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Abstract: We examine misallocation by investigating how measurement errors in output and 

inputs affect the estimation of agricultural productivity loss associated with resource 

misallocation. We find that measurement errors account for a substantial part of the estimated 

total factor productivity (TFP) variations (30-45% at the national level). Correspondingly, 

failing to account for measurement errors would considerably overestimate the gains from 

resource reallocation. Based on the preferred Two-Stage least squares (2SLS) estimation of 

the production function, measurement errors in both output and inputs will lead to an 

overstatement of production gains by 2-3-fold if not adjusted in productivity estimation. The 

results are consistent regardless of whether the analysis is explored by analyzing household 

productivity variation across years or across households within local communes. The 

findings caution against relying on estimates unadjusted for measurement error of potential 

gains from reallocation in cost-benefit analysis of reallocation. Certain caveats and 

assumptions of the analysis are discussed in the paper. 
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1. Introduction 

Optimization of resource allocation maximizes the total production of an economy endowed with 

finite productive resources and efficient productive individuals heterogeneous in total factor 

productivities (TFP) (Restuccia and Rogerson 2008; Hsieh and Klenow 2009). Misallocation 

represents a departure from this optimal allocation, resulting in income loss and increased 

dispersion in output per worker. In practice, large variations in productivity have been observed 

across sectors and between establishments in narrowly defined industries within a sector; 

moreover, the variation tends to be greater in poor countries than in rich countries (Restuccia and 

Rogerson 2008, 2013; Hsieh and Klenow 2009; McMillan, Rodrik, and Verduzco-Gallo 2014; 

Porzio 2016; Bento and Restuccia 2017).  

Motivated by these observations, a substantial and growing body of literature on resource 

misallocation has emerged (Restuccia and Rogerson 2008; 2013; Hsieh and Klenow 2009; 

Banerjee and Moll 2010; Bartelsman, Haltiwanger, and Scarpetta 2013; Hopenhayn 2014; and 

Bento and Restuccia 2017). The emerging evidence from these empirical studies suggests that 

misallocation has played a significant role in explaining the low level of aggregate productivity in 

low-income countries and the world’s income gap.  

The agricultural sector holds special significance and importance in the developing world (Gollin, 

Parente, and Rogerson 2002). According to estimates from the International Labor Organization 

(ILO), approximately 58.8% of the labor force was engaged in the agriculture sector in low-income 

countries in 2022, with figures of 56% for Eastern and Southern Africa and 45% for Western and 

Central Africa. Misallocation within this sector is often attributed to market constraints and local 

restrictions that hinder the efficient distribution of productive resources (Banerjee and Moll 2010; 
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Restuccia and Rogerson 2017), and constraints and imperfections are notoriously prevalent in the 

agricultural land and labor markets in developing countries.  

Given the significance of the agricultural sector in these economies, a considerable portion of the 

literature has focused on misallocation within agriculture (see for example, Gollin, Lagakos, and 

Waugh 2014; Adamopoulos and Restuccia 2014; Restuccia 2016 for the assessments of the 

potential income gap resulting from such misallocation). Previous studies reveal significant output 

gains through reallocation, with estimates ranging from 57% in China and 80% in Vietnam to 

140% in Ethiopia and 260% in Malawi (Ayerst, Brandt, and Restuccia 2020; Adamopoulos et al. 

2022; Chen, Restuccia, and Santaeulàlia-Llopis 2022, 2023).  

An empirical challenge in assessing misallocation lies with the measurement of factor elasticities 

and TFP, which hinge on accurate measures of inputs and production outputs. If the input and 

outputs are measured with errors, the estimated productivity gain resulting from resource 

reallocation could be biased (Gollin and Udry 2021). In reality, measurement errors are a 

ubiquitous part of data analysis and pose a significant estimation challenge.  

In agriculture, inaccurate estimates or imperfect reporting are significant sources of measurement 

errors in both inputs and outputs (Abay, Bevis, and Barrett 2021). One traditional method to reduce 

errors in production input data is to require respondents to maintain continuous production diaries 

(Deininger et al. 2012). To reduce the widespread measurement errors of land size, researchers 

rely on methods such as the compass-and-rope approach (Dillion et al. 2019) or, more recently, 

the use of Global Positioning System (GPS) data (Carletto et al. 2013; 2015; Kilic 2017). The 

crop-cut method is one approach to address the measurement error of output data (Abay et al. 

2019; Desiere and Jolliffe 2018; Gourley et al. 2019).  
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There is a growing body of recent literature that explores the impact of measurement error on 

estimates of the relationship between farm size and productivity (Desiere and Jolliffe 2018; Abay 

et al. 2019; Ayalew et al. 2024). Abay (2020) investigates the relationship between measurement 

error and marginal returns to modern agricultural inputs. Findings from these studies suggest a 

correlation between output and input use and their respective measurement errors, highlighting the 

possibility of non-classical measurement error. Cohen (2019) argues that even GPS measurements 

may still be subject to classical measurement errors, primarily due to ‘position error’ in satellites 

and human errors in GPS device operation (Bogaert, Delincé, and Kay 2005; Bogaert, Delincé, 

and Kay 2005; Keita and Carfagna 2009).  

Despite the widespread recognition of measurement errors in agriculture and the increasing 

literature dedicated to addressing this issue in studies examining the relationship between farm 

size and productivity, the issue of measurement error has largely been overlooked in the emerging 

literature on resource misallocation (e.g., Ayerst, Brandt, and Restuccia 2020; Adamopoulos et al. 

2022; Chen, Restuccia, and Santaeulàlia-Llopis 2022, 2023). There are a few exceptions, such as 

Bils, Klenow, and Ruane (2021), Aragon, Restuccia, and Rud (2021), and Gollin and Udry (2021).  

Bils, Klenow, and Ruane (2021) use data from manufacturing sectors in both India and the U.S. to 

identify the measurement error stemming from the rates of revenue and input growth in response 

to productivity shocks. They find that measurement error contributes to a greater dispersion in 

revenues per input in the U.S. and the potential gains from reallocation undergo a more significant 

reduction in the adjustment process compared to India.  

Using agricultural data from Tanzania and Uganda, Gollin and Udry (2021) find that the 

misallocation diminishes significantly after accounting for measurement errors in their study. 

https://www-journals-uchicago-edu.proxy2.cl.msu.edu/doi/full/10.1086/700557#rf11
https://www-journals-uchicago-edu.proxy2.cl.msu.edu/doi/full/10.1086/700557#rf11
https://www-journals-uchicago-edu.proxy2.cl.msu.edu/doi/full/10.1086/700557#rf30
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Apart from the aforementioned measurement and reporting errors, Gollin and Udry (2021) identify 

two other sources of measurement errors in agricultural production data. One is linked to the 

stochastic nature of agricultural production, which is associated with the vagaries related to 

weather, pests, and crop diseases. The other is related to shocks occurring late in the production 

season after farmers have already made their production decisions (Gollin and Udry 2021). These 

late-season shocks could include adverse weather events, pests, or disease shocks that occur 

sufficiently late in the growing season that farmers are unable to effectively respond to them. They 

find that potential output in an efficiently allocated scenario is overestimated by a factor of 2.6 in 

Tanzania and an even higher factor of 3.7 in Uganda. Similar to the findings of Bils, Klenow, and 

Ruane (2021), they find that this overestimation is more pronounced in less wealthy countries 

where measurement errors exhibit greater variability.  

The method of Gollin and Udry (2021) heavily relies on a structure of plot data. They use data 

from multiple plots growing the same crop managed by the same individual or household within a 

season of a year, creating a panel. This panel structure ensures that market distortions are held 

constant so that the distortion-induced variance is eliminated. Then by employing a normalization 

that involves TFP and factor-specific productivity, they infer the variances in measurement errors 

in outputs and inputs to correct misallocation accordingly. They then proceed to infer productivity 

and measurement error-induced variances.  

In contrast, Aragon, Restuccia, and Rud (2021) presents several arguments against the use of plot-

level data in misallocation calculation1. They provide empirical evidence suggesting that plot-level 

 
1 According to Aragon, Restuccia, and Rud (2021), the main reasons why using plot-level data is likely to 

exaggerate the measurement error include (1) a much higher level of productivity dispersion to begin with, and (2) 

the practical issue to separate inputs by plots.   
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data tend to overestimate the impact of measurement errors, leading to estimates that do not agree 

with the literature at large. 

In this paper, we follow Aragon, Restuccia, and Rud (2021) and utilize panel data at the household 

level from Vietnam to identify within-household variance in measurement errors. As robustness 

checks, we also estimate the within-commune variance in measurement errors. Additionally, we 

differentiate the estimates for all crops versus rice crops, as well as for the Southern region versus 

the Northern region. My method relies on three key assumptions.  

The first assumption is that the measurement errors are classical measurement errors, orthogonal 

to their true value and with each other. This assumption is crucial for effectively separating and 

identifying the variance of measurement error.2 The second assumption posits that productive 

households operate efficiently within the constraints they face. The final assumption relates to 

intermediate inputs and facilitates the identification of a subset of measurement error variances. It 

assumes minimal change within a household over time and little variance in the shadow prices and 

elasticities for intermediate inputs within a commune. By holding intermediate input use constant, 

we can identify variances of measurement errors in intermediate inputs and output. The 

assumptions can be empirically tested against conditions derived from the household model.  

Finally, using crop data from Vietnamese farming households, we aim to infer the actual output 

gap after adjusting for measurement error. We find that nationwide, up to 45% of the variation in 

the standard TFP estimate comes from measurement error and allocation-unrelated elements. 

Using the production residual as an estimate for TFP, the raw estimate of potential gains from 

 
2 One limitation of this  study is that it cannot deal with non-classical measurement errors. Previous studies such as 

Gollin and Urdy (2021) and Aragon, Restuccia, and Rud (2021) make the same assumption on measurement errors 

in their studies.  
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reallocating is 139% of the observed revenue for all crops. Heterogeneity analysis between the 

Northern and Southern regions and between all crops and rice investigates regional comparative 

advantages in different crops. 

The paper makes three contributions. First, it contributes to the scant literature that directly 

addresses measurement error in misallocation analysis, and it is the first such study using data 

from Vietnam3. Second, as opposed to the usual requirement for high-quality data to address 

measurement error, this method is cost-saving on data by achieving misallocation adjustment for 

measurement error using household-level survey data. While plot- and parcel-level data tend to 

overestimate the impact of measurement error, household-aggregate data reduce both the 

magnitude and the dispersion of measurement error (Aragon, Restuccia, and Rud 2021). The 

household-level analysis also allows for convenient interpretation and easy placement within the 

tradition of the literature on misallocation. Regarding methodology, a key assumption in the paper 

involving intermediate inputs is observationally inspired, testable, and not too restrictive. Third, 

by exploring the difference between south and north, and between all crops and rice crops only, 

the findings of this study are of policy relevance. Given the historical difference in property rights 

between the North and South regions, whether and to what extent resource misallocation differs 

between the two regions is of academic and policy significance.  

The remainder of the paper is as follows. Section 2 outlines the theoretical model. Section 3 

describes the data set. Section 4 presents the estimation strategy. Section 5 presents the results, 

and section 6 concludes the paper. 

 
3 Ayerst, Brandt, and Restuccia (2020) investigates agricultural misallocation in Vietnam without adjusting for 

measurement error. 
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2. Theoretical Model 

2.1. Production function and measured total factor productivity: 

The model will assume a Cobb-Douglas production function of the form: 

𝑌ℎ𝑡
𝑜 = 𝑒𝜖𝑌ℎ𝑡𝑒𝜔𝑌ℎ𝑡𝒆𝜷𝑾𝒉𝒕(𝐿ℎ𝑡)𝛼𝐿ℎ𝑡(𝑁ℎ𝑡)𝛼𝑁ℎ𝑡(𝑀ℎ𝑡)𝛼𝑀ℎ𝑡  

where 𝑌ℎ𝑡
𝑜  is the observed output of household ℎ at time 𝑡, 𝐽 ∈ {𝐿, 𝑁, 𝑀} are land, labor, and 

intermediate inputs (seeds, saplings, fertilizers, pesticides/herbicides, energy, irrigation, 

maintenance, and other), respectively, used in the household’s crop production. Output elasticities 

of factor inputs 𝛼𝐽ℎ𝑡 are allowed to vary across households and time to capture the differences in 

land and other input’s quality and intensity. 𝑾𝒉𝒕 are observable household, land characteristics, 

and late-seasoned shocks. The parameter 𝜔𝑌ℎ𝑡 denotes the total factor productivity (TFP) and is 

unobservable to the researcher but known to the household. Finally, the classical error term 𝜖𝑌ℎ𝑡 

is unobservable to the researcher as well as unknown to farmers. Rewrite 

                                       𝑌ℎ𝑡
𝑜 = 𝑌ℎ𝑡𝑒𝜖𝑌ℎ𝑡   

where 𝑌ℎ𝑡 denotes the household’s true output. Measurement errors in inputs 𝐽 are similarly 

modeled: 

                                     𝐽ℎ𝑡
𝑜 = 𝐽ℎ𝑡𝑒𝜖𝐽ℎ𝑡   

where 𝐽ℎ𝑡
𝑜  is the reported input, 𝐽ℎ𝑡 is the true value of input 𝐽 of household ℎ in time 𝑡 and 𝜖𝐽ℎ𝑡 is 

the corresponding measurement error in factor input 𝐽.  
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All the components of the vector (𝜖𝑌ℎ𝑡, 𝜖𝐽ℎ𝑡) are subject to classical measurement error 

assumptions and orthogonal with each other. The production is re-expressed with lowercase to 

represent their logarithms. 

𝑦ℎ𝑡
𝑜 = 𝜖𝑌ℎ𝑡 + 𝜔𝑌ℎ𝑡 + 𝜷𝑾𝒉𝒕 + ∑ 𝛼𝐽ℎ𝑡𝑗ℎ𝑡

𝐽

 

       = 𝜖𝑌ℎ𝑡 + 𝜔𝑌ℎ𝑡 + 𝜷𝑾𝒉𝒕 + ∑ 𝛼𝐽ℎ𝑡𝑗ℎ𝑡
𝑜

𝐽

− ∑ 𝛼𝐽ℎ𝑡𝜖𝐽ℎ𝑡

𝐽

 

(1) 

 

An estimation of the production function estimates the coefficients  𝛽 and 𝛼𝐽 the expected values 

of 𝛼𝐽ℎ𝑡. The production residuals provide estimates for the household TFPs that are calculated as: 

ln 𝑇𝐹𝑃ℎ𝑡
̂ = 𝑦ℎ𝑡

𝑜 − 𝜷̂𝑾𝒉𝒕 − ∑ 𝛼𝐽̂𝑗ℎ𝑡
𝑜

𝐽

 

                 = 𝜖𝑌ℎ𝑡 + 𝜔𝑌ℎ𝑡 + 𝜷𝑾𝒉𝒕 + ∑ 𝛼𝐽ℎ𝑡𝑗ℎ𝑡
𝑜 − ∑ 𝛼𝐽ℎ𝑡𝜖𝐽ℎ𝑡

𝐽

− 𝜷̂𝑾𝒉𝒕 − ∑ 𝛼𝐽̂𝑗ℎ𝑡
𝑜

𝐽𝐽

 

                 = 𝜖𝑌ℎ𝑡 + ∑ 𝛼𝐽̂𝜖𝐽ℎ𝑡

𝐽

+ 𝜔𝑌ℎ𝑡 + (𝜷 − 𝜷̂)𝑾𝒉𝒕 + ∑(𝛼𝐽ℎ𝑡 − 𝛼𝐽̂)𝑗ℎ𝑡
𝑜

𝐽

− ∑(𝛼𝐽ℎ𝑡 − 𝛼𝐽̂)𝜖𝐽ℎ𝑡

𝐽

 

                 = 𝜖𝑌ℎ𝑡 + ∑ 𝛼𝐽̂𝜖𝐽ℎ𝑡

𝐽

+ 𝜔𝑌ℎ𝑡 + (𝜷 − 𝜷̂)𝑾𝒉𝒕 + ∑(𝛼𝐽ℎ𝑡 − 𝛼𝐽̂)𝑗ℎ𝑡

𝐽

 

 In the limit, with consistent estimators of the production elasticities, the production residuals 

approach:  

ln 𝑇𝐹𝑃ℎ𝑡
̂ → (𝜖𝑌ℎ𝑡 + ∑ 𝛼𝐽𝜖𝐽ℎ𝑡

𝐽

) + 𝜔𝑌ℎ𝑡 + ∑(𝛼𝐽ℎ𝑡 − 𝛼𝐽)𝑗ℎ𝑡

𝐽
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The second and third terms in the limit 𝜔𝑌ℎ𝑡, and ∑(𝛼𝐽ℎ𝑡 − 𝛼𝐽̂)𝑗ℎ𝑡 reflect the true factor-neutral 

and factor-specific productivities, and are both assumed known to farmers. Together, they are 

informative about household productivities and form the true TFP, that is ln 𝑇𝐹𝑃ℎ𝑡 = 𝜔𝑌ℎ𝑡 +

∑ (𝛼𝐽ℎ𝑡 − 𝛼𝐽)𝑗ℎ𝑡𝐽 . The first term 𝜖ℎ𝑡 ≡ 𝜖𝑌ℎ𝑡 + ∑ 𝛼𝐽𝜖𝐽ℎ𝑡𝐽  with 𝐸(𝜖ℎ𝑡) = 0 and 𝑉𝑎𝑟(𝜖ℎ𝑡) =

𝑉𝑎𝑟(𝜖𝑌ℎ𝑡) + ∑ 𝛼𝐽
2𝑉𝑎𝑟(𝜖𝐽ℎ𝑡)𝐽  is the aggregate measurement error in output and inputs. As far as 

allocative efficiency is concerned, 𝜖ℎ𝑡 provides no information on efficiency gain through 

reallocation of factor resources and only serves as noise.  

One is often interested in the distribution of measured TFP because it is a tool to characterize 

efficient factor allocation. With the classical measurement error and orthogonal assumptions, the 

variance of measured TFP can be decomposed into two parts: 

 𝑉𝑎𝑟(ln 𝑇𝐹𝑃ℎ𝑡
̂ ) = 𝑉𝑎𝑟 (𝜖ℎ𝑡) + 𝑉𝑎𝑟 (𝜔𝑌ℎ𝑡 + (𝜷 − 𝜷̂)𝑾𝒉𝒕 + ∑(𝛼𝐽ℎ𝑡 − 𝛼𝐽̂)𝑗ℎ𝑡) 

(2) 

 

The first term shows that measurement error 𝜖ℎ𝑡 becomes an additional source of variation in the 

production residual that does not represent actual variation in productivity. For allocative 

efficiency purposes, it is irrelevant. To see how this added variance presents a problem, section 

2.2 characterizes the efficiency allocation and outcome, followed by the implications of 

measurement error on perceived distortion and estimates of potential income gain through factor 

reallocation in section 2.3. Then section 2.4 details how the measurement error components 

𝜖𝑌ℎ𝑡 and 𝜖𝐽ℎ𝑡 of 𝜖ℎ𝑡 can be measured and removed from the TFP variance estimate in (2). 

2.2. Characterization of efficient output and allocation of factors 
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In this section, to systematically characterize the optimal allocation, we will assume away 

heterogeneity in output elasticities. Furthermore, in this exercise, the time subscript 𝑡 is implied 

and dropped for convenience purposes. Consider a Cobb Douglas production technology in year 𝑡 

of the form 𝑌ℎ = exp 𝜔ℎ 𝐿ℎ
𝛼𝐿𝑁ℎ

𝛼𝑁𝑀ℎ
𝛼𝑀 . In the efficient allocation, the optimal inputs and output 

solve the following problem: 

Max
𝐿ℎ,𝑋ℎ

∑ exp 𝜔𝑌ℎ ∏ 𝐽𝛼𝐽

𝐽
ℎ

s.t ∑ 𝐽ℎ

ℎ

= 𝐽 ̅ 

The first order condition implies that efficient allocation requires equalized marginal product of 

each factor across households, i.e. 

𝑌ℎ
∗

𝐽ℎ
∗ =

𝑌𝑔
∗

𝐽𝑔
∗

=
𝑌̅

𝐽 ̅
 

Let 𝑠ℎ ≡
𝐽ℎ

∗

𝐽̅
 define the optimal share of resources for each household from the total pool of 

resources. It follows that  𝑠ℎ =
𝑌ℎ

∗

𝑌̅
=

exp 𝜔𝑌ℎ ∏ (𝑠ℎ𝐽)̅𝛼𝐽
𝐽

𝑌̅
 and therefore is constant across factor inputs 

𝐽. The social planner’s solution for 𝑠ℎ is 𝑠ℎ = (
∏ 𝐽

𝛼̅𝐽
𝐽

𝑌̅
)

1

1−∑ 𝛼𝐽𝐽
exp (

𝜔𝑌ℎ

1−∑ 𝛼𝐽𝐽
). 

Since household shares add up to 1, i.e. 

∑ 𝑠ℎℎ = 1 ⇒ (
∏ 𝐽

𝛼̅𝐽
𝐽

𝑌̅
)

1

1−∑ 𝛼𝐽𝐽 ∑ exp (
𝜔𝑌ℎ

1−∑ 𝛼𝐽𝐽
)ℎ = 1 ⇒ (

∏ 𝐽
𝛼̅𝐽

𝐽

𝑌̅
)

1

1−∑ 𝛼𝐽𝐽
=

1

∑ exp(
𝜔𝑌ℎ

1−∑ 𝛼𝐽𝐽
)ℎ

 , 
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this share can be alternatively expressed as  𝑠ℎ =
exp(

𝜔𝑌ℎ
1−∑ 𝛼𝐽𝐽

)

∑ exp(
𝜔𝑌ℎ

1−∑ 𝛼𝐽𝐽
)ℎ

. The idea of this expression is 

simple and intuitive: a household’s optimal share of input factor is strictly increasing in its TFP, 

and is proportionate to its productivity relative to other households. 

2.3. Implications of measurement error 

In the absence of measurement error, the first-order condition provides several ways to measure 

how far the existing allocation is from optimality. Productivities, 
𝑌ℎ

𝐽ℎ
, are proportional to the 

marginal product of factors, and are constant across households in efficient allocation. Similarly, 

the cross-factor ratios, 
𝐽ℎ𝑡

𝐼ℎ𝑡
, are indicative of allocative efficiency. The general idea is that, in 

optimal allocation, productivities and cross-factor ratios are equalized across households, and that 

a higher dispersion indicates a higher level of distortion, and thus factor misallocation. 

In the presence of measurement error, however, these observations would be misguided, since 

measurement error increases the dispersion of observed factor productivities and observed cