly. MKTRF refers to
the Market factor in the CAPM; SMB and HML are the size and value factors in Fama and French (1993); RMW
and CMA refer to the profitability and investment factors in Fama and French (2015). Panel A shows estimates
conditional on low HHI; Panel B shows estimates conditional on high HHI; and Panel C report estimates of their
difference. The sample period is November 2012–December 2022. The underlying portfolio returns are at monthly
frequency, and the estimates of the average excess returns and alphas are annualized by multiplying by twelve. In
parenthesis we report t-statistics adjusted for autocorrelation using Newey and West (1987). In the table we report
annualized returns in percentages. *, **, *** indicate significance level at 10, 5, and 1%, respectively.

Panel A: Low HHI

(1) (2) (3) (4) (5) (6) (7) (8)

Equal weighted excess returns Value weighted excess returns

Constant 0.061 0.086** 0.075** 0.077** 0.071** 0.078*** 0.072*** 0.069***
t-stat (1.557) (2.196) (2.362) (2.417) (2.538) (2.812) (2.791) (2.847)
MKTRF -0.204* -0.130 -0.139 -0.058 -0.013 -0.021
t-stat (-1.789) (-1.644) (-1.604) (-0.817) (-0.202) (-0.324)
SMB -0.323*** -0.326*** -0.202* -0.161
t-stat (-3.717) (-2.863) (-1.932) (-1.392)
HML -0.382*** -0.351** -0.208** -0.234***
t-stat (-5.263) (-2.539) (-2.514) (-2.818)
RMW 0.014 0.095
t-stat (0.097) (0.623)
CMA -0.077 0.023
t-stat (-0.410) (0.114)

Panel B: High HHI

Equal weighted excess returns Value weighted excess returns

Constant 0.008 0.012 0.009 0.008 0.023 0.038 0.035 0.025
t-stat (0.416) (0.615) (0.434) (0.448) (0.879) (1.428) (1.448) (1.069)
MKTRF -0.036 -0.012 -0.028 -0.122* -0.106 -0.139**
t-stat (-0.865) (-0.307) (-0.612) (-1.915) (-1.509) (-2.042)
SMB -0.108 -0.075 -0.099 0.076
t-stat (-1.608) (-1.031) (-1.099) (0.825)
HML -0.087** -0.081 0.079* -0.038
t-stat (-2.204) (-1.454) (1.645) (-0.566)
RMW 0.096 0.404***
t-stat (1.053) (3.148)
CMA -0.052 0.115
t-stat (-0.552) (0.962)

Panel C: Low HHI − High HHI GMB spread

Equal weighted excess returns Value weighted excess returns

Constant 0.053 0.074* 0.066* 0.069* 0.048 0.040 0.036 0.044
t-stat (1.385) (1.764) (1.788) (1.823) (1.438) (1.195) (1.296) (1.607)
MKTRF -0.169 -0.118 -0.112 0.064 0.093 0.118
t-stat (-1.546) (-1.312) (-1.075) (0.619) (0.976) (1.168)
SMB -0.215** -0.251* -0.103 -0.237*
t-stat (-2.255) (-1.878) (-0.700) (-1.696)
HML -0.295*** -0.271** -0.287*** -0.196*
t-stat (-4.622) (-2.176) (-2.822) (-1.948)
RMW -0.082 -0.309
t-stat (-0.481) (-1.460)
CMA -0.025 -0.092
t-stat (-0.124) (-0.361)



38

Table A.2: Fama-MacBeth regressions-Realized return

This table shows Fama-MacBeth regression results when monthly returns (in %) are regressed on lagged firm
characteristics. Accounting data come from Compustat. The full sample is all CRSP stocks that are list in
NYSE, AMEX and NASDAQ and have non-missing listed independent variables, ranging from November
2012 to December 2022. “Low HHI” and “High HHI” are subsample of stocks that fall into bottom and
top HHI tercile in every month, respectively. HHI-implied demand elasticity is measured by minus HHI. In
parenthesis we report t-statistics with Newey and West (1987) standard errors.

All Sample Low HHI High HHI
(1) (2) (3)

ESG score−1 ×HHI-implied demand elasticity−1 0.059
(1.636)

HHI-implied demand elasticity−1 -0.027
(-0.593)

ESG score−1 0.137*** 0.216** 0.045
(2.926) (2.289) (1.368)

LogSize−1 0.029 -0.007 0.016
(0.506) (-0.134) (0.219)

LogB/MYr -1 0.015 -0.111 0.046
(0.119) (-0.579) (0.327)

OPYr -1 0.260* 0.276** 0.201
(1.805) (2.018) (1.050)

LogAGYr -1 -0.335 -0.604* -0.351
(-1.309) (-1.675) (-1.061)

LogReturn−2,−12 0.441 0.577 0.235
(1.516) (1.538) (0.685)

Constant 0.178 0.916 0.554
(0.116) (0.690) (0.286)
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B Proofs

Proof of Proposition 1

Denoting by Yj,1 the endowment of composite good in state ωj for j ∈ {G,B}, and using the fact that

ϕG = −ϕB = ϕ ∈ [0, 1], direct calculations show that Y0 = 1, and

Y1(ω) =

YG,1 ≡
(
1+ϕ
2 h

1− 1
η + 1−ϕ

2

) 1

1− 1
η , if ω = ωG

YB,1 ≡
(
1+ϕ
2 + 1−ϕ

2 h
1− 1

η

) 1

1− 1
η , if ω = ωB

(B1)

Note that, because ϕ > 0, we have 1 < YB,1 < YG,1 < h for all η > 0.18 Therefore, the quantity

of composite good produced in state ωG is larger than that of state ωB. In this sense, the state ωG

represents a “good state” in that the marginal utility of the representative agent is lower than in the

“bad state” ωB. If ϕ < 0, ωB would be the good state and ωG the bad state. Therefore, the sign of

the bias ϕ implicitly defines good and bad states in the economy.

Using the expression for the equilibrium price in equation (7) we obtain that the dividend of the

G and B assets are,

DG,1(ω) = PG,1(ω)× YG,1(ω) =
1 + ϕ

2

Y
1
η

G,1h
1− 1

η , if ω = ωG

Y
1
η

B,1, if ω = ωB

(B2)

DB,1(ω) = PB,1(ω)× YB,1(ω) =
1− ϕ

2

Y
1
η

G,1, if ω = ωG

Y
1
η

B,1h
1− 1

η , if ω = ωB

(B3)

Direct calculations show that the prices of the two assets are

VG = β
1 + ϕ

2

(
1

2
Y

1
η
−γ

G,1 h
1− 1

η +
1

2
Y

1
η
−γ

B,1

)
, VB = β

1− ϕ

2

(
1

2
Y

1
η
−γ

G,1 +
1

2
Y

1
η
−γ

B,1 h
1− 1

η

)
. (B4)

18To see this, suppose η < 1, and denote θ = 1− 1
η
< 0. Similar argument applies for the case η > 1. The composite

good YG,1 in equation (B1) may be rewritten as Yθ
G,1 = 1+ϕ

2
hθ + 1−ϕ

2
. Since 1+ϕ

2
+ 1−ϕ

2
= 1, we have hθ < Yθ

G,1 < 1.
Taking logs we get θ log(h) < θ log(YG,1) < 0. Since θ < 0 this implies 0 < log(YG,1) < log(h), or 1 < YG,1 < h. An
identical argument can be used to prove that 1 < YB,1 < h.
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Using the expected return formula (9) and the expressions (B1) gives the following expression of the

securities returns

E[RG] =
Y

1
η

G,1h
1− 1

η + Y
1
η

B,1

β

[
Y

1
η
−γ

G,1 h
1− 1

η + Y
1
η
−γ

B,1

] , E[RB] =
Y

1
η

G,1 + Y
1
η

B,1h
1− 1

η

β

[
Y

1
η
−γ

G,1 + Y
1
η
−γ

B,1 h
1− 1

η

] . (B5)

Using (B5), direct calculations show that

E[RG]− E[RB] =
Y

1
η

G,1Y
1
η

B,1(Y
−γ
B,1 − Y−γ

G,1)

β

(
Y

1
η
−γ

G,1 h
1− 1

η + Y
1
η
−γ

B,1

)
·
(
Y

1
η
−γ

G,1 + Y
1
η
−γ

B,1 h
1− 1

η

) ·
(
h
2
(
1− 1

η

)
− 1

)
. (B6)

The above expression can be rewritten as E[RG] − E[RB] = K(h
1− 1

η − 1) where the constant K is

given by

K =
Y

1
η

G,1Y
1
η

B,1(Y
−γ
B,1 − Y−γ

G,1)(h
1− 1

η + 1)

β

(
Y

1
η
−γ

G,1 h
1− 1

η + Y
1
η
−γ

B,1

)
·
(
Y

1
η
−γ

G,1 + Y
1
η
−γ

B,1 h
1− 1

η

) .
Since YB,1 < YG,1 and γ > 0 we have,

(
Y−γ
B,1 − Y−γ

G,1

)
> 0 and hence the constant K is positive.

Therefore, E[RG] > E[RB] if an only if η > 1.

Proof of proposition 2

Taking the price Pt(i, j), as given, we derive the optimal demand for Ct(i, j) by solving the following

expenditure minimization problem

min
Ct(i,j)

∑
j∈{G,B}

∫ 1

0
Pt(i, j)Ct(i, j)di, (B7)

subject to equation (13), defining the quantity Ct. The Lagrangian of this minimization problem is

L =
∑

j∈{G,B}

∫ 1

0
Pt(i, j)Ct(i, j)di + λ

Ct −

 ∑
j∈{G,B}

1 + ϕj
2

∫ 1

0

(
Ct(i, j)− θH(i, j)

)1− 1
η

di

 1

1− 1
η

 ,

(B8)
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where λ is Lagrange multiplier. The solution of the problem in equation (B7) involves pointwise

minimization, leading to the first-order condition for Ct(i, j):

Pt(i, j) =

(
1 + ϕj

2

)(
Ct(i, j)− θH(i, j)

)−1/η

C1/η
t λ. (B9)

The Lagrange multiplier λ is the shadow price Pt of the expenditure constraint. Let C∗
t (i, j) denote

the optimal demand from the cost minimization problem in equation (B7). Then,

Pt =
∂L
∂Ct

∣∣∣∣
Ct(i,j)=C∗

t (i,j)

= λ, (B10)

where the first equality is the definition of the shadow price Pt, the second equality follows from

equation (B8) and the Envelope Theorem. Because the composite good Ct is the numéraire in the

economy, Pt = 1. From equation (B9) it is immediate to see that the optimal demand for Ct(i, j) is

Ct(i, j) =

(
1 + ϕj

2

)η

Pt(i, j)
−ηCt + θH(i, j), j = G,B, (B11)

which is equation (15). Taking the log-derivative of equation (B11) with respect to Pt(i, j), delivers

the expression of the demand elasticity shown in equation (16).

