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Abstract

Abstract The rapid expansion of mechanization services has revolutionized agricultural

production in developing countries, where small farms dominate. However, the impact of

these services on the productivity of small farms across multiple production stages is not

well understood. We investigate the adoption of mechanization services at different stages

and assess their productivity effects, both at each stage and overall. Utilizing a balanced

panel of 145 wheat farms in Northern China, with data from three waves of farm surveys from

2013 to 2020 matched with NDVI crop indices, we provide comprehensive insights into inputs

and outputs at each stage, allowing for the estimation of a multiple-stage production function.

We find that mechanization services are underutilized in the plant protection stage, where

performance is less observable. This underutilization, linked to other production stages,

hampers capital deepening and productivity at the farm level, offering insights into farms’

by-stage adoption of mechanization services and overall productivity.
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1 Introduction

Enhancing the productivity of small farms through the provision of appropriate equipment is

crucial for addressing food security and rural poverty issues in developing countries. Globally,

there are approximately 475 million farms, accounting for 84% of the estimated 570 million, which

are smaller than two hectares relying on the labor intensive technology for production (Abraham

et al., 2022; Gomez-Zavaglia et al., 2020; Ackerberg et al., 2015). More than 80% of these farms

are located in developing countries across Asia, Africa and Latin America. Despite occupying only

12% of the world’s agricultural land, small farms employ over two billion individuals in rural areas

and contribute to 80% of the food production in major developing countries. Moreover, these

farms also host a significant proportion of the world’s poorest and most food-insecure populations

(Lowder et al., 2016). While various factors, such as geography, agro-climatic conditions, limited

economies of scale, risk tolerance and limited access to credit, quality inputs and technology, in-

fluence productivity, they pale in comparison to the profound impact of inadequate mechanization

levels and the absence of access to quality capital equipment on the potential productivity en-

hancement of small farms. Consequently, there is an urgent need for innovative technological and

institutional solutions to enhance mechanization levels within small-scale farming systems.

In recent two decades, a widely utilization of agricultural mechanization services has sub-

stantially improved the mechanization level and productivity of small farms in many Asian and

African developing countries (Zhang et al., 2015; Diao et al., 2020; Daum et al., 2021; Caunedo

et al., 2022). On one hand, agricultural mechanization services enable small farms to conduct

the ploughing and harvesting activities more efficiently, granting them access to power-intensive

tractors and harvesters that would otherwise be unaffordable. On the other hand, agricultural

mechanization services also facilitate the adoption of newly developed advanced technologies, in-

cluding GPS-based seedling, traffic-control harvesting and other standardized farming practices,

which are integrated into capital equipment. This transformation has also been supported by

government subsidies and tax incentives, contributing to address the challenge of insufficient self-

owned capital in agriculture of developing countries. Taking China as an example, where only

15% of farms possessed machinery and equipment valued up to RMB 150,000 yuan, the com-

prehensive mechanization ratio had reached 72% by 2021.1 A similar trend of rapid growth in

agricultural mechanization services has also been observed in other developing countries across

Asia and Africa.2

Despite the growing importance of mechanization services in developing countries’ agriculture,

1For example, average mechanization service ratios for the ploughing, seeding, and harvesting stages of pro-
duction for rice, wheat, and maize in China have reached 86%, 60%, and 65 % respectively (MARA, 2022).

2In Asia, a remarkable 72% of farms have access to mechanisation services in Bangladesh and a large proportion
of farmers got access to mechanisation services for harvesting activities in India (Fuad and Flora, 2019). In Latin
American and African countries, similar pattern also applies. For example, there are up to 80 % of farms utilizing
machinery services in Ghana (Cossar, 2019); markets for combine-harvesting of wheat have emerged, and even
small farms make use of these services in Ethiopia (Fisseha et al., 2017).
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there are emerging challenges that restrict their further development. One major challenge is

that the tendency of small farmer users to under-utilize mechanization services in specific stages

of agricultural production, which can have negative impact on farm-level productivity. Unlike

manufacturing production, agriculture involves a series of interconnected activities throughout

the entire production process, with the outcomes of earlier stages only becoming apparent after

the harvest. Without the ability to effectively monitor the performance of service providers in

earlier stage of production, small farm users often need to reduce costs by opting for the cheapest

service providers and packages for particular stages of production. Additionally, the loss in inef-

ficiencies of earlier stages due to the under-utilization of mechanization services can also impact

subsequent stages, leading to negative spill-over effects in subsequent stages. As a consequence,

the optimal choice of using mechanization services by stage may not align with optimal choice of

mechanisation service at the farm level. Addressing this challenge requires analyzing how small

farms configure their mechanization services at different stages of production and assessing their

impacts on productivity.

In this paper, we investigate the adoption of mechanization services by small farms and their

impact on both stage-specific and overall farm-level productivity. Our objective is to gain a

deeper understanding of whether the by-stage selection of service providers and packages is optimal

for enhancing productivity of small-farm users. To achieve this goal, we develop a three-stage

production function that takes into account the varying complexities of tasks, risks, and adverse

selection associated with different stages of production. Using this framework, we analyze small

farms’ decisions regarding the utilization of capital, labor, and mechanisation services in different

production stages. To empirically estimate the three-stage production function in the context of

wheat production, we use small wheat farms in Northern China as a case study.

China, as a global leader in wheat production, accounted for the largest total wheat sowing

area and production in 2021, with 23.57 million hectares and 136.9 million tons, respectively,

representing 10.59% and 17.6% of the global total. Notably, a significant portion of China’s wheat

production comes from Northern China, with Henan and Shandong alone contributing to 41.09%

of the total production. The majority of wheat producers in Northern China are small farms, with

over 85% operating on plots totaling less than 0.67 hectares (or 10mu ), and an additional 10%

operating on plots totaling less than 2 hectares (or 30 mu). Over the past decade, mechanization

services in Northern China have experienced rapid expansion, leading to substantial improvement

in the mechanization levels and productivity of small wheat farms. While the overall mechanization

ratio in wheat production has exceeded 97% due to this expansion, disparities in mechanization

levels and the utilization of mechanization services remain large across different stages of wheat

production.

Using a unique dataset obtained from three-period tracing farm surveys that collect detailed

input and output information for each stage of production, combined with satellite monitoring

of crop growing indices, we estimate a multiple-stage production function that encompasses the
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three stages of wheat production (namely, ploughing/seedling, plant protection, and harvesting)

for 145 farms in Northern China. By estimating the productivity for each stage, we analyze the

impact of mechanization services on stage-specific productivity by examining the utilization of

capital, labor, and mechanization services by wheat farms. Additionally, we also aggregate the

productivity estimates for each stage to measure farm-level productivity using Domar weights

proposed by Brandt et al. (2022). We then compare these estimates with those obtained from

the farm-level production function estimates. The richness of our dataset enables us to not only

assess the aggregate productivity of wheat farms but, more importantly, to examine variations in

farm-level performance across different stages of production, where varying levels of mechanization

services are employed. This provides valuable insights for better understanding how mechanization

services influence farm-level productivity within the context of a complex and interdependent

farming operation.

We find that wheat farms in Northern China have experienced a significant growth of produc-

tivity, at the rate of 1.5% a year over the past decade, with mechanization services contributing

to approximately half of this growth. However, the productivity of the plant protection stage,

which involves the use of relatively fewer machinery and equipment (as well as fewer mechaniza-

tion services), is considerably lower compared to the ploughing/seedling and harvesting stages.

This discrepancy poses an emerging challenge to further enhancing farm-level productivity. While

mechanization services have proven effective in improving the mechanization levels and productiv-

ity of the ploughing/seedling and harvesting stages, their impact on the productivity of the plant

protection stage for wheat farms is limited. This is partly attributed to that small farm users

can not effectively monitor the performance of service providers in the plant protection stage,

since the outputs of the stage are not directly observable. Consequently, they adversely select to

minimize the utilization of mechanization services in this stage, which in turn negative affect its

by-stage productivity and generate negative spillover effects on downstream-stage productivity.

Our findings help explain why small wheat farms are hesitant to rely more heavily on mechaniza-

tion services to replace their self-owned capital and labor, especially in the plant protection stage,

compared to the ploughing/seedling and harvesting stages. Additionally, our study also sheds

light on the behavior of wheat farms in Northern China as they scale up their operations. As

farms expand their scale, they are more inclined to acquire their own machinery and equipment

to be utilized across all stages of wheat production. This helps mitigate the negative cross-stage

spillover effects.

To the best of our knowledge, this paper makes two significant contributions to the exist-

ing literature. Firstly, it represents the first attempt to examine the impact of mechanization

services on the productivity of small farms by conducting estimations of the multiple-stage pro-

duction function. Drawing upon the frameworks developed by Ortiz-Bobea (2013) and Brandt

et al. (2022), we estimate the productivity of small farms at each stage and establish a linkage

between agricultural productivity and the utilization of mechanization services. This innovative
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approach incorporates the interaction between different stages of agricultural production into the

analysis of mechanization services’ impact on farm-level productivity. Secondly, we highlight the

emerging challenge of independently selecting service providers and packages for the plant protec-

tion stage of agricultural production, in which the output performance of mechanization service

providers is not directly observable. We demonstrate that this practice has a negative effect on

the use of mechanisation services and the productivity of the plant protection stage, as well as

the overall productivity performance of mechanization services at the farm level (when there are

negative spillover effects passed on to the downstream production stages). Failure to adequately

address this issue significantly restricts the potential role of mechanization services in enhancing

the productivity of small farms, highlighting the importance of further attention to this matter.

Our research is aligned with three other distinct bodies of literature. The first body of literature

examines the impact of mechanized services on farm performance, as explored by Yang et al.

(2013), Diao et al. (2020), Zhang et al. (2017), and Paudel et al. (2019). For example, Yang et al.

(2013) studied the seasonal migration of combine harvesters across different provinces in China

and its contribution to agricultural productivity growth. Similarly, Paudel et al. (2019) found

that moderate mechanization, such as the use of mini-tillers, significantly increased rice yields for

smallholders in Nepal’s hilly regions. However, these studies do not explain why mechanization

services are more effective in promoting agricultural productivity growth in certain countries and

regions compared to others. The second body of literature focuses on analyzing the role of market

development in influencing the adoption of mechanized services, as demonstrated by Daum et al.

(2021), Caunedo et al. (2022), and Foster and Rosenzweig (2022). For example, Foster and

Rosenzweig (2022) discovered that the high transaction costs between service providers and users

could reduce the efficiency and quality of the service market. Adu-Baffour et al. (2019), Daum and

Birner (2017), and Daum and Birner (2020) highlight the importance of addressing institutional,

financial, and training issues related to the service-providing market to facilitate the adoption of

mechanization services, rather than solely relying on government subsidies. However, these studies

do not elucidate why mechanization services are more likely to be adopted at specific stages of farm

production, such as tilling, sowing, and harvesting. The third branch of the literature concentrates

on estimating the by-stage production function, as explored by Antle et al. (1994), Behrman et al.

(1997), Ortiz-Bobea (2013), and Brandt et al. (2022). These studies have developed and applied

the multiple-stage production function approach to assess the productivity of different stages

in manufacturing production. However, they do not specifically examine the interaction between

mechanization services and stage-specific productivity in agriculture. By incorporating these three

bodies of literature, our research adds to the existing knowledge by not only investigating the

impact of mechanization services on farm performance but also exploring the factors influencing

their effectiveness and adoption at different stage of production.

The remainder of the paper is structured as follows. Section 2 presents background information

regarding wheat production by small farms in Northern China, as well as the impact of mecha-
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nization services on wheat production over the past decade. In Section 3, we detail the panel data

sourced from three waves of random-sampling/tracing farm surveys conducted in 2014, 2016, and

2021. This dataset comprises comprehensive input and output information categorized by stages

of production. We also provide an overview of the major variables to be employed in estimating

the by-stage production function. Section 4 outlines the empirical methodology to estimate the

multiple-stage production function and the empirical strategies we will employ to investigate the

effects of capital deepening and mechanization services on both by-stage productivity and aggre-

gate farm-level productivity. In Section 5, we present the empirical findings, followed by a series

of robustness checks conducted in Section 6. Finally, Section 8 presents the conclusions drawn

from our analysis.

2 Wheat Production in Northern China and the Role of

Mechanization Services

Wheat is one of the three most important grain crops in China, second only to rice. It is primarily

consumed within the country and boasts a rich cultivation history spanning over the past five

thousand years. As a winter crop, wheat thrives mainly in the Northern provinces, where tem-

peratures can plummet to negative double digits during the winter season. It typically alternates

with other dry-land crops like maize or oil seeds. In 2022, China’s wheat production reached a

record high of 137.7 million tons, accounting for 30% of the global total. This achievement has

consistently positioned China as the world’s largest wheat producer for the past two decades. Out

of all the wheat production regions in China, over 79% of wheat production originated from five

provinces in North and Middle China, including Henan, Shandong, Hebei, Anhui, and Jiangsu.

Henan and Shandong alone accounted for nearly half of the overall production. In these regions,

wheat cultivation is primarily carried out by small farms. In 2021, more than 85% of wheat farms

in Northern China operated on multiple plots totaling no more than 10mu ( 0.67 hectares), with

an additional 10% operating on plots totaling no more than 30mu (2 hectares) (MARA 2022).

The production process of winter wheat by small farms in Northern China typically takes

about 240 days and comprises five types of distinct yet sequential activities: ploughing, sowing,

fertilizing and watering, weed and pest controls, and harvesting. These activities can be further

grouped into three stages. In the first stage, which usually takes place in autumn (e.g., October),

farmers plow the land and immediately sow the wheat seeds after harvesting the summer crops.

The seeds remain underground throughout the entire winter season and sprout and tiller in the

following spring, usually around March. During the second stage, which occurs between March

and May, the wheat seedlings undergo rapid growth. Over this period of time, farmers engage in

various activities to protect the plants, such as watering, fertilizing, and pest control measures.

Towards the end of May or in the third stage, the mature wheat is harvested within a short time
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frame of less than 10 days, although the exact duration may vary across regions, before the rainy

season begins. After harvesting, another rotating crop is planted. Throughout the entire growing

season, each stage of wheat production involves distinct production methods or the utilization of

varying combinations of labor and capital, as well as the output from the previous stage. The

performance of each stage contributes proportionally to the final outcome, resulting in an entire

production process for winter wheat in Northern China characterized by interdependence among

stages.

Figure 1: Total wheat production and yield in Henan and Shandong and in China:
2010-2020

(a) total wheat production (Millon ton)

(b) wheat yield (ton/ha)

Source: China Rural Statistical Yearbook (2021)

Although operating on a small scale, wheat farms in Northern China have experienced signif-

icant growth in yield and productivity over the past two decades, primarily due to the increased

mechanization. This rise in mechanization levels can be attributed, in part, to the widespread

availability of agricultural mechanization services. Between 2000 and 2023, the overall level of

agricultural mechanization in wheat production in Northern China has surged from approximately

35% to over 97%, with the total machinery power growing at an average annual rate of around 3%.
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Alongside the gradual improvement in land consolidation and increased machinery purchase sub-

sidies provided by the central and local government agencies, the rapid expansion of agricultural

mechanization services provided by relatively larger farms and mechanization service organizations

have played a crucial role in enhancing the level of mechanization in all stages of production for

wheat farms in China, particularly for small-scale operations. In 2022, more than 4.2 million mech-

anization providers (accounting for around 10% of the total 39.95 million mechanization farms)

and 194,845 mechanization service organizations enabled over 200 million farms to be equipped

with better machinery throughout various stages of wheat production (MARA 2021). Driven by

the improved level of mechanization in Northern China, among other amenable factors (e.g. use

of new varieties and improved irrigation system), wheat farms have witnessed rapid growth in

both yield and productivity. As is shown in Figure 1, the average wheat yield of these farms has

increased by 1.3% per year over the past two decades.
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Figure 2: Mechanization service in wheat production and its distribution by stage of
production

(a) the number of service provides by types

(b) Mechanization level of wheat production (%)

(c) mechanization service in total capital input in 2021

Source: The CCAP farm survey data for 8 provinces in 2022.Chinese Agricultural Machinery Industry Yearbook

(2021).

Numerous studies have analyzed the influence of agricultural mechanization services on farms’

production performance both in China and other developing countries. On one hand, some studies

have examined the influence of these services on production efficiency, off-farm employment, and
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social welfare of small farms. Overall, these studies have found that access to agricultural mech-

anization services allows small farms to save labor and enhance farm/agricultural productivity

(Sheng et al., 2017). On the other hand, other studies have explored the factors that enable or

hinder the development of agricultural mechanization services. These studies suggest that govern-

ment subsidies for mechanisation service providers can have a positive impact on their utilization

compared to self-owned machinery, thus contributing to improving agricultural productivity by

increasing mechanization levels. Additionally, some studies also point out that the trading fric-

tions between service providers and farm users, along with trading-related costs, can hinder the

growth of agricultural mechanization services (Sheng et al., 2019; Daum et al., 2021; Caunedo and

Kala, 2021). However, no consensus is reached regarding whether agricultural mechanization ser-

vices can fully substitute self-owned machinery, or lead to complete mechanization in agricultural

production in developing countries where small farms dominate.

Over the past two decades, China has emerged as a leader in promoting and adopting agricul-

tural mechanization services. Initially, this trend was driven by the increasing private demand and

supply due to a tightening labor shortage (Zhang et al., 2011). Subsequently, various government

subsidies and support measures for agricultural machinery purchase and for mechanisation service

providers further accelerate the uptake of these services (Bai, 2004; Zhang et al., 2017). However,

in recent years, the expansion of agricultural mechanization services in China has encountered lim-

itations (Figure 2). Take wheat production in Northern China as an example, where geographical

characteristics such as land slope and small patches are unlikely to constrain mechanization ap-

plications. In the past, most mechanization services were provided by organized service providers

who would travel across provinces (Yang et al., 2013). However, nowadays, the majority of these

providers have been replaced by individual local farmers who own a tractor or a harvester and

offer tailored services for specific stages of production (Sheng and Chancellor, 2019). Additionally,

while the mechanization service levels for ploughing and harvesting have reached their peak, the

overall quality of mechanization services remains relatively low and there is a significant disparity

in the utilization of mechanisation services across different stages of wheat production, making

it challenging to further improve farm productivity (Figure 2). Consequently, as farms increase

their operational scale, there is a growing tendency for farmers to purchase their own machinery

instead of relying on external service providers. The aforementioned phenomenon calls for a better

explanation and warrants further research in this area.

3 Data Collection and Variables Definition

The data used in our study was obtained from a multi-period tracking farm survey conducted by

the China Centre for Agricultural Policy (CCAP) in 2014, 2016, and 2021. The survey primar-

ily focused on wheat-producing farms in two provinces, namely Shandong and Henan, located in
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Northern China. The two provinces are well-known as major wheat production regions in China,

which accounted for half of the country’s wheat production. The survey was carried out imme-

diately after the wheat harvest season, with the goal of collecting comprehensive information on

inputs and outputs for wheat-producing farms. The collected data included land areas, yield,

capital input, labor input, intermediate input, and mechanization services, at both the plot and

farm levels. Particularly, the survey split the entire wheat production process of each wheat farm

into three distinct production stages: the plowing/sowing stage, the plant protection stage, and

the harvesting stage, which enable us to better understand the by-stage characteristics of wheat

production. Consistent questionnaires were used throughout the three waves of surveys (i.e., 2014,

2016, and 2021), enabling the tracing of farms and the plots used for wheat production across the

three survey rounds.

In the survey, we employed a stratified random sampling approach to select wheat-producing

farms in the two wheat producing provinces, Henan and Shandong. Specifically, three wheat-

dominant counties were randomly chosen from each province. In Shandong, the counties selected

were Linyi, Wenshang, and Feicheng, while in Henan, the counties selected were Fengqiu, Yucheng,

and Linying. Within each of the six counties, two townships were randomly designated, with each

township representing either above-average or below-average levels of land consolidation. Two

villages were then randomly selected from each township, resulting in a total of 12 townships

and 24 villages. Finally, 10 households were selected from each village, and all households were

categorized into two groups based on farm size (small and large farms). The cutoff point of 50mu

(or 3.33ha ) was used to differentiate between the two groups. From the small farm group, seven

farms were randomly selected, while from the large farm group, three farms were chosen. If the

total number of large farms was fewer than three, additional small farms were included to ensure

a total of ten farms per village. In total, we conducted surveys on 240 wheat farms, out of which

95 farms were excluded due to incomplete data, outliers, and other statistical reasons. 3 The final

sample used in our study consists of a balanced panel of 145 farms across the years 2013, 2015,

and 2020.

Although our sample is limited to Henan and Shandong, we believe that it provides a good

representation of wheat production in Northern China and the utilization of mechanization services

in wheat farming, in particular for small farms. This is due to the fact that these two provinces

host majority small wheat producers in China, accounting for 47% of the total wheat production in

2020 (NBSC 2021). Figure 3 displays the locations of the surveyed counties and their distribution

within the wheat production belt of Northern China. Furthermore, a significant majority of wheat

farms in Northern China allocated their entire land for wheat production during the winter-to-

summer growing season. Our survey shows that 97.5% of wheat farms in the sampled villages

cultivated only wheat in the winter season of 2013, 2015, and 2020. As a result, the input-output

3Please refer to Appendix B for more a detailed discussion on the data cleaning process in this study.
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relationship at the farm level can accurately reflect the characteristics of wheat production in

Northern China.

Figure 3: Geographical distribution of sample wheat production counties

Note: Each red dot in the map represents a county that we have surveyed in this study.

The key variables utilized in our study consist of inputs (such as land, capital, labor, and

intermediate inputs) and outputs related to wheat production at the farm level, categorized into

three distinct production stages. These stages consist of plowing/sowing, plant protection, and

harvesting, effectively consolidating six types of sequential farming activities based on timing

requirements and task similarities. The output for the harvesting stage, as well as for the entire

wheat production process at the farm level, is proxized by using the wheat yield. It is measured

as total wheat output dividing by the total wheat cropping area. Since the outputs for the

plowing/sowing and plant protection stages cannot be directly observed, we proxized them by

33 It’s worth noting that winter wheat and summer maize are cultivated in rotation within the two provinces.
Winter wheat is typically sown at the end of September, following the maize harvest, and harvested in June of the
following year.

4 Please refer to Appendix A for detailed discussion on data compilation.
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using an estimated average crop growing index which is derived from the plot-level satellite remote-

sensing image data collected for the corresponding production stage.

The detailed procedures for measuring the crop growing index for the plowing/sowing and

harvesting stages are as follows. Firstly, during the survey, the farmers were asked to accompany

the interviewer to visit all plots for wheat production. Using the GPS and electronic mapping

tools, the interviewers marked and plotted the location and shape of each plot for wheat production

on the map. Secondly, with the help of electronic maps indicating the locations and shapes of each

wheat plot, we utilized Landsat Satellite Imagery (LSI) data captured in 2013, 2015, and 2020

respectively to calculate the average value of the Normalized Difference Vegetation Index (NDVI)

for the plowing/sowing and crop protection stages in the sample year. For the plowing/sowing

stage, the timeframe spanned from November 1st of the previous year to March 1st of the current

year. Whereas, for the plant protection stage, the timeframe spanned from March 1st to June

15th. Once we obtained the NDVI for the two production stages, we weighted sum the estimated

NDVI for all wheat plots to the farm level. To ensure comparability of the NDVI across the

three stages, we also normalize the by-stage NDVI against the wheat yield by using a regression

analysis. In general, a higher NDVI corresponds to a higher wheat yield while allowing for the

by-stage production characteristics.

We have categorized inputs for wheat production into four categories: land input, capital input,

labor input, and intermediate inputs, segregated by three different production stages. Land input

is determined by calculating the overall value of land per household in real term.4 This land value is

assessed through a Hedonic function analysis of various factors, such as the total nitrogen content

of the land, total organic carbon content of the land, land fragmentation, and the average distance

from the farmer’s home to the wheat plots. 5 Capital input for wheat production in different stages

is measured by using the total value of capital services, adjusted for inflation and depreciation

using the agricultural capital investment price index. It includes both capital input from self-

owned machinery and mechanisation services. Labor input for each stage of wheat production is

evaluated by tallying the total number of hours worked, including both hired and self-employed

workers. Intermediate inputs are measured by aggregating the materials used for wheat production

in each stage, including seeds, fertilizers, pesticides, irrigation/water, and mulching film etc. The

quantity of these inputs is based on their corresponding values deflated by the corresponding

price index, providing an approximation of their total quantity in use. Additionally, we have also

distinguished between capital services from self-owned machinery and from mechanisation services

for each stage of production.

4For further discussion on the estimation of inputs and outputs for wheat production by stages, please refer to
Appendix B

5Please refer to Appendix C for a more detailed discussion on the method that we used to adjust land quality.

12



Table 1: Descriptive statistics on major variables of wheat farms in North China

Average 2 0 1 3 2 0 1 5 2 0 2 0

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Wheat yield (kg/ha) 8865.9 23205.9 7823.7 15004.2 8332.7 22372.0 10441.4 29773.4

NDVI index at ploughing

stage 6321.8 20172.1 3046.8 5958.2 9165.4 29936.1 6753.3 16442.9

NDVI index at plant

protection stage 10142.5 28153.6 7057.8 14239.0 12279.3 35531.5 11090.3 29970.6

Capital input (yuan) 3103.5 9770.7 2705.1 5984.7 2808.1 7941.3 3797.4 13669.8

Ploughing/Sowing stage 1649.4 4758.8 1516.0 3167.4 1527.4 4119.0 1904.6 6392.1

Plant protection stage 394.3 2202.0 173.9 1069.1 260.5 1397.3 748.4 3356.0

Harvesting stage 1059.9 3228.5 1015.1 2302.9 1020.1 2828.2 1144.4 4238.3

Labor input (yuan) 142.4 460.8 147.7 283.1 136.7 596.2 142.9 448.7

Ploughing/Sowing stage 23.1 217.3 21.7 54.5 22.3 343.2 25.3 144.7

Plant protection stage 109.8 274.2 117.3 223.2 102.5 292.5 109.7 300.3

Harvesting stage 9.5 56.8 8.8 31.5 11.9 86.59 7.9 34.4

Land input (yuan) 8407.2 29054.5 11182.1 30768.4 4622.8 14197.3 9416.8 36902.6

Seed input (yuan) 1200.0 3885.6 974.7 2209.4 1116.7 3344.7 1508.6 5392.9

Intermediate input (yuan) 3955.6 11405.9 3317.6 7167.2 3989.6 12261.3 4559.4 13707.5

Note: All inputs are calculated at the 2013 constant price. The numbers in this table are

arithmetic averages.

Table 1 provides the descriptive statistics of major input and output variables used in this

paper. The wheat yield at the farm level has increased from 6.9 tonne per hectare to 8.0 tonne

per hectare between 2013 and 2020, representing an annual growth rate of 2.1%. This growth

in wheat yield is consistent with the national statistics reported by China National Bureau of

Statistics (CNBS), which indicate that a 2.0% annual growth rate for wheat yield at the national

level for the same period. These findings suggest that our sample provides a good representation

for wheat production in China. In addition to the substantial increase in wheat yield, average

farm size and the capital-labor ratio have also experienced significant increase. From 2013 to

2020, the farm-level capital-labor ratio (at the 2013 constant price) rose from RMB 22.8 yuan per

working hour to RMB 28.4 yuan per working hour. This change can be attributed, in part, to the

widespread availability of mechanization services, which have played a crucial role in enhancing

both capital-labor ratio and wheat yield. During the 2013-2020 period, the proportion of wheat

farms utilizing mechanization services increased from 65% to 96%.

However, when decomposing the farm-level wheat production into three different production

stages, we show that different stages of wheat production have exhibited different characteristics

in terms of the utilization of capital and labor over the sample period of 2013-2020. For instance,

the plant protection stage stands out with a significantly lower capital-labor ratio compared to
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the plowing/sowing and harvesting stages, where mechanization services are widely used as a

substitute for self-owned machinery. On average, the capital-labor ratio (at the 2013 constant

price) for the plowing/sowing stage and harvesting stage is RMB 110 yuan per working hour and

RMB 171 yuan per working hour, respectively, whereas it is only RMB 4.0 yuan per working

hour in the plant protection stage. Additionally, the growth of mechanization services in both

the plowing/sowing and harvesting stages surpasses that of self-owned capital, but this does not

apply to the plant protection stage.

4 Model Specifications and Estimation Strategy

To investigate the impact of mechanization services on different stages of wheat production, we

begin by breaking down the entire wheat production process into three interconnected stages:

plowing/sowing, plant protection, and harvesting. Next, we employ a multiple-stage production

function to assess the relationship between inputs and outputs for each stage of production and

compute the stage-by-stage and the farm-level productivity of wheat farms. This section presents

the empirical model specification and outlines the corresponding empirical strategy to be utilized.

4.1 The Multiple-stage Production Function: A Baseline Model for

Wheat Farm Analysis

The multiple-stage production function is an empirical approach that was initially developed by

Antle (1983), Antle et al. (1994), Behrman et al. (1997), and Ortiz-Bobea (2013) to analyze the

input-output relationship of a production process with multiple production stages. The fundamen-

tal concept of this approach is to conceptualize the decision-making of a producer in a multiple-

stage production process as a dynamic optimization problem, where input decisions are made

sequentially for different stages of production. In earlier studies, this approach focused primarily

on capturing the distinct marginal impacts of capital and labor in different stages of production,

taking into consideration the inter-stage linkages within the production process. However, in a re-

cent study, Brandt et al. (2022) expanded the approach to incorporate intermediate inputs (apart

from the outputs from the previous production stage) in the estimation of the multiple-stage pro-

duction function, as additional identification conditions. Furthermore, they also measured and

compared the productivity across different stages of production based on the gross output model.

We adopt the framework introduced by Brandt et al. (2022) to analyze the entire wheat

production process, which consists of three stages that are sequentially correlated. These stages

include the plowing/sowing stage, the plant protection stage, and the harvesting stage. With the

initial conditions defined by weather condition and output/input market prices, wheat farms aim

to maximize their profits by determining the desired output and allocating it among the three

series-correlated production stages. At each stage, farms seek to minimize their total costs. The
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utilization of primary inputs, such as capital and labor, will then be made separately based on an

cost minimization process, with the output from the preceding stage being utilized as intermediate

inputs. Following the observation of the total output, farms are able to assess their productivity,

which is a random variable influenced jointly by the technology employed and the prevailing

conditions.

To illustrate how the multiple-stage production function captures the wheat production pro-

cess, we write the decision-making process of farmers involved in the three sequential production

stages as follows:

Max{x1,x2,x3}E[π | Ω] = E [py3 | Ω]−
3∑

s=1

E [rsxs | Ω]− qz (1)

where π is the farm-level profit, p is the output market price, y3 is the final output of the production

process, rs is the price vector for inputs xs at production stage s, q is the price vectors of non-timed

or fixed inputs z (i.e. land), and Ω represents the state upon which the input decision is based.

The general technology used by wheat farms can thus be represented by the by-stage production

functions:

y1 = f1 (x1, z, ε1) and ys = ft (xt, ys−1, εt) , for s = 2, 3 (2)

where εs is a random component in wheat production used to capture external shocks such as

changing weather conditions and disease shocks, etc., and ys−1 is the output from the immediate

previous stage, which contains the effect of all inputs and random components in earlier production

stages. It is to be noted that Equation (2) possess a recursive structure, and substituting y1 and

y2 into y3 will generates a composite production function:

y3 = F (x1, x2, x3, z, ε1, ε2, ε3) (3)

The sequence of input decision can thus been made as follows: In the first stage, wheat farms

choose x1 and z based on the initial state, future wheat output and decision rules for future optimal

inputs x2∗ and x3∗, as given by

x∗
2 = x∗

2 (r2, y1, ω2)

x∗
3 = x∗

3 (r3, y2, ω3) (4)

where ωs denotes the parameters of the subjective distributions of farms’ decision at stage s given

the future output and prices. Thus, wheat farms choose x1 and z in the first stage by solving
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Maxx1 E {[py3 − r1x1 − rz −−r2x
∗
2 − r3x

∗
3] | ω1} (5)

subject to (2) and (3). After x1 is chosen, production begins; the disturbance of the first stage

production, ϵ1, is realized; and the state variable, y1, is realized as well. Also, x2 will be used to

solve:

Maxx2 E
{[

py3 − r1x
0
1 − rzo − r2x2 − r3x

∗
3

]
| ω2

}
(6)

subject to (2) and (3). After x2 is chosen, the second stage of production begins, disturbance ϵ2

is realized, and the state variable y2 is realized.

Finally, at the beginning of the third stage production stage, the wheat farmer observes y2 and

chooses the inputs for this stage of production x3 to solve

Maxx2 E
{[

py3 − r1x
0
1 − rzo − r2x

o
2 − r3x3

]
| ω3

}
(7)

subject to (2) and (3).

The above three-stage production function (defined by (5)-(7)) can be estimated, if the by-

stage production technology is assumed to take a specific estimable function form. The seemingly

unrelated regression (SUR) method could be employed to estimate the input-output relationship

for each production stage, as long as the by-stage productivity can be properly identified.

4.2 Estimation of Multiple-stage Production Function and By-stage

Productivity

To estimate the multiple-stage production function, we further assume that the production func-

tion of wheat farms in each stage takes the Cobb-Douglas form, and each stage of production

has its own productivity level.6 Moreover, since the wheat production involves a continuous plant

growing process, outputs of the earlier stages (although not directly observed by wheat farms) will

serve as intermediate inputs for the production of the later stages. Thus, the empirical specification

of the multiple-stage production function for wheat farms can be written as:

Yi1t = ew1it+εi1tLα1
i1tK

β1

i1tN
τ1
it

Yi2t = ew2it+ε2itLα2
i2tK

β2

i2tN
τ2
it R

τ2
i2t

Yi3t = ew3it+ε3itLα3
i3tK

β3

i3tN
τ3
it R

τ3
i3t

where Y1it = R2it and Y2it = R3it denote outputs of stage 1 and 2 that serve as intermediate

inputs for stages 2 and 3, while Y3it represents the final wheat output. K and L denote capital and

labor inputs at each stage of production, and wit denote the Hicks-neutral technology progress or

6This assumption is made only for simplifying the empirical estimation process, and the results can be applied
to other more complex production function forms.
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productivity measure. Although the multiple-stage production function allows different stage of

production uses different production technology, Y1it = R2it and Y2it = R3it reflects the intrinsic

linkage across three stages of wheat production.

Taking the logarithm on both sides of Equation (8) and applying the first-order condition for

the three-stage production function, we can re-write the above functions into the log-linear system,

such that:

yi1t = α1li1t + β1ki1t + τ1nit + wi1t + εi1t

yi2t = α2li2t + β1ki2t + γri2t + τ2nit + wi2t + εi2t

yi2t = α3li3t + β1ki3t + γri3t + τ3nit + wi3t + εi3t

yi1t = ri2t, yi2t = ri3t (9)

Equations (9) have an advantage that it allows us to separate by-stage production from the

white noise and to aggregate by-stage productivity to the farm level with the use of the Domar

(1961) share as weights. Using the dynamic recursive process, Equations (9) can be reformulated

into

yi1t = α1γ2γ3li1t + α1γ2γ3ki1t + α1τ2τ3ni1t + α2γ3li1t + α2γ3ki1t + α2τ2ni2t + α3li1t+

α3ki1t + εit (10)

where wit = wi3t + γ3wi2t + γ3γ2wi1t and εit = εi3t + γ3εi2t + γ3γ2εi1t are aggregate productivity

and aggregate white noise, respectively. Intuitively, the aggregate farm-level productivity wit is

the weighted sum of by-stage productivity measures according to its relative importance in the

whole production process (measured by using the output elasticity of intermediate inputs from

the previous stage).

To estimate Equations (10), we adopt the inverse control function approach following Brandt

et al. (2022). Specifically, we assume that the choices of primary inputs such as land, labor and

capital in one production stage are interdependent of other stages. Given the output of the earlier

stage is used as input in the production of the later stage, the optimal intermediate input demand

in each stage of production is retrieved, which depends not only on the use of land, labor and

capital in the same stage, but also on the amount of production required in the subsequent stage

of production. Thus, the demand functions for intermediate inputs of the three production stages

ϕst(·), s = 1, 2, 3 are thus written as follows:
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ei3t = ϕ3t (ki3t, li3t, nit, wi3t)

ei2t = ϕ2t (ki2t, li2t, wi2t, ki3t, li3t, wi3t, nit)

ei1t = ϕ1t (ki1t, li1t, wi1t, ki2t, l2t, wi2t, ki3t, li3t, wi2t, nit) (11)

where kist, list, wist are capital, labor and productivity of stage s, s = 1, 2, 3, and njt the total

number of plot used (or average plot size) in production.

The estimation of Equations (11) involves using other intermediate inputs to identify unob-

served productivity in the plowing/sowing stage (wi1t), and in the plant protection stage (wi2t).

These other intermediate inputs include seeds ( e1t), fertilizers, pesticides and other crop chem-

icals (ei2t), as well as missilery other than land, labor and capital inputs. We can identify the

unobserved productivity by using these other intermediate inputs, because ϕst(·) is assumed to be

strictly monotone in wsjt for each stage of production (Ackerberg et al., 2015), conditional on the

use of land, labor and capital input (ki3t, lijt, nit) and on the demand of downstream production

stages. In addition, the scalar observable condition also holds in our setting due to the cross-stage

interdependent assumptions of farms’ input choice.

Using the above assumptions, we can estimate Equations (11) in sequence. Specifically, we first

invert the demand function of the harvesting stage (or stage 3), estimate the production function

of this last stage, and calculate the by-stage productivity, say ŵi3t. Thereafter, we substitute the

estimated ŵi3t into the intermediate input demand function for the planting protection stage, in

which the only remaining unobservable is the by-stage productivity ŵi2t. Then, we invert the

demand function for the plant protection stage (or stage 2) to obtain a control function for the by-

stage productivity w2jt before estimating the production function for this second stage. Finally, we

substitute both the estimated productivity of the harvesting stage (w3t) and of the plant protection

stage ( ŵi2t ) into the intermediate input demand function for the plowing/sowing stage (or stage

1), and estimate the production function for the first stage.

wi3t = ϕ−1
3t (ki3t, li3t, nit, e3jt)

wi2t = ϕ−1
2t (ki2t, li2t, ei2t, ki3t, li3t, nit, ŵi2t)

wi1t = ϕ−1
1t (ki1t, l1jt, e1jt, k2jt, l2jt, ŵi2t, k3jt, l3jt, ŵi2t) (12)

where Equations (12) provide the control functions (or the inverted demand function) for the three

production stages, namely the harvesting stage, the plant protection stage and the plowing/sowing

stage. The estimation of Equations (11) and (12) can be made by using the general method of

moments (GMM).

Using the above procedure to estimate the multiple-stage production function has at least four
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advantages. First, the multiple-stage production function can properly capture the characteristics

of wheat production segregated by different stages of production in which different farming tech-

niques (i.e. the choice of capital and labor inputs) are adopted. Second, using quantities of inputs

and outputs to estimate the wheat production function helps eliminate the price bias problem,

allowing us to recover true marginal returns to primary inputs such as land, labor and capital.

Third, the GMM estimation procedure corrects for the potential endogeneity problem in different

stages of production, caused by the unobserved productivity and the use of primary inputs. The

identification process is made by using the positive correlation between other intermediate inputs

and unobserved productivity in each stage of production.

4.3 The Empirical Estimation Strategy

Using the estimated parameters for the multiple-stage production function, we design a three-step

procedure to examine the role of mechanization services in affecting wheat farms’ productivity,

both by production stages and at the farm level.

First, we retrieve the input-output relationship from the estimated multiple-stage production,

and calculate the productivity for each stage of wheat production. We then estimate the farm-level

productivity using the Domar weight to aggregate the by-stage productivity measures.

Second, we examine the impact of mechanization services on by-stage productivity in the plant

protection stage compared to those in the plowing/sowing stage and the harvesting stage. With

the control of by-stage capital-labor ratio (or capital intensity), we regress by-stage productivity

on the utilization of mechanization services, which is defined as the proportion of mechanization

services in total capital input, such that:

wits = β0 + β1Cratio + β2

(
K

L

)
+ γZ + ui + vt + eit (13)

where wits is the by-stage productivity estimates, K
L

refers to the capital-labor ratio in each

production stage and CSratio refers to the proportion of mechanization services in total capital

input. ui and vt denote the farm fixed effect and technology progress common to all wheat farms

over time.

Equations (13) is estimated by using the OLS, FE and kernel density regression (a non-

parametric analytical approach) techniques. The estimator (β1) captures the marginal productiv-

ity impact of increasing 1% of mechanization service in total capital input, when total capital-labor

ratio holds constant. By examining the relationship between mechanization services and by-stage

productivity, we expect to distinguish the different roles that mechanization services may play in

different stages of production. In addition, we also examine the relationship between the utiliza-

tion of mechanization services and farm-level productivity estimates, with the control of capital

intensity.
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Third, we also conduct a number of sensitivity analyses to examine the robustness of the

production function estimations. This includes but not restricted to using the alternative regres-

sion techniques, such as the OLS and FE models, to re-estimate the multiple-stage production

functions, using the aggregation approach to estimate the farm-level production function and pro-

ductivity, using different empirical model specifications to re-examine the relationship between the

utilization of mechanization services and the by-stage/farm-level productivity and among others.

5 Assessing Impact of Mechanization Services on Wheat

Farms’ TFP

In this section, we start with presenting the estimated multiple-stage production function, which

outlines the input-output relationship for the plowing/seedling, plant protection, and harvesting

stages. Thereafter, we calculate the productivity and capital intensity of each production stage

and aggregate them to the farm-level by utilizing Domar weights. Notably, a significant disparity

in productivity and capital intensity across different stages of wheat production is observed. Fi-

nally, we also investigate the impact of employing mechanization services specifically in the plant

protection stage, in comparison to the plowing/seedling and harvesting stages. The main results

are summarized in Table 2-5 and Figures 4-7.

5.1 Estimating the Multiple-stage Production Function

Capital and labor are the most essential inputs that determine wheat production across various

stages, namely the plowing/seedling, plant protection, and harvesting stages. Therefore, our initial

objective is to investigate the role of capital and labor in these three stages of wheat production

by examining the specific input-output relationships. To achieve this goal, we segregated the

farm-level input and output data into the three production stages, spanning the period of 2013-

2020, and use the NDVI index derived from satellite-image data to approximate the stage-specific

output in the plowing/seedling stage and the plant protection stage. Two different sets of models,

including OLS and GMM, are employed to address potential econometric issues that may arise.

Table 2 presents the estimated by-stage wheat production function, with Columns (1)-(3),

(4)-(6) and (7)-(9) representing the plowing/seedling, plant protection, and harvesting stages re-

spectively. The first two columns display the estimated elasticities of land, capital, labor, and in-

termediate inputs from the farm fixed effect models with and without the adjustment for weights

(i.e. OLS and OLSW), while the third column displays the estimation results from the GMM

model. Beginning with the OLS model, the estimated output elasticities of capital for the plow-

ing/seedling stage and the harvesting stage are 0.609 and 0.458, respectively. These values are

statistically significant at the 1% level. In contrast, the estimated output elasticity of capital
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for the plant protection stage is 0.012, and it is also precisely estimated at the 1% statistically

significant level.

Table 2: Estimated by-stage production function for wheat

Panel (A) Results for Plowing/Seedling

OLS OLSW GMM

K 0.609*** 0.556*** 0.514***

(0.047) (0.011) (0.076)

L 0.034 0.019** 0.192***

(0.034) (0.008) (0.017)

A 0.299*** 0.309*** 0.333***

(0.038) (0.009) (0.088)

County-FE Y Y Y

Year-FE Y Y Y

Return to scale 0.90 0.88 1.03

Observations 435 435 435

R2 0.897 0.806 -

Panel B Results for Plant Protection

OLS OLSW GMM

K 0.012*** 0.018*** 0.090***

(0.004) (0.001) (0.001)

L 0.185*** 0.183*** 0.133***

(0.015) (0.003) (0.037)

M 0.654*** 0.641*** 0.741***

(0.021) (0.005) (0.115)

A 0.144*** 0.135*** 0.038

(0.019) (0.004) (0.039)

County-FE Y Y Y

Year-FE Y Y Y

Return to scale 1.00 0.98 1.00

Observations 435 435 435

R2 0.974 0.952 -
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Panel C Results for Plant Protection

OLS OLSW GMM

K 0.458*** 0.485*** 0.433***

(0.026) (0.006) (0.031)

L 0.047*** 0.061*** 0.063***

(0.015) (0.004) (0.000)

M 0.462*** 0.431*** 0.450***

(0.031) (0.007) (0.000)

A 0.039** 0.045*** 0.007

(0.020) (0.005) (0.009)

County-FE Y Y Y

Year-FE Y Y Y

Return to scale 1.01 1.02 0.95

Observations 435 435 435

R2 0.979 0.959 -

Note: In the first column, K, L, M and A represent capital, labor, intermediate input and

land input used for wheat farm production in Northern China. OLS and OLSW refer to the

farm fixed effect model with and without the adjustment for farm weights, and GMM refers to

the GMM model. The numbers in parentheses below the estimated coefficients are standard

errors. The symbols ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and 10% levels.

While all the by-stage estimators have been improved when we employ the weighted OLS and

GMMmodels to address the potential endogeneity problem, there remains a significant discrepancy

in the estimated elasticities of capital between the plant protection stage and the plowing/seedling

and harvesting stages. Based on the estimated GMM model, the output elasticity of capital for

the plant protection stage is estimated to be 0.090. This estimator is only approximately one-

fifth of the estimate for the plowing/seedling stage (0.514) and one-fourth of the estimate for the

harvesting stage (0.433). The results suggest that the returns to capital in the plant protection

stage are considerably lower compared to the estimates for the plowing/seedling and harvesting

stages.

Similarly, when comparing the estimated output elasticities of labor across the three production

stages, significant variations in the estimators also become evident. Across all three regression

models, the estimated output elasticity of labor for the plowing/seedling stage is positive but

the OLS estimator is imprecisely estimated, indicating the return to labor in this stage is not

stable. Conversely, the estimated output elasticities of labor for the plant protection stage and

the harvesting stage are both positive and statistically significant at the 1% level. However,

the estimator for the plant protection stage is notably larger than that for the harvesting stage.
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According to the GMM model, the estimated output elasticity of labor for the plant protection

stage is 0.133, which is twice larger than the estimate for the harvesting stage (0.063), and both

estimators are statistically significant at the 1% level. These results suggest that the return to

labor in the plant protection stage is substantially higher than those in the plowing/seedling stage

and the harvesting stage.

Combining the estimated output elasticities of capital and labor across the three production

stages allows us to gain insights into the specific characteristics of by-stage wheat production in

Northern China regarding input utilization. Particularly, for the plowing/seedling stage, the im-

provement in output primarily relies on increasing capital input, given that the estimated marginal

return to labor (or output elasticity of labor) is large but unstable. In contrast, both capital and

labor exhibit positive and significant marginal returns in the plant protection and harvesting

stages. However, the plant protection stage relies more heavily on labor as a substitute for capi-

tal, while the harvesting stage relies more heavily on capital as a substitute for labor. Based on

the GMM estimates, the ratio of the estimated output elasticity of capital to labor in the plant

protection stage is 0.677 (e.g., 0.677 = 0.090/0.133 ), which is approximately 10% of that in the

harvesting stage (e.g., 6.873 = 0.433/0.063 ). These results suggest that increasing the relative

supply of capital to labor is likely to enhance the output of the plowing/seedling and harvesting

stages compared to the plant protection stage.

Our findings, based on the multiple-stage production estimates, have appropriately taken into

account of the varying impact of land input (and the output of the previous stage or the immediate

intermediate inputs) at different stages of wheat production across regions and over time. Across all

model specifications, the estimated output elasticities of land (measured using the real land input

with quality adjustment) in the three production stages are consistently positive and statistically

significant at the 1% level in the plowing/seedling stage. Specifically, when using the GMM

model, the estimated output elasticities of land for the plowing/seedling is 0.333 and statistically

significant at the 1% level, while the estimators in the plant protection and harvesting stages are

much smaller in magnitude, namely 0.038 and 0.007, respectively, and they are insignificant. This

result suggests that land input plays an essential role affecting output of the plowing/seedling

stage but not for the other two production stages.

Meanwhile, it is important to note that the output of the previous stage also serves as a

significant input in subsequent production stages. Based on the GMMmodel, the estimated output

elasticities of previous-stage output in the plant protection and harvesting stages are 0.741 and

0.450, respectively, both significant at the 1% level. This result implies that the three production

stages are serially correlated. In other words, each stage of production influences the downstream

(or upstream) stage through the supply (or demand) of unobserved outputs, thus generating spill-

over effects on aggregate productivity at the farm level. Additionally, each of the three stages of

production exhibits a constant return to scale, with the sum of the input elasticities being close

to one.
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5.2 By-stage TFP Differences and Capital Deepening

Utilizing the estimators obtained from the multiple-stage production function, we further calculate

the productivity for each stage of wheat production and aggregate them to the farm-level level.

Figure 4 illustrates the kernel density distribution of the productivity estimates at each stage.

The purple curve represents the productivity distribution of the plowing/seedling stage, the green

curve represents the plant protection stage, and the blue curve represents the harvesting stage.

Figure 4: Comparing the kennel density distribution of by-stage TFP estimates (log)

Source:Authors estimates by using the by-stage production function.

Upon comparing the distributions of the by-stage productivity estimates, we observe that

the average productivity estimate (in logarithm) for the plowing/seedling stage remains around

1.94, while that for the harvesting stage closely aligns at 1.60 . The distributions of the by-

stage productivity estimates for both stages are centered on their respective means, and there

is significant overlap between the two distributions. This result indicates that the productivity

levels of the average plowing/seedling and harvesting stages are similar. Furthermore, there is

no substantial difference in the average by-stage productivity estimates across farms for both the

plowing/seedling and harvesting stages, the productivity distribution of the plowing/seedling stage

is more flatten.

However, when considering the plant protection stage, the average by-stage productivity esti-

mate decreases noticeably and becomes more diverse in distribution. As shown in Figure 4, the
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average by-stage productivity estimate (in logarithm) for the plant protection stage hovers around

0.51, accounting for only about 30% of the plowing/seedling stage and 25% of the harvesting

stage. This result suggests that the average productivity estimate for the plant protection stage

is significantly lower than those for the plowing/seedling and harvesting stages. Additionally, the

distribution of the by-stage productivity estimates (in logarithm) for the plant protection stage

exhibits a more flattening pattern, ranging from -1 to 3, with a wide and flat tail on the left-hand

side. This result indicates that there are more substantial differences in the average by-stage pro-

ductivity estimates across farms for the plant protection stage compared to the plowing/seedling

and harvesting stages.

Why is the average productivity estimates for the plant protection stage lower compared to

the other two production stages? To answer this question, we delve deeper into the relationship

between productivity estimates and capital intensity, measured through the capital-labor ratio, for

each of the three production stages. Figure 5, specifically Panels (a), (c), and (d), demonstrates

a strong positive correlation between the by-stage productivity estimates and capital intensity,

both for the plowing/seedling stage, harvesting stage, and at the aggregate farm level. This

finding is further supported by our estimations of the by-stage production functions, as depicted

in Table 2. The relatively higher estimate of output elasticity for capital to labor suggests that

enhancing capital intensity, while holding other inputs constant, will lead to improved output

in the plowing/seedling stage and harvesting stage. This result aligns with our expectations,

as employing more machinery to substitute labor in these stages, particularly in activities such

as plowing, seedling, and harvesting, can significantly enhance the productivity of wheat farms

(Foster and Rosenzweig, 2022).

However, the positive correlation between the by-stage productivity estimates and capital in-

tensity is not observed in the plant protection stage. Panel (c) of Figure 5 displays an evident

non-linear trend, depicted by the LOWESS regression, which resembles an ”S-shaped” relationship.

Specifically, the by-stage productivity estimates for the plant protection stage initially increase

with capital intensity when capital intensity stays at a relatively lower level, then start to decline

as capital intensity rises. Yet, once capital intensity reaches a certain threshold, the by-stage pro-

ductivity estimates begin to increase again. This finding implies that increasing capital intensity

does not consistently contribute to productivity growth in the plant protection stage, unlike the

other two stages. A possible explanation for this phenomenon is that most plant-protection activ-

ities are typically not time-sensitive or adaptable in their application. Therefore, wheat farmers

may opt to substitute labor for capital in their farming practices if using capital does not result

in cost savings. Yet, a comparison of relative labor wages is made across the three stages, we

show that the labor cost in the plant-protection stage is similar as that in the other two stages,

in particular when a proper quality adjustment is made for labor input. As is shown in Table 3,

the average wage for labor the plant protection stage is around RMB 15 yuan per working hour

(at the 2013 constant price) the wage gap across the three production stages is not large.

25



Table 3: Median Wages for Various Agricultural Production Stages (2013-2020)

Activity Average (yuan/hour) 2013 (yuan/hour) 2015 (yuan/hour) 2020 (yuan/hour)

Plowing 15.39 13.85 15.39 28.13

Sowing 16.14 18.64 11.50 12.98

Fertilizing 13.49 10.00 14.78 20.92

Weeding 12.48 10.07 19.76 12.48

Pesticide Application 13.83 10.00 26.67 19.90

Harvesting 12.12 10.84 8.83 48.83

Note All wages are calculated at the 2013 constant price. The percentage of households having

employment labor in plowing, sowing, fertilizing, weeding, pesticide application, and harvesting

was 5.8%, 6.6%, 9.9%, 11.61%, 12.2%, and 6.5% respectively.

Figure 5: The relationship between capital intensity and farm TFP by production
stages and at the aggregate farm level

Note: x(capital labor ratio) and y(TFP) are both subtracted the values from period t-1 at the household level.

Panel (a)-(c) represent the ploughing/seedling stage, the plant protection stage, and the harvesting stage

respectively. Panel (d) represents the farm-level TFP against the capital-labor ratio. The fitting line is created

using a LOESS (Locally Estimated Scatterplot Smoothing) method in R package ggplot2.
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Next, we also aggregate the by-stage productivity to obtain the farm-level estimate by em-

ploying the Domar weights for each production stage. We then compare the distribution of the

aggregate productivity estimates with that derived from the estimated farm-level production func-

tion. Figure 6 illustrates the distribution of the aggregate by-stage productivity estimates and the

farm-level productivity estimates for three specific time periods (2013, 2015, and 2020), as well

as for all sample years combined, when they are demeaned. The average productivity estimates

obtained through the by-stage aggregation (in the demeaned form) closely align with those of the

farm-level estimates, indicating that the productivity estimates at the farm level can be effectively

decomposed and explained by the productivity estimates of the three production stages. However,

the distribution of the aggregated by-stage productivity estimates appears to be flatter than that

of the farm-level estimates. This result suggests that the productivity estimates derived from the

farm-level production function tend to underestimate the variations in productivity across farms

caused by the aggregation process.7 Additionally, the plant protection stage is chain-linked with

other stages of production, the lagged productivity in the plant protection stage may impede the

enhancement of productivity at the farm level.

7In our specific case, the plant protection stage exhibits relatively lower productivity compared to the plow-
ing/seedling stage and the harvesting stage (as shown in Figure 6). This disparity may depress the farm-level
aggregate productivity during the aggregation process and consequently contribute to the amplification of produc-
tivity differences at the farm level.
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Figure 6: Comparing the distribution of aggregated by-stage TFP estimates with
that of the farm-level TFP estimates: all sample vs. by time period

Note:the data are obtained from using both the by-stage and the farm-level production functions.

5.3 Impact of Mechanization Services on Farm TFP

It is widely recognized that the rapid expansion of mechanization services has substantially con-

tributed to improve mechanisation levels across all stages of wheat production in Northern China.

Between 2013 and 2020, agricultural mechanization services have experienced double-digit growth

rates and, on average, have contributed to over 80% of the capital input at the farm level for wheat

production, served as a substitute for self-employed capital. Based on our sample, increased use

of mechanization services has also played an important role in promoting the farm-level produc-

tivity growth for the 2013-2020 period.8 However, it remains uncertain how the utilization of

mechanization services has affected the by-stage and aggregate farm-level productivity of wheat

production.

To investigate the impact of mechanization services on by-stage productivity, we calculate the

proportion of mechanization services in capital input for each stage of wheat production and ana-

lyze the influence of mechanization services on by-stage productivity estimates through regression

8In our specific case, the plant protection stage exhibits relatively lower productivity compared to the plow-
ing/seedling stage and the harvesting stage (as shown in Figure 4). This disparity may depress the farm-level
aggregate productivity during the aggregation process and consequently contribute to the amplification of produc-
tivity differences at the farm level.
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analysis. Table 4 provides the descriptive statistics on farms’ mechanization level and the propor-

tion of farms using mechanization services by five types of production activities throughout the

wheat production process in Northern China. The five production activities include ploughing,

sowing/seedling, fertilizing, weed/pest control, and harvesting, which could be re-grouped into the

three stages of production, such as the plowing/seedling stage, the plant protection stage and the

harvesting stage.

On average, the mechanization level of the ploughing/seedling stage and harvesting stage in

wheat production in Northern China exceeds 99%, which is significantly higher than the level

observed in the plant protecting stage encompassing activities such as fertilizing, weed and pest

control (ranging from 9% to 32%). This indicates that wheat farms rely less on capital to replace

labor in the plant protecting stage. Furthermore, when comparing the proportion of farms utilizing

mechanization services across different production activities, we find that the percentage of farms

using mechanization services (2-7%) is even lower for the plant protecting stage compared to the

ploughing/seedling stage (76-79%) and the harvesting stage (89%). This result suggests that the

introduction of mechanization services has had limited impact on improving the mechanization

level in the plant protecting stage compared to its effect on the ploughing/seedling and harvesting

stages.

Table 4: Average mechanization level and proportion of mechanization service in
wheat production 2013-2020: By production stage

Average Shandong Henan

Mech.

level (%)

Mech. service

share (%)

Mech. level

(%)a
Mech. service

share (%)

Mech. level

(%)a
Mech. service

share (%) b

Plough 99.8 79.5 100 78.8 99.6 80.1

Sow 98.9 76.3 98.9 79.4 98.8 74.0

Fertilize 9.2 2.5 7.9 1.6 10.2 3.3

Weed control 25.7 3.2 25.4 4.8 26.0 2.0

Pest control 31.7 7.1 34.9 13.2 29.3 2.4

Harvest 99.8 89.0 99.5 80.4 100 95.5

Note:a represents the percentage of wheat farms using machinery in the five production stages; b represents the

proportion of wheat farms using mechanization services in the five production stages.

Next, we also investigate the correlation between by-stage productivity and the proportion

of mechanization services through regression analyses. Figure 5 displays the nonlinear relation-

ship between by-stage productivity and the proportion of mechanization services for the three

production stages and at the aggregate farm level, utilizing the LOWESS regressions. Generally,

the estimates of by-stage productivity show an upward trend as the proportion of mechanization

services increases in the ploughing/seedling stage and harvesting stage. However, in the plant pro-

tection stage, the by-stage productivity estimates tend to decrease, especially when the proportion
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of mechanization services reaches a certain threshold.

Figure 7: The Relationship Between TFP And Custum Ratio Accross Different
Stages

Note: x(custom service ratio) and y(TFP) are both subtracted the values from period t-1 at the household level.

Panel (a)-(c) represent the ploughing/seedling stage, the plant protection stage, and the harvesting stage

respectively. Panel (d) represents the farm-level TFP against the capital-labor ratio.

The relationship between by-stage productivity and the proportion of mechanization services

for the three production stages is also confirmed through kernel density regressions. Table 5

presents the estimated impact of the proportion of mechanization services on by-stage productivity

estimates, while controlling for capital intensity in each production stage. As depicted in Column

(3), the estimated impact of mechanization proportion on by-stage productivity in the plant

protection stage is negative and statistically significant at the 5% level. This is in contrast to

the impacts observed in the ploughing/seedling stage and the harvesting stage (Columns (2) and

(4)), where the estimated productivity impact is either positive or insignificant. It suggests that

increasing use of mechanization services may have a negative effect on by-stage productivity in

the plant protection stage. One possible explanation for this phenomenon is: since wheat farmers

could not observe the performance in the plant protection stage, they will choose to minimize the

costs by choosing the service providers with low relatively quality. Consequently, the presence of

potential adverse selection by wheat farmers for mechanization services in the plant protection

stage weakens its effectiveness as a substitute for self-owned machinery as well as for labor. As
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the farm-level productivity is the weighted sum of by-stage productivities, the relatively lower

productivity caused by using mechanization services in the plant protection stage may impede the

overall farm-level productivity.

Table 5: Adjusted Estimated Impact of Mechanization Service on by-Stage TFP

(1) (2) (3) (4)

Ploughing/Seedling Plant Protection Harvesting Overall

K-L ratio 0.001** -0.009*** 0.000 -0.001

(0.001) (0.003) (0.000) (0.001)

Mechanization proportion 0.004** -0.002** 0.001 0.002

(0.001) (0.001) (0.001) (0.001)

Farm-level fixed effects Y Y Y Y

Year fixed effects Y Y Y Y

Number of Observations 435 435 435 435

R-squared 0.744 0.708 0.452 0.545

Note: The dependent and independent variables in Column (4) are computed at the aggregate

level, while in Columns (1)-(3), are computed with respect to the ploughing/seedling stage,

the plant protection stage, and the harvesting stage, respectively. All model specifications

have included the farm-level fixed effects and the year fixed effects to control for unobserved

time-invariant farm-specific characteristics and common temporal shocks, respectively. The

numbers in the parentheses following the regression coefficients are standard errors. Standard

errors are clustered at the village level in parentheses. The symbols ***, **, and * denote

significance at the 1%, 5%, and 10% levels, respectively.

6. Robustness Checks

While the above analyses have provided some useful insights, there remain some concerns of

potential measurement errors that could contaminate our estimation results. In this section, we

carry out a set of robustness checks to examine the sensitivity of our findings.

First, it is believed that wheat production in different stages may face different labor wages.

For example, the labor wage is usually higher in the plowing/seedling stage and the harvesting

stage, while lower in the plant protection stage. Since farmers are likely to use the relatively

cheaper labor to replace capital in the plant protection stage, the relative lower labor wage in the

plant protection stage could bias our estimation. To deal with this problem, we re-estimate the

difference in labor wage by using the farm survey data for different stages and use them to adjust

the labor use in different stage of production. The estimation of the by-stage production function

and productivity are generally consistent with the results from the main context.

Second, there are concerns that the satellite-based and remote-sensor based measure of by-
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stage wheat output may not be linearly correlated with the final farm output (e.g. wheat yield),

which may affect the reliability of our estimation. For example, a higher NDVI index on the plot

does not necessarily mean that the farm will have a good yield from a biological perspective. In

practice, there are many unobserved factors, such as weather condition, particular time for data

collection and so on, that could affect the measured NDVI index and its quality of the NDVI

index to approximate the by-stage output. To address this potential measurement error, we take

a weighted average of the NDVI indexes observed by different time periods for the particular

production stages and on different plots owned by farm. The weights are determined using a

linear regression approach. The estimation results are consistent with the results from the main

context. Overall, the impact of mechanization services on the by-stage productivity is negative in

the plant protection stage, but positive in the seedling stage.

Third, it is argued that the choice of different initial value for the parameters (i.e. the elas-

ticities of capital and labor) may affect the final estimation results. To examine the sensitivity

of our estimation to the choices of initial values, we re-do the estimation of the multiple-stage

production function, re-calculate the by-stage productivity and examine the relationship between

mechanization service in use and the by-stage productivity. Generally, the estimation results by

using various initial values on the elasticities of capital and labor are generally consistent with the

results that we have obtained from the main context.

Overall, these robustness checks demonstrate that the main findings are not sensitive to dif-

ferent wage assumptions or potential measurement errors in the NDVI data, strengthening the

credibility of the conclusions drawn from the primary regression analysis.
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Table 6: Robustness Checks for Different Methods

RC1 RC2 RC3

S1 S2 S3 S1 S2 S3 S1 S2 S3

K 0.454*** 0.102*** 0.395*** 0.531*** 0.094*** 0.403*** 0.524*** 0.155*** 0.323**

(0.022) (0.009) (0.023) (0.030) (0.004) (0.040) (0.148) (0.059) (0.144)

L 0.262*** 0.117*** 0.105*** 0.255*** 0.169*** 0.085*** 0.210*** 0.229* 0.110

(0.012) (0.014) (0.000) (0.008) (0.032) (0.000) (0.030) (0.134) (0.098)

M - 0.690*** 0.450*** - 0.683*** 0.450*** - 0.526** 0.471***

- (0.055) (0.000) - (0.069) (0.000) - (0.201) (0.098)

A 0.318*** 0.102* 0.000 0.245*** 0.083** 0.012 0.251 0.116 0.058

(0.022) (0.055) (0.000) (0.021) (0.034) (0.011) (0.158) (0.165) (0.163)

County-FE Y Y Y Y Y Y Y Y Y

Year-FE Y Y Y Y Y Y Y Y Y

Return to scale 1.03 1.03 0.95 1.03 1.01 0.95 0.98 1.02 0.96

Observations 435 435 435 435 435 435 435 435 435

Note: RC1 re-do the estimation by adjusting for the difference in labor wages by production

stages, 30 yuan for Plowing/Seedling, 19 yuan for Plant Protection, 22.5 yuan for Harvesting.

RC2 re-estimate the by-stage NDVI by using the quadratic function form. RC3 allow the sum

of initial value of input to range from [0.95,1.05].

7. Conclusions

The rapid expansion of mechanization services has played a pivotal role in increasing capital-labor

ratio and productivity of wheat production in Northern China where small farms are predomi-

nant. However, little is known about how mechanization services affect the productivity of small

farms operating across multiple production stages. This paper investigates the adoption of mech-

anization services by small wheat farms in a multiple-stage production process, and evaluate their

productivity effects, both at each stage and overall. We empirically estimate a multiple-stage

production function by using a unique panel data of 145 wheat farms in Northern China for the

period of 2013-2020, which consists of detailed by-stage input and output information.

We show that, when controlling for by-stage characteristics, mechanization services are likely to

have a negative effect on the productivity of the plant protection stage, which in turn hampers the

further increase of capital intensity and productivity at the farm level. We then developed a simple

model to explain the phenomenon. Since the performance of service providers are not directly

observable in the plant protection stage, farmers opt to adverse select less use of mechanisation

services for self-owned machinery, which not only negatively affect the capital intensity and by-

stage productivity but also decrease the farm-level productivity by generating the adverse spill-

over effects to the downstream stage of production. These findings provide valuable insights into

whether selecting service providers and service packages based on the stage of production, while
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satisfying the cost-minimization condition for each stage, would be an optimal choice for small-

farm users of mechanization services seeking to enhance productivity.
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Appendix A. A Theoretical Model on Mechanization Ser-

vice

To illustrate the mechanism behind our empirical model, we develop a simple theoretical model

in this appendix to describe the potential impact of mechanization services on capital deepening

at different production stages of wheat farms in Northern China. To the farmer, a ”season” is a

distinct period of the year during which a stage of agriculture (such as planting and harvesting)

is optimally undertaken. For example, for spring wheat grown on the northern Great Plains, the

month long planting season usually begins in April, and the harvest season is primarily restricted to

August. This broad definition of a season, however, hides some important features of nature that

directly influence the incentives inherent in agricultural production. We first model seasonality as

parameter: S, the number of stages in the process;

Consider a representative wheat-specialized farm who uses a multi-stage production technique

to grow wheat. Since farm production is cumulative, our model uses a stage production function

that depends on natural parameters and specialization. Let Q be the final consumer product

(such as bacon or bread) derived from a cumulative production process with S discrete stages

of production. The output in each stage is an input into the next stage’s production function.

In each production stage, the farm will use capital (Ks) and labor (Ls) (where s = 1, 2 and 3),

depends on the output of the previous stage, as inputs. K̄ is capital input and L̄ is labor input. So

we have:Q =qs = F (Ks, Ls; qS−1 (qS−2(. . .))) = F (Ks, Ls; q−1). At each stage the output depends

on farmer effort (Ls), capital input (Ks). Hence, the farmer in our model takes the output from a

previous stage as an input into the next stage and makes an optimal effort choice that depends.

Combing all the three stages, the farm will maximize total profits by choosing capital and

labor for each stages, given the predetermined output of the previous stage, such that:

maxπ = pQ−
N∑
s=1

rKs −
N∑
s=1

wLs

s.t.
N∑
s=1

Ks ≤ K̄,
N∑
s=1

Ls ≤ L̄ (A1)

We then assume that there is perfectly competitive labor and capital market, such that r is

interest rate (or the market price of capital input) and w is wage for labor (or the market price of

labor). The r and w is the same across different stages. We can make the assumption because all

wheat farmers in Northern China are small-scale farms and each farm’s behavior will not affect

the market price. An equilibrium is thus determined by a set of decisions and factor prices ( w, r ),

such that the choice of capital and labor (K,L) solves the representative farm’s profit maximization

process.
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We assume that F is concave in ( K,L) and take the first order condition of (1). It is straight-

forward to see that equilibrium factor prices equal to the marginal products of inputs. w =
∂F(Ki

s,L
i
s,q−1)

∂Li
s

r =
∂F(Ki

s,L
i
sq−1)

∂Ki
s

∀i ∈ {1, 2, . . . , N},∀s ∈ {1, 2, . . . , S} (A2)

To simplify the analysis, we further assume that in each stage of production s ∈ {1, 2, 3}, the
farm will use the same amount of labor such that Li

1 = Li
2 = Li

3 = Li (or labor is fixed in each

stage). Based on this assumption, we can thus normalized capital intensity (or capital-labor ratio)

for each production

stage as ki
s = Ki

s

Li
s

= Ki
s

Li
. Thus, the by-stage production function can be simplified as:

F (Ks, Ls; q−1) = Ash (k
i
s; q−1) , As is an efficiency parameter.

A.1: Agricultural Production Characteristics and the By-

stage Choice of Capital and Labor Input

To incorporate the characteristics of different stages of wheat production into our analysis, we

define two parameters that could distinguish between different production stages. One is the

degree of capital specialization (αs), or how easy the tasks in the particular stage of production

could be will be implemented by capital equipment. Since new technologies are likely to be

embodied in the capital equipment and it will not need to be monitored, we have that increasing

capital investment will help to improve production efficiency. The other is the number of tasks

(Ts), Typically, when number of tasks increases, the length of time increases. Ts captures the

potential moral hazard, the complexity of the tasks and the time pressure for the work.

Because there are many tasks within a given stage, we define tst as the effort in the sth stage,

on the tth task, performed by a worker. Tasks are indexed by t = 1, . . . , T ; stages are indexed

by s = 1, . . . , S; Let T be the number of tasks for a given stage and assume that T is exogenous,

determined by nature and technology. Tasks are well-defined jobs that take place during a stage,

such as operating a combine or a grain truck during wheat harvest. To simplify, we assume that

ts1 = ts2 = · · · = tsT .

The parameter αs indicates the degree to which capital specialization can potentially increase

output. For some tasks (such as shoveling grain) there may be little to be gained from specialization

(αs ≈ 0), while for others these gains may be great (αs ≈ 1). When task number is large, it is hard

for a machine to finish all the tasks, the αs will decrease, so we can define the efficient technology

for a single task as ats =
(

1
Ts

)αs

ts1, where ats is decreasing with Ts and increasing with αs. And

the gains brought by the specialization in mechanical engineering will decrease as Ts increases
∂2αts

∂α∂Ts
< 0.
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Under these assumptions, the full stage production function becomes:

qs = A

((
1

Ts

)as

ts1; . . . ,

(
1

Ts

)as

tsT

)
h (ks; q−1) = A (αs, Ts)h (ks; q−1) , s = 1, . . . , S (A3)

In (A4) ks is a stage-specific (physical) capital input, hs is the stage s production function,

A(·) is the aggregate function for ats

By incorporating the two parameters into the by-stage production function, we have

qs = As(T, α)h
(
ki
s; q−1

)
where h′(.) > 0 and h′′(.) < 0 (A4)

where the efficiency of production decreases with the length of time Ts such that ∂As

∂Ts
< 0

and increases with the capital deepening ∂As

∂α
> 0, and The gains brought by the specialization in

mechanical engineering will decrease as T increases ∂2As

∂α∂Ts
< 0. Substituting (A4) into (A1) and

(A2), we can re-write the equilibrium condition into

Ai (Ts, α)h
′ (ki

s; q−1) = Ai (Tm, α)h
′ (ki

m; q−1) = r where s,m ∈ {1, 2, 3} for three stages

Based on equation (A4), we have the capital intensity of a particular stage of production to be

written as ki
s = h′−1

(
r

Ai(Tm,a)
; q−1

)
. Since ATs (Ts, α) < 0 and h′(.) <.0 , we have ki

s is decreasing

with the length of task in the production stage, Ts. This result could be explained that: the longer

period the production stage is (or the more task is involved in the stage of production), the farm

is more willing to use labor to replace capital in the production process.

The above results could be further illustrated in Figure A1. The x-axis represents a continuous

wheat production process comprising various tasks such as the ploughing/sowing, the plant pro-

tection (i.e. fertilizer, weed/pest control etc.), and the scale of x-axis represent the time length of

the related tasks for each of the three stages. The y-axis represents capital intensities. Comparing

with the ploughing/sowing and the harvesting stages, the plant protection stage will have more

diversified tasks included and take much longer time and thus the capital-labor ratio for the plant

protection stage would be lower than that for the other two stages. The phenomenon could also

be explained as that farms are willing to use more labor (rather than capital) to cope with the

relatively more complex production process when there is no strong time pressure.
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Figure A1. Relationship between capital intensity and time length of tasks

Moreover, we know that capital deepening (or using more capital to replace labor) will tend

to increase the efficiency of wheat production at all production stages, if other conditions hold

constant. If farms can obtain capital input from a competitive market and all capital come from

self-own investment, we have ∂kis
∂a

> 0 because of the assumption of ∂As

∂a
> 0. This condition holds

for all production stages. Combining this derivation with the impact of task-related work, we have

the relationship between capital intensity and capital efficiency (α) and the length of tasks (Ts).

Figure A2. Impact of capital deepening on capital-intensity
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A.2: Self-employed Investment vs. Mechanization Service

To take into account of mechanization service and its impact on wheat production in different

stages, we assume that farms can choose to use either mechanization service or self-owned capital

to replace labor in different stage of production. Comparing to self-owned capital, mechanization

service is relatively cheaper in user costs but it may suffer from moral hazard, ∂2As

∂ϵ∂Ts
< 0 or ∂ϵl

∂Ts
< 0

? Thus,

mechanization service and self-owned capital can be assigned with different capital efficiencies

(or α ), depending on the moral hazard levels (or the time length of tasks, Ts ). Specifically, when

Ts is small, the advantage of mechanization service in saving user costs overwhelm its super-

vision costs due to potential moral hazards and thus capital efficiencies of mechanization services

will be higher than self-employed capital, such that αt > α. However, when Ts is large, the ad-

vantage of mechanization service in saving user costs cannot offset its supervision costs due to the

potential moral hazards and thus capital efficiencies of mechanization services will be lower than

self-employed capital, such that α′ < α.

Applying this assumption about mechanization, we assume that αm and αs to denote different

capital efficiency. Thus, using (5), we will have the relative capital-intensity between two stages

of production could be written as:

ki
s

ki
m

=
h′−1

[
r

Ai(Ts;αs)
′ ; q−1

]
h′−1

[
r

Ai(Tmαm)′
q−1

]
where h′() >.0 and h′′() <.0 .

The above discussion about capital intensity in different stages of production can be further

analyzed in Figure A3, where the x-axis represent the different production stages and the y-

axis represents the capital intensity. The black solid line shows the relationship between capital

intensity and the time length of tasks (Ts) when only self-employed investment is used (and α is

fixed). Whereas, the dotted black line shows the relationship between capital intensity and the

time length of tasks (Ts) when mechanization service is introduced. Although capital intensity

decrease with Ts in the plant protection stage in both cases where mechanization services is allowed

to be used or not, the capital intensity at different production stages exhibit different patterns.

The finding can be used to generate a proposition.
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Figure A3. Capital intensity change with mechanization service

Proposition 1: Mechanization level decreases when Ts increases. Mechanization level increases

when αs increases.

Proposition 2: Mechanization services increase capital intensity in the production stage of

simple tasks (or small Ts ), while decrease capital intensity in the production stage with complex

tasks (or large Ts ).

Proposition 2 provides an interesting explanation on the difference in capital intensities at dif-

ferent stage of wheat production, when mechanization service is introduced. Specifically, since the

ploughing/sowing and harvesting stages involves simple and short tasks (with short Ts ), mech-

anization service will increase capital efficiency and thus increase the by-stage capital intensity.

However, the plant protection stage involves complex tasks (with long Ts ), mechanization services

may induce moral hazards and thus reduce capital efficiency and thus lower the by-stage capital

intensity. As the by-stage productivity will increase with capital intensity which in turn will ag-

gregate to the farm level, the asymmetric impact of mechanization service on capital intensity at

different production stages may restrict further improvement of farm-level productivity.
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Appendix B. A Detailed Discussion on Data Collection

The data used in this study come from a rural household survey of 240 wheat farms in Shan-

dong and Henan provinces (which are the main producing areas of wheat and corn in China)

for three rounds. The first round of the survey began in December 2013, the second and third

rounds began in August 2016 and June 2021 respectively, with a focus on investigating the situ-

ation of wheat farmers growing wheat in 2013, 2015 and 2020. A random sampling strategy has

been adopted. Specifically, we randomly selected three counties from the major wheat producing

counties in Henan and Shandong provinces respectively. They include Lixin, Wenshang, Feicheng,

Fengqiu, Yucheng and Linyi, which belong to 6 prefecture-level cities: Dezhou, Jining and Taian

in Shandong and Xinxiang, Shangqiu and Luohe in Henan.

The surveyed areas use a cropping system of rotation between wheat and corn, with wheat

sown in October, harvested the following June, followed immediately by corn sowing in June and

harvesting in October. The survey was conducted through face-to-face household interviews by

investigators, with each interview taking about 2 hours to complete. The questionnaires used in

the three-year follow-up survey were the same, and their content covers basic information of the

farmer’s family members, land operation and crops, wheat production inputs and outputs etc.

The investigators received strict training to ensure the effectiveness and reliability of conducting

the interviews.

In the first round of surveys in 2013, 6 sample counties were selected, with sample towns in

each county divided into two groups based on the degree of land transfer, with 1 sample town

randomly selected from each group, 2 sample villages randomly selected from each town, and 10

households sampled from each village. Thus, a total of 240 wheat growers were sampled. In the

second round of follow-up surveys in 2016, it was found that 52 of the 240 households could not

be traced, mainly because they abandon agriculture and transferred their land to other farmers.

In the third round of follow-up in 2021, only 145 out of the 188 targeted households were traced,

mostly because of the urbanization process. See Table B1 for details of the sample tracking over

time.

To understand the input-output relationship of wheat production, the research team asked

each wheat farmer to randomly select two plots from all the wheat plots he operated in the first

round of survey, and the investigators recorded the detailed input and output information for the

two plots. In the second and third round of follow-up surveys, we basically traced the same plots.

If the farmer was no

longer cultivating the selected plots, new plots were randomly selected from the same farm to

ultimately supplement two plots.

In the questionnaire, the wheat production process was divided into 6 production stages

by categorizing the related activities: plowing/land prepare, sowing/seedling, fertilizing, weed-

ing/applying pesticides, irrigation, and harvesting. The investigators recorded wheat yield, labor
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input, mechanical input and material input at each production stage. Labor input was divided

into family labor and hired labor; mechanical input was divided into farmers’ own machinery

and purchased mechanization services; material inputs included seeds, fertilizers and pesticides.

Labor input was defined as the sum of labor input by family members, hired workers, and the

supervision costs. Capital input was defined as the sum of the costs of own machinery and the

cost of purchasing mechanization services. The cost of own machinery was defined as depreciation

costs plus fuel costs of using own machinery. All capital and material inputs are first estimated

by using the current price, and then adjusted for inflation using the corresponding price indexes

(i.e. the price indexes for seed, fertilizer, pesticide, irrigation, capital and land rental etc.). The

real measure of capital and material inputs are estimated using the 2015 constant price.

To capture the maximization decision of farmers, we add up all inputs and outputs (obtained

from the plot level) to the farmer level. Specifically, the calculation method is: in 2013 and 2015,

the arithmetic average value of the randomly selected two plots by farmers is converted into inputs

and outputs per unit area of ”mu”, and then multiplied by the total area cultivated by farmers to

calculate the total inputs and outputs at the farmer level; In 2020 , the inputs and outputs per

unit area of ”mu” reported directly by farmers were converted to farmer-level inputs and outputs

by multiplying the total area cultivated by farmers of wheat.

During the survey process, we also found that the degree of mechanization of plowing land and

sowing wheat for farmers (more than 90%) and the proportion of the use of mechanization are

similar, which indicates that the operation methods of these two types of activities are basically

consistent. At the same time, the plowing land and sowing operations are closely related in work

time, and some farmers are accustomed to sowing immediately after plowing the land, and the two

production links are carried out simultaneously. Therefore, in this study, we combine the plowing

land and sowing stages into one and treat it as the first stage. The operation methods of fertilizing,

weeding, spraying pesticides and irrigation are similar, mainly relying on labor and may need to

be repeated multiple times, with an overall mechanization rate of less than 30%. We therefore

classify these activities into the second stage, i.e. the growth protection stage. The degree of

mechanization of the final harvest stage is close to 100% again, different from the plant protection

stage. Therefore, we define the harvest stage as the third stage. The labor, capital and material

inputs for the entire production process are the sum of the respective inputs for all production

stages. The labor, capital and material inputs for the three stages of production are the total of

the corresponding inputs included in each stage. For example, the labor input for the first stage

is the sum of the labor inputs for the plowing land and sowing stages. The material inputs for

the second stage are the sum of fertilizer costs, pesticide costs and irrigation costs for fertilizing,

weeding, pesticide application and irrigation. Farmers’ total output for the third stage is farmers’

average yield multiplied by the total sowing area, and the calculation method for output for the

first stage and the second stage is introduced in Section Three, paragraph five of the main text. In

addition to labor costs, capital and material costs, the specific definition of the land value variable
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is described in Appendix C.

Table B1. Definitions of all variables used in this study

Variables Definitions

Wheat yield (ton) Maize yield per household (ton/household)

Wheat yield index at stage 1 Maize yield per household in ploughing/sowing

stage (ton/household)

Wheat yield index at stage 2 Maize yield per household in plant protection

stage (ton/household)

The plant index at stage 1 The plant index per household in plough-

ing/sowing stage (ton/household)

The plant index at stage 2 The plant index per household in plant protec-

tion stage (ton/household)

Capital intensity (yuan/household) Total capital use in production per household

(yuan/household)

Ploughing/Sowing stage Total capital use in ploughing/sowing stage per

household (yuan/household)

Plant protection stage Total capital use in plant protection stage per

household (yuan/household)

Harvesting stage Total capital use in harvest stage per household

(yuan/household)

Labor intensity (hour/household) Total labor use in production per household

(yuan/household)

Ploughing/Sowing stage Total labor use in ploughing/sowing stage per

household (yuan/household)

Plant protection stage Total labor use in plant protection stage per

household (yuan/household)

Harvesting stage Total labor use in harvest stage per household

(yuan/household)
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Table B1. Definitions of all variables used in this study (Continued)

Variables Definitions

Land value (yuan/household) The total land value of the household

(yuan/household)

Seed cost (yuan/household) Total seed input in production per house-

hold(yuan/household)

Material cost in plant protection stage

(yuan/household)

Total material input in production including

fertilizer, pesticide, film and water per house-

hold(yuan/household)

Total TFP The total factor productivity per household

Ploughing/Sowing stage The total factor productivity in plough-

ing/sowing stage per household

Plant protection stage The total factor productivity in plant protec-

tion stage per household

Harvesting stage The total factor productivity in harvest stage

per household
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Figure B1 The relationship between capital intensity and mechanization service ratio

Note: The x-axis represents capital intensity, measured by log(k). The y-axis represents the ratio of

mechanization services, measured by the proportion of mechanization service capital to total capital. The fitting

line is created using a LOESS (Locally Estimated Scatterplot Smoothing) method.

Figure B1 shows that with the increased use of capital input, the proportion of mechanization

services decreased gradually in all three production stages as well as in the entire production

process. The horizontal axis represents the logarithmic total amount of capital inputs in each

stage and at the farm level, and the vertical axis represents the proportion of mechanization

services in the total capital use. This indicates that when users choose to increase the use of

capital inputs, farmers tend to purchase machinery by themselves. This is mainly because the

fixed costs of mechanization services are lower, but the marginal cost for farmers to use machinery

services is higher. When farmers need to use a large amount of capital, it is cost-effective for

farmers to purchase machinery themselves.
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Appendix C. Land Hedonic

In this paper, we use the hedonic approach to estimate the land input, so as to eliminate the

impact of land quality across farms on agricultural output (or productivity). To estimate land

value in 2013, 2015 and 2020, we first calculate the land rental price of the village where the farmer

is located in 2015 at constant prices, and use it to multiply the wheat sowing area of the farmer.

We use a mixed OLS regression of the land rental on the land characteristics including nitrogen

content of the plot land, organic carbon content of the land, number of plots per unit area and the

average distance of all wheat plots from the farmer’s house for that household, with all variables

taking natural logarithm. The fitted value of the farmer’s total land rental calculated after the

regression is used as the variable ”Land input” of the farmer’s land value. See Table C2 for the

specific regression results of land prices.

Appendix C1. Multivariate analysis of land price (Yuan).

Variable Coefficient (t-ratio)

Dependent variable: Price of land of wheat (Yuan/household)

Total nitrogen content of land (g/kg) 2.42**

(2.19)

Total organic carbon content of land (g/kg) 1.70

(1.46)

Land fragmentation (plot/ha) -1.20***

(32.93)

Distance of the home to the plots (km) -0.04

(0.85)

Time trend dummy (2015) -0.79***

(8.88)

Time trend dummy (2020) -0.42***

(4.78)

Township dummy Yes

Constant -11.82

(1.38)

Observations 435

R2 0.815

Note: Absolute values of t-ratio in parentheses. The variables takes the logarithm. *,**,***in-

dicates statistically significant at the 10%,5%,and 1%,respective.The number of observation is

435.
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Appendix D. Estimation of Multiple-stage Production Func-

tion

Our first-step estimating farm TFP for each production stage is then given by the following equa-

tion, in which stage-specific output y is expressed as a semiparametric function of (kist, list, eist, rist)

and of the information of downstream stages in the case of the plowing/sowing stage (stage 1) and

the plant protection stage (stage 2):

Yist = αslist + βsksjt + γsrist + φ−1 (list, kist, rist, eist) + εsjt (D1)

As usual, we collect the deterministic terms and denote them as

ϕist = αslist + βsksjt + γsrist + φ−1 (list, kist, rist, eist) (D2)

In literature, it is argued that the adjustment of capital and labor input use by farmers will

take longer time than that of intermediate inputs, such as seeds, fertilizers and chemicals. This is

not only because the unit cost of intermediate inputs is much lower than capital and labor input

for small holder farms, but also because intermediate inputs are more divisible. Given wheat

farmers’ practice, it is reasonable to assume that the demand for intermediate inputs depends on

productivity and the predetermined capital and labor input.

The advantage of using aggregate intermediate inputs as control variable lies in two-fold: first,

intermediate inputs, though different in each stage of production, is measured in terms of money

metric in real term, which addresses the issue of potential bias resulting from quality differences

in inputs; and second, using intermediate inputs for the control functions throughout all the three

stages of production make our by-stage estimation more consistent with each other.

We approximate ϕist (.) by a high order polynomial and use OLS regression for estimation,

withthecontroloftimedummies(Dt) and regional dummies (Dr) in the regression to account for

time-variant and time-invariant external shocks. Quality adjustment has been made for capital

and labor, as well as the aggregate intermediate inputs, using their corresponding price as the

hedonic weights.

Our second step is to estimate the parameters θ = (α, β, γ) by GMM, which exploits a Markov

assumption on farms’ TFP and the timing of input choices and sita denotes the parameter space.

In particular, we assume that farm productivity in stage stage s follows a first-order Markov

process:

wist = g (wis,t−1) + ξist (D3)

which says that the current productivity shock consists of an expected term predicted by

productivity at g (wis,t−1) plus a deviation from the expectation, often referred to as the ”innova-
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tion” component ξsjst . Note that w sjst is identified up to sita from the first step after taking out

measurement error and unanticipated shocks from output. We regress wist on a linear function of

wis,t−1 to obtain g (wis,t−1). Denote

wist(θ) = ϕist(.)− αslist − βskist − γsrist (D4)

For a given θ, g(.)canbeestimatedandthusξist is obtained. The latter is used to construct the

moment conditions:

E


(ξist(θ) + ϵist)



lis,t−1

list

kist

ris,t−1

nit

Φi,t−1 (kis,t−1, lis,t−1, ris,t−1, nit)




= 0 (D5)

Since capital input is a state variable at t, it should be orthogonal to the innovation shock on

productivity at t. We use current labor (lsjt) as an instrument for itself because of its dynamic

feature, and also include labor at t− 1 as an additional instrument. And, we use lagged material

input rsj,t−1 as an instrument for rsjt∗ As is pointed out by Gandhi et al. (2020), the use of ξsjt+εsjt

rather than ξsjt alone in the moment condition is more general. We search over the parameter

space sita to find alpha hat, beta hat and gamma hat that minimize the above moment conditions.

We use the GMM procedure to identify separately production function coefficients for each

stage s in a backward order as described above, s = 3, 2, 1. As is mentioned, we allow the status

of second stage and the share of secondary refining to enter the productivity evolution process

since the technology in the plant protection stage may potentially affect the law of motion of

productivity.
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Appendix E. Estimate the NDVI index for the by-stage

output

The Normalized Difference Vegetation Index (NDVI) serves as a widely recognized index for veg-

etation monitoring. Its foundational principle capitalizes on the distinct reflective properties of

vegetation leaves in the near-infrared and red light spectrum. The NDVI is calculated using the

formula:

NIR−RED

NIR +RED
(E1)

A ratio normalized design that mitigates the effects of solar zenith angles and surface reflectance

intensity, ensuring inherent stability. The NDVI values range between -1 and 1 , with higher

values indicating richer vegetation coverage. A salient feature of NDVI is its commendable cross-

sensor and spatiotemporal comparability, facilitating comparisons across different regions and time

frames.

We use Landsat 8 SR imagery in Google Earth Engine Platform. NDVI can be influenced by

external factors such as atmospheric effects and surface background effects. To minimize these

influences, the Landsat 8 SR imagery do corrections in the following ways:

• Atmospheric Correction: Leveraged the LaSRC model to correct surface reflectance atmo-

spherically, reducing the impact of aerosols and water vapor.

• Orthorectification: The imagery was orthorectified to align with a standard map projection

coordinate system.

• Surface Temperature Correction: Employed the single-channel algorithm developed by RIT,

NASA, and JPL to compute surface temperatures from the TIR band.

• NDVI Temporal Adjustment: Utilized the ASTER NDVI product to temporally adjust the

ASTER GED, enabling the computation of surface temperatures for the target Landsat

scenes.

• Cloud Masking: The Fmask algorithm was employed to mask clouds and potential cloud

shadow areas.

• Scene Stitching: Overlapping areas were stitched together to produce a standard scene of

approximately 170 km× 183 km.

• Known Errors: Errors related to cloud and cloud shadow-associated surface temperature

retrievals were acknowledged.
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Detailed process

(1) Calculated the maximum NDVI values during the sowing and plant protection periods

using the Landsat 8 SR satellite data segmented by time.

(2) High-resolution remote sensing map layers were loaded for the plots where wheat was

cultivated by farmers in 2013, 2015, and 2020. These plots were GPS-located, and their positions

and shapes were delineated on the map.

(3) Using the plots as masks, the NDVI satellite data was cropped, and a summation operation

was performed on the resulting NDVI grid values.

(4) At the farmer level, the NDVI grid values of all plots were aggregated.

(5) A linear regression approach was adopted to estimate the final yield in relation to the NDVI

during the plant protection and sowing phases, recursively generating y1 and y2.
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Figure E1: Changes in Land Parcels and NDVI for Farmer(No. 512203) from
2013-2020

(a) 2013

(b)2015
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(c)2020

Note: The bounds of plots are from Farmer(No. 512203) in our survey. The figure is computed using the Google

Earth Engine (GEE) platform. The color represents the Normalized Difference Vegetation Index (NDVI),

specifically the maximum NDVI during the crop protection phase, calculated based on Landsat satellite data.

This figure demonstrates our capability to track the changes in each land parcel for individual farmers.
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Figure E2. Relationship of log outputs in different stages

Note: Panel (a) represents the relationship of log(NDVI) and log(real output) between plant protection and

harvesting. Panel (b) represents the relationship of log(NDVI) between seedling and plant protection.
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