Proof of Proposition 3

We denote the shock to physical endowment growth in sector j = B,G As ∆yj and observe that the

log physical endowment yj,t = ln(Yj,t) satisfies yj,1 = yj,0 + ∆yj . We start by taking a first order

Taylor expansions of the function Y1 around yj,0 for small shocks ∆yj .

Taking the log of the SDF in equation (21), we have

m = lnβ − γ (lnY1 − lnY0) , (B12)

where Yt is defined in equations (18)-(19) and can be seen as function of physical endowments Y1 =

φ(yG,1, yB,1) for some function φ. Using the fact that we can select the initial values of endowments

YG,0 = YB,0 so that Y0, ŶB,0, and ŶG,0 are normalized to be 1, the Taylor expansion of the function φ

gives

lnY1 ≈ lnY0 +
1 + ϕG

2
ξ∆yG +

1 + ϕB
2

ξ∆yB (B13)
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where

ξ ≡ ∂ ln Ŷj,0
∂ lnYj,0

= Yj,0

∫ 1

0
(Yj,0 − θH(i, j))

− 1
η di for j = G,B (B14)

are the elasticities of the habit-adjusted endowment Ŷj,0 to the physical endowment Yj,0. Because

endowments and habits have identical distribution in both sectors, the elasticity ξ is common across

sectors. To insure that demand functions are well defined, we require that endowments are always

larger than θH(i, j). Substituting equation (B13) into equation (B12), we have

m ≈ log(β)− 1 + ϕG
2

ξγ∆yG − 1 + ϕB
2

ξγ∆yB, (B15)

where, by assumption, −1 < ϕB < ϕG < 1 and ϕG + ϕB = 0. Let µei,j ≡ E[ri,j ]− rf +
1
2σ

2
i,j denote the

risk premium of stock (i, j), with ri,j = lnRi,j the log realized return, rf the log risk-free rate and σi,j

the volatility of firm (i, j)’s return. Under the assumption that the log SDF m and log asset returns

ri,j are jointly normal, the risk premium of stock (i, j) is given by

µei,j = −Cov(ri,j ,m). (B16)

From the definition of realized return in equation (22) we have ri,j = d1(i, j)−v0(i, j), where d1(i, j) =

lnD1(i, j), v0(i, j) = lnV0(i, j). Substituting equation (B15) in equation (B16) we have

µei,j =
1 + ϕj

2
ξγCov

(
d1(i, j), ∆yj

)
+

1 + ϕj′

2
ξγCov

(
d1(i, j), ∆yj′

)
, j = G,B,

=
1 + ϕj

2
ξγσ2Y︸ ︷︷ ︸

≡λj

Cov

(
d1(i, j), ∆yj

)
σ2Y︸ ︷︷ ︸
≡βj

i,j

+
1 + ϕj′

2
ξγσ2Y︸ ︷︷ ︸

≡λj′

Cov

(
d1(i, j), ∆yj′

)
σ2Y︸ ︷︷ ︸
≡βj′

i,j

, (B17)

with σ2Y = V ar(∆yj), j = G,B and where j′ = B if j = G and j′ = G if j = B, that is, j′ denotes

firm (i, j)’s “other” sector. In equation (B17), λj denote the price of risk associated with shocks to

the j sector,

λj =
1 + ϕj

2
ξγσ2Y , j = G,B (B18)

and, the variable βj
′

i,j denotes the beta of Stock (i, j) to the risk factor j′ = G,B. To get a closed

form expression for βj
′

i,j , we will undertake a Taylor expansion of the function d1(i, j) = ψj(yG,1, yB,1)

around (yG,0, yB,0) for some function ψj . From the definition of firm (i, j)’s dividend in equation (20)
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we have

d1(i, j) ≡ lnD1(i, j) = lnP1(i, j) + lnYj,1 ≡ p1(i, j) + yj,1, (B19)

From the expression of the equilibrium demand function for good (i, j) in equation (15), we can express

the equilibrium log good price p0(i, j) as follows

p1(i, j) ≡ lnP1(i, j) = ln (1 + ϕj) +
1

η

[
lnY1 − ln

(
Yj,1 − θH(i, j)

)]
. (B20)

Using the equality

∂ ln

(
Yj,1 − θH(i, j)

)
∂yj,1

=
Yj,1

Yj,1 − θH(i, j)
=

η

ν1(i, j)
,

the Taylor expansion given in equation (B13) and, equations (B19)-(B20), gives the Taylor expansion

for the function d1(i, j) = ψj(yG,1, yB,1) around (yG,0, yB,0):

d1(i, j) ≈ d0(i, j) +

[
1 + ϕj
2η

ξ +

(
1− 1

ν0(i, j)

)]
∆yj,1 +

1 + ϕj′

2η
ξ∆yj′,1. (B21)

Substituting equation (B21) into equation (B17) gives the closed form expression of βki,j given in

equation (26) for j, k ∈ {G,B}.

C Solution method for the model in Section 3

To obtain a numerical solution of the model, we choose the following parameter: γ = 3, µ = 0.03,

σY = 0.1, β = 0.98, η = 2, ϕ = 0.5 and θ = 1. We normalize the initial physical endowments Yj,0

of all goods so that Ŷj,0 = 1. The distribution of habit levels, given by H and H, is chosen to yield

a desired range of demand elasticities, spanning from ν = 0.6 to ν = 1.4, according to the mapping

given by equation (16). We assume that the growth rate of endowment follows a truncated normal

distribution N (µ, σ2Y ) over the interval [µ− 3σY , µ+3σY ]. The truncation is necessary to obtain well

defined habit adjusted endowment, as long as, Yj,0e
µ−3σY > θH. We now describe in more details on

the procedure that we followed to produce Figure 2:

1. We first determine the values of the variables Yj,0, H, and H that satisfy the two conditions: i)

ensuring that habit-adjusted endowments Ŷj,0, as defined in equation (19), equals to 1; and ii)
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achieving a range of demand elasticity ν0(i, j), as specified in equation (16), spanning from ν to

ν. We numerically solve for the parameters Y ∗
0 , H

∗, and H
∗
that satisfy the three equations:

η (Y ∗
0 −H∗) = ν (C1)

η
(
Y ∗
0 −H

∗
)
= ν (C2)

[∫ H
∗

H∗

1

H
∗ −H∗

(
Y ∗
0 − h

)1− 1
η

dh

] 1

1− 1
η

= 1 (C3)

We solve the above system through an iterative procedure where we guess the parameter Y ∗
0 ,

solve the linear system of equations (C1) and (C2) to identify H
∗
and H∗. We then plug the

value of H
∗
and H∗ into equation (C3) to find the new value of the parameter Y ∗

0 . We continue

this procedure until the system converge to a single value of the parameters (Y ∗
0 , H

∗
, H∗). After

obtaining the solutions through our iteration procedure, we let YG,0 = YB,0 = Y ∗
0 , H = H∗, and

H = H
∗
.

2. We denote the shock to physical endowment in sector j by ∆yj ≡ ln(Yj,1)− ln(Yj,0), j = B,G.

For given realizations of ∆yb and ∆yg, we solve for the value of SDF M1 and stock dividend

D1(i, j). The process is outlined as follow. First, we use equations (21), (18), and (19), to

sequentially compute Ŷj,1, Y1, and M1:

Ŷj,1 =

[∫ H
∗

H∗

1

H
∗ −H∗

(
Y ∗
0 e

∆yj − h

)1− 1
η

dh

] 1

1− 1
η

, j = B,G (C4)

Y1 =

[
1

2
(1 + ϕ)Ŷ

1− 1
η

G,1 +
1

2
(1− ϕ)Ŷ

1− 1
η

B,1

] 1

1− 1
η (C5)

M1 = βY−γ
1 (C6)

From equation (15), we obtain the equilibrium good prices

P1(i, j) = (1 + ϕj)

(
Y1

Y ∗
0 e

∆yj −H(i, j)

) 1
η

. (C7)
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Hence, the stock dividend Dt(i, j) is

D1(i, j) = P1(i, j)Y
∗
0 e

∆yj = (1 + ϕj)

(
Y1

Y ∗
0 e

∆yj −H(i, j)

) 1
η

Y ∗
0 e

∆yj . (C8)

Equations (C4), (C5), (C6), and (C8) provide solutions for the SDF M1 and stock dividend

D1(i, j) as functions of realizations of shock ∆yj , j = B,G. We represent the mappings from

(∆yb,∆yg) toM1 andD1(i, j) asM and Dij respectively, i.e., M1 = M(∆yb,∆yg) andD1(i, j) =

Dij(∆yb,∆yg).

3. Using the mappings M and Dij , we integrate over (∆yb,∆yg) to solve for log expected excess

return µei,j and risk loadings βki,j , k = B,G. This involves the following steps:

(a) The log risk free rate rf ≡ ln(Rf ) = − ln(E[M1]) is given by:

rf = − ln(E[M1]) = − ln

(∫ ∞

−∞

∫ ∞

−∞
M(∆yb,∆yg)dΦ(∆yb)dΦ(∆yg)

)
(C9)

where Φ is the cumulative distribution function of N (µ, σ2Y ) truncated at the interval [µ−

3σ, µ+ 3σ].

(b) The log stock price vt(i, j) ≡ ln (Vt(i, j)) = ln (E[M1D1(i, j)]) is given by:

v0(i, j) = ln

(∫ ∞

−∞

∫ ∞

−∞
M(∆yb,∆yg)Dij(∆yb,∆yg)dΦ(∆yb)dΦ(∆yg)

)
. (C10)

(c) The mean and variance for log dividend at date 1, d1(i, j) ≡ ln(D1(i, j)) are given by:

µdij ≡ E[d1(i, j)] =
∫ ∞

−∞

∫ ∞

−∞
ln
(
Dij(∆yb,∆yg)

)
dΦ(∆yb)dΦ(∆yg) (C11)

σ2dij ≡ E[(d1(i, j)− µdij )
2] =

∫ ∞

−∞

∫ ∞

−∞

[
ln
(
Dij(∆yb,∆yg)

)
− µdij

]2
dΦ(∆yb)dΦ(∆yg)

(C12)

(d) We use equations (C11) and (C12) to compute the log expected excess return, denoted as

µei,j . From ri,j = d1(i, j)−v0(i, j), we have that the expected return is E[ri,j ] = µdi,j−v0(i, j),

and the variance of the log return is σ2i,j = σ2di,j . We can now express the log expected excess
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return µei,j as follows:

µe(i, j) = E[ri,j ]− rf +
1

2
σ2i,j = µdi,j − v0(i, j)− rf +

1

2
σ2di,j (C13)

(e) To calculate the beta βki,j ≡
Cov(ri,j ,yk)

σ2
Y

, we again apply ri,j = d1(i, j)− v0(i, j) and obtain

βki,j =
Cov(di,j , yk)

σ2Y
=

1

σ2Y

∫ ∞

−∞

∫ ∞

−∞

[
ln
(
Dij(∆yb,∆yg)

)
− µdij

]
[∆yk − µ]dΦ(∆yb)dΦ(∆yg)

(C14)

4. We fix all parameters other than the bias intensity ϕ and plot the risk prices as functions of ϕ.

Specifically, for each ϕ, we repeat steps 1-3 above to calculate µei,j , β
B
i,j , and βGi,j in a sample

consisting 500 brown stocks and 500 green stocks with demand elasticity evenly distributed from

ν to ν. We estimate λb and λg through OLS regression of µei,j on βBi,j and βGi,j .

D A dynamic model of responsible consumption

In this appendix we solve a dynamic version of the deep-habit model we introduced in Section 3

and calibrate the solution to match key macro and asset pricing moments. We show that our main

result, that is, a GMB return spread that increases with demand elasticity, is robust to this model

generalization. We formally test this prediction in the data in Section 4.

D.1 Setup

Unlike the model of Section 3, we assume that agents are infinitely-live and that their intertemporal

preferences are

E0

∞∑
t=0

βt
C1−γ
t

1− γ
, (D1)

where β is a time-preference parameter, γ denotes relative risk aversion and Ct represents the habit-

adjusted consumption basket

Ct =

[(
1 + ϕG

2

)1/η

Ĉ
1− 1

η

G,t +

(
1 + ϕB

2

)1/η

Ĉ
1− 1

η

B,t

] 1

1− 1
η

, ϕ ∈ [0, 1]. (D2)
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where −1 < ϕB < ϕG < 1 represents the agent’s preference in favor of good G. For simplicity, we

assume that ϕG = −ϕB = ϕ > 0. The terms Ĉj,t, j = G,B represent the habit-adjusted consumption

of goods produced by the technology j, defined as

Ĉj,t =

[∫ 1

0

(
Ct(i, j)− θHt(i, j)

)1− 1
η

di

] 1

1− 1
η

, (D3)

with θ ∈ [0, 1] a parameter that controls the habit strength.19

Because there is a continuum of consumer, every consumer takes as given the menu of good prices

Pt(i, j) and the menu of (external) habit Ht(i, j) for all goods (i, j) when forming demand functions.

Therefore, similar to Proposition 2, the optimal consumer’s demand Ct(i, j) for good (i, j) is given by

Ct(i, j) = (1 + ϕj)

(
Pt(i, j)

Pt

)−η

Ct + θHt(i, j), (D4)

with Pt denoting the price index,

Pt =

[
1 + ϕB

2

∫ 1

0
Pt(i, B)1−ηdi+

1 + ϕG
2

∫ 1

0
Pt(i, G)

1−ηdi

] 1
1−η

. (D5)

The price elasticity of demand of good (i, j) is

νt(i, j) ≡ −∂ lnCt(i, j)

∂ lnPt(i, j)
= η

(
Ct(i, j)− θHt(i, j)

Ct(i, j)

)
. (D6)

Markets. The households in our economy can trade securities that represent claims on the endow-

ments of each individual good (i, j). These securities are in unit supply and are traded in a frictionless

market. We denote by Vt(i, j) the stock price of firm (i, j) and Dt(i, j) = Pt(i, j)Yt(i, j) the dividend

paid by the firm in units of the composite good, that is, we normalize the price index defined in

equation (D5) to Pt = 1.

Habit dynamics. The good-specific habit Ht(i, j) in equation (D3) is a persistent process whose

evolution is affected by consumers’s lagged consumption Ct−1(i, j) and exogenous taste shock. Specif-

19Note that, unlike equation (13), in the definition of Ct in equation (D2) the bias term (1+ ϕj) appears with a power
1/η. We found that this parameterization is numerically more stable when solving the model through perturbation
methods.
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ically, we assume that the habit for good (i, j) in period t evolves as follows

Ht(i, j) = ρHt−1(i, j) + (1− ρ)Ct−1(i, j) + εhijt (D7)

where ρ ∈ (0, 1) is a persistence parameter; εhijt ∼ N
(
0, σ2h

)
represents a demand or taste shock

uncorrelated both across firms and with the aggregate shock in the economy; and Ct−1(i, j) is the

consumption of good (i, j) in period t− 1.

Endowment process. The endowment in the economy consists of a continuum of Lucas trees (an

orchard), each producing a dividend Yt(i, j). Trees in the same techonology group share the same

endowment process, i.e Yt(i, j) = Yj,t for ∀i, and receives the same consumption bias ϕj , which means

that trees within technology group only differ in their habit level Ht(i, j) and are otherwise identical.

We define the habit-adjusted endowment of the composite good produced by technology j by

Ŷj,t =

[∫ 1

0

(
Yj,t − θHt(i, j)

)1− 1
η

di

] 1

1− 1
η

. (D8)

Shocks to the economy are driven by fundamental shocks to the log habit-adjusted endowment ŷj,t ≡

ln Ŷj,t that we specify as an exogenous persistent with a time trend g, that is,

ŷj,t = gt+ zt + zj,t, where zt = ϱzzt−1 + εt and zj,t = ϱjzj,t−1 + εj,t. (D9)

The growth of Ŷj,t is subject to both an economy-wide shock zt and a technology-specific shock zj,t.

The shock zt captures the risk of aggregate consumption fluctuations and is common to all technologies

j. The innovation εt is uncorrelated with the idiosyncratic demand shocks in firms’ habit processes

εhijt and also uncorrelated with greenness-specific shock εj,t. Following van Binsbergen (2016), we

assume that the shock εt is normally distributed with mean zero and a time-varying, counter-cyclical

volatility,

εt ∼ N
(
0, σ2 (zt−1)

)
, with σ (z) =

2ebz

1 + ebz
σz, b < 0. (D10)

The assumption of b < 0 insures that the stochastic discount factor has time-varying volatility inversely

related to the consumption surplus ratio and drives the time-series variation in aggregate risk premia.

The time-varying volatility of the stochastic discount factor helps matching the time-series properties

of the risk-free rate and the equity risk premium to the data.
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Moreover, the variable zj,t is a deviation from the growth of aggregate demand and εj,t is a shock

to the technology endowment. We assume the shock εj,t is normally distributed with mean zero and

a constant volatility σj , εj,t ∼ N
(
0, σ2j

)
. The shocks εj,t represents technology specific shocks.

Equilibrium. An equilibrium is therefore a set of good prices Pt(i, j) and equity prices Vt(i, j) such

that household maximize lifetime utility in equation (D1), goods market clear, Ct(i, j) = Yt(i, j), where

Ct(i, j) is the optimal demand of good (i, j) derived in equation (15), and equity markets clear.20 In

equilibrium, the stochastic discount factor is Mt = βt
(

Yt
Y0

)−γ
where Yt is aggregate habit-adjusted

consumption defined as

Yt =

[∫ 1

0
(1 + ϕj)

1/ηŶ
1− 1

η

j,t dj

] 1

1− 1
η
, (D11)

with Ŷj,t defined in equation (D8). Denoting by Rt+1(i, j) firm (i, j)’s realized return, defined by

Rt+1(i, j) =
Vt+1(i, j) +Dt+1(i, j)

Vt(i, j)
. (D12)

The optimality of equilibrium and market clearing implies that returns satisfy the Euler equation

Et

[
Mt+1

Mt
Rt+1(i, j)

]
= 1, for all i, j, (D13)

From the market clearing condition Ct(i, j) = Yt(i, j) for all (i, j) and the habit dynamics in equa-

tion (D7) we have that in equilibrium Yt = Ct and Ŷj,t = Ĉj,t for all j ∈ [0, 1]. The next section

describes the equilibrium construction and its numerical implementation.

D.2 Details of numerical solution of the model

We solve the model using third-order perturbation methods (Dynare++).

Exogeneous shocks. The process for the exogenous variables ŷj,t, zt and zj,t are given in equa-

tions (D9) and (D10) of the main text.

20In the numerical implementation, we specify the endowment and habit processes to insure that the goods market
clearing condition is satisfied for a finite price.
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Representative firm. As discussed in Section D.3 we recover the physical endowment Yj,t from

the exogenous habit-adjusted endowment Ŷj,t by solving the model with the idiosyncratic habit shock

volatility set to zero (σ2h = 0). This assumption assumes that all trees within greenness group j are

identical, thereby allowing for the existence of a representative tree for the group. For the representa-

tive firm, the evolution of the physical endowment Yj,t and of habit Ht(j) is
21

Yj,t = Ŷj,t + θHj,t−1 (D14)

Hj,t = ρHj,t−1 + (1− ρ)Yj,t. (D15)

The equilibrium good price Pj,t follows from Proposition 2, that is,

Pj,t = (1 + ϕj)
1/ν

(
Ŷj,t
Yt

)− 1
ν

(D16)

where the aggregate consumption surplus Yt is

Yt =

[
1

2
(1 + ϕG)

1/η Ŷ
1− 1

η

G,t +
1

2
(1− ϕB)

1/η Ŷ
1− 1

η

B,t

] 1

1− 1
η . (D17)

Aggregate-level asset pricing quantities. From the representative-firm problem we can obtain

the sectoral return Rj,t, and the risk-free rate Rf,t from the standard Euler’s equations:

Et [Mt,t+1Rj,t+1] = 1 (D18)

Et [Mt,t+1Rf,t] = 1 (D19)

where Mt,t+1 = β
(
Yt+1

Yt

)−γ
, Rj,t =

Dj,t+Vj,t

Vj,t−1
, with Dj,t = Pj,tCj,t and Vj,t denoting the representative

firm’s value. The aggregate dividend Dm,t, market value, Vm,t, market return Rm,t, and aggregate

21Because the habit variable is a “stock” variable, we adhere to the Dynare notation convention and report it as a
lagged variable, Ht−1, as it is known at time t. We follow the same convention for all stock variables in the model.
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price-dividend ratio pdm,t are given by

Dm,t =
1

2
DB,t +

1

2
DG,t (D20)

Vm,t =
1

2
VB,t +

1

2
VG,t (D21)

Rm,t =
Dm,t + Vm,t

Vm,t−1
(D22)

pdm,t =
Vm,t

Dm,t
. (D23)

Cross section of individual firm (i, j). As we discuss in Step 3 of the solution method described

in Section D.3 below, at each point in time we simulate a cross section of brown and green firms.

The conditions that describe the evolution of physical endowment, habit, goods prices and demand

elasticity are:

Yt(i, j) = (1 + ϕj)Pt(i, j)
−νYt + θHt−1(i, j), Yt(i, j) = Yj,t (D24)

Ht(i, j) = ρHt−1(i, j) + (1− ρ)Yt(i, j) + εhijt (D25)

νt(i, j) = η

(
Yt(i, j)− θHt−1(i, j)

Yt(i, j)

)
(D26)

The return for firm (i, j) is given by the standard Euler’s equation

Et [Mt,t+1Rt+1(i, j)] = 1 (D27)

where Rt(i, j) =
Dt(i,j)+Vt(i,j)

Vt−1(i,j)
and the dividend Dt(i, j) = Pt(i, j)Ct(i, j).

Because the exogenous endowment process in equation D9 growth at a rate g, to achieve sta-

tionarity, we rescale Ŷj,t, Yj,t, Hj,t, Dj,t, Vj,t, Yt(i, j), Ht(i, j), Dt(i, j), and Vt(i, j) by egt. From the

de-trended conditions we obtain the equilibrium dynamics of the models using a third-order pertur-

bation method from Dynare++.

D.3 Solution method

Given the habit-adjusted process Ŷj,t and the cross sectional distribution of good-specific habits

Ht(i, j), the physical endowment process Yt(i, j) = Yj,t is implicitly defined by equation (D8). Be-

cause the cross-sectional distribution of good-specific habits Ht(i, j) is an infinite-dimensional object,

recovering Yj,t exactly is numerically unfeasible. To make the problem tractable, we follow Krusell



52

and Smith (1998) and summarize the distribution of Ht(i, j) with the average habit level in the sector

j,

Hj,t =

∫ 1

0
Ht(i, j)di, (D28)

and verify that such approximation delivers a sufficiently accurate solution for the physical endowment

process Yj,t.

Specifically, we solve the model using third-order perturbation methods, as discussed in Section D.2,

using the following steps:

1. We first consider two representative firms j ∈ {B,G} and take as given the habit-adjusted process

Ŷj,t. Because the representative firm is an average across all firms i with level of greenness j,

we take the habit level of the representative firm as the average habit level Hj,t. Formally, we

construct such representative firms by solving the model under the assumption that the habit

dynamics in equation (D7) has no shocks, that is, σh = 0. Using the average habit level Hj,t

and the habit-adjusted endowment process Ŷj,t, we obtain the following guess for the physical

endowment Yj,t

Yj,t = Ŷj,t + θHj,t. (D29)

2. Taking as given the process for Ŷj,t and Yt(i, j) = Yj,t from Step 1, we compute individual habit

levels Ht(i, j) from the habit dynamics equation (D7), where, by the market clearing condition,

Ct−1(i, j) = Yt−1(i, j). Using the habit Ht(i, j) thus derived, we can compute the good price

Pt(i, j) according to demand function given by Equation (D4), that is,

Pt(i, j) =

(
(1 + ϕj)Yt

Yj,t − θHt(i, j)

) 1
η

, (D30)

where Yt is computed according to equation (D17). From the good price Pt(i, j) we can then

derive the dividend Dt(i, j) = Pt(i, j)Yj,t, which will be used to price the stock of firm (i, j) and

hence obtain its required rate of return.

3. At each point in time, we simulate a cross-section of green and brown firms using the solution

defined in Step 2, and use the guessed Yj,t and the resulting distribution of Ht(i, j) to compute

the implied aggregate consumption surplus Ŷ †
j,t according to equation (D8).
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4. We verify the accuracy of our approximation by comparing the aggregate consumption surplus

Ŷ †
j,t from Step 3 with the exogenously specified consumption surplus Ŷj,t from Step 1. In our solu-

tion, we find that corr(Ŷ †
j,t, Ŷj,t) > 0.9999, confirming that the guess for the physical endowment

Yj,t in equation (D29) provides a good approximation.

D.4 Calibration

The endowment processes of ŶB,t and ŶG,t are subject to economy-wide shock zt and technology

specific shocks zB,t and zG,t as specified in equation (D9). We assume that εG,t = −εB,t. Because

both endowments are subject to a common shocks the green and brown endowments are imperfectly

correlated. This assumption allows us to match consumption growth volatility in the data. The

negative correlation between the two technologies also captures the idea that the success of green

technologies comes at the expense of a decline of brown technologies.

We calibrate the model at a quarterly frequency and solve the model using third-order perturbations

around the steady state. Table D.1 contains the parameter values we used in our solution. We set

consumption bias to ϕG = −ϕB = ϕ = 0.25, risk aversion to γ = 6.3, and time preference to

β∗ ≡ β(exp(g))1−γ = 0.986, where g denotes the deterministic log growth rate. We let g = 0.00425 to

match an annual consumption growth rate of 1.7%, as in Campbell and Cochrane (1999). We choose

a value for the elasticity of substitution η = 2, as in Sauzet and Zerbib (2022) and a habit strength

of θ = 0.82 as in Jermann (1998). We set persistence of endowment process ϱz = ϱj = 0.98 as in

van Binsbergen (2016); habit persistence ϱh = 0.98 and volatility of habit shock σh = 0.06 to insure

that equilibrium good prices are well defined.22 Finally, we set the volatility of the economy-wide

consumption surplus shock to be σz = 0.0216 and the volatility of technology shocks to σj = 0.08 to

match the first moments of asset prices. Finally, to match the volatility of risk free rate, we set b = −7

in the dynamics of the volatility of the economy-wide shock in equation (D10).

D.5 Model results

Aggregate moments. To compute aggregate asset pricing moments, we first solve the model with

no idiosyncratic habit shocks (σh = 0) and perform 500 simulations of 2,000 quarters each (500 years).

To minimize the effect of initial values, we use a 100-year burn-in period and base our analysis on the

22To guarantee that equilibrium product prices are finite, we need to insure that habit adjusted consumption is positive,
see equation (D30). Our parameter choice generates values of demand elasticity ranging from 0 to 1.2, implying, by
equation (16), that consumption surplus is always positive and good prices are hence well-defined.
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Table D.1: Parameter values

The table reports the values of the model coefficients used in the calibration of
the model in Appendix D. We calibrate the model at a quarterly frequency.

Parameter Symbol Value

Time preference β∗ 0.986
Elasticity of substitution η 2
Curvature parameter γ 6.3
Deterministic growth rate g 0.00425
Economy-wide endowment persistence ϱz 0.98
Technology-specific endowment persistence ϱj 0.98
Habit persistence ρ 0.98
Volatility of economy-wide endowment shock σz 0.0216
Volatility of technology-specific shock σj 0.08
Volatility of idiosyncratic habit shock σh 0.06
Habit strength θ 0.82
Countercyclical volatity parameter b −7
Consumption bias ϕ 0.25

Table D.2: Moments from the calibrated model

We run 500 simulations of 500 years each and compute aggregate level mo-
ments by discarding the first 100 years in each simulation. The table reports
the annualized moments values from the model and the corresponding values
in the data. Following Garleanu, Panageas, and Yu (2012), we use all data
moments from the long sample (1871–2005) in Campbell and Cochrane (1999)
except for the volatility of the 1-year zero coupon yield, which is from Chan
and Kogan (2002).

Moment Data Model

Mean of consumption growth 0.017 0.017
Volatility of consumption growth 0.033 0.035
Mean of 1-year zero coupon yield 0.029 0.029
Volatility of 1-year zero coupon yield 0.030 0.074
Mean of equity premium (logarithmic returns) 0.039 0.039
Volatility of equity premium 0.180 0.239

remaining 400 years. We compute the consumption and asset pricing moments from the simulated

data and compare them to the equivalent quantity in the real data. Table D.2 shows that the model

matches the key asset pricing moments reasonably well.
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Cross sectional moments. Using the simulated data panel we then mimic the empirical analysis

of Section 4 and analyze the return properties of green and brown firms in the cross section. Our

theory predicts that the green premium, that is, the GMB spread, increases with demand elasticity.

We simulate a cross-section of 5,000 green firms and 5,000 brown firms for 700 years. To minimize

the effect of initial values, we ignore the first 100 years. In each period, we sort demand elasticity into

bins and compute the average expected return in each bin for green and brown stocks. Figure D.1

shows average excess returns of the Green-minus-brown portfolios conditional on different demand

elasticity rankings. Consistent with the model prediction, the GMB return spread is increasing in

demand elasticity, with a negative value at the bottom demand elasticity decile and a positive value

at the top demand elasticity decile.

Figure D.1: GMB spread and demand elasticity
The graph shows average excess returns of Green-Minus-Brown (GMB) portfolios and associated two-tailed
95% confidence intervals conditional on different demand elasticity rankings. Using simulated data, we first
sort stocks into 10 groups in each period according to their demand elasticity defined in equation (16). Then,
within each ranking, we calculate the average return of green and brown stocks and obtain the GMB return
spread as the difference between the average returns. The x-axis is the demand-elasticity decile ranking and the
y-axis is the over-time average GMB return spread in each ranking. The expected excess returns are annualized.
Parameter values are in Table D.1.

A key measurement challenge to bring our model predictions to the data is that demand elasticity

is not directly observable. In the empirical analysis of Section 4 we follow van Binsbergen (2016) and

use product price changes to analyze the relation between expected returns and demand elasticity.

The main idea is to exploit the fact that firms with low demand elasticity tend to charge higher prices.
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We define the relative price as follows:

RPt(i, j) = ln

(
Pt(i, j)

P ss(i, j)

)
, (D31)

where P ss(i, j) denotes good (i, j)’s steady state price, that is, the initial price in each model simula-

tion. In the steady state, all stocks have the same habit level and hence the same demand elasticity.

Overtime, firms that experience positive habit shocks face a lower demand elasticity and can raise

their product prices and firms that experience negative habit shocks face high demand elasticity and

cannot raise their product prices. Therefore, changes in product prices reflect shifts in demand elastic-

ity. Because the initial demand elasticity level is uniform across all stocks, the inverse of the product

price change in equation (D31) effectively serves as a proxy for demand elasticity in the model. In the

empirical analysis of Section 4 we use the cumulative price change as metric for tracking price changes

(see equation (28)). This measure is consistent with the model price change in equation (D31) where

the steady state price is replaced by the first time in which the price P (i, j) is observable. Because

the GMB return spread is increasing in demand elasticity and high demand elasticity is associated

with low relative price, we should expect that a decrease in relative price is associated with a high

GMB return spread. Figure D.2 is the equivalent of Figure D.1 where on the horizontal axis we report

the inverse of relative price, that is equal to −RPt(i, j), instead of demand elasticity. Confirming the

conjectured negative relation between relative product price and demand elasticity, Figure D.2 shows

that the GMB spread is negative for stocks of firms that have experienced an increase in good price

(low inverse RP) and positive for stocks of firms that have experienced a decrease in good price (high

inverse RP). This suggest that the upward GMB spread trend can be observed by sorting firms into

portfolios according to their price changes.
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Figure D.2: GMB spread and inverse relative price change
The graph shows average excess returns of Green-Minus-Brown (GMB) portfolios and associated two-tailed 95%
confidence intervals conditional on different inverse ranking of relative price (RP) defined in equation (D31).
Using simulated data, we first sort stocks into 10 groups in each period according to their RP ranking. Then,
within each ranking, we calculate the average return of green and brown stocks and obtain the GMB return
spread as the difference between the average returns. The x-axis is the inverse RP decile ranking and the y-axis
is the over-time average GMB return spread in each ranking. The expected excess returns are annualized.
Parameter values are in Table D.1.
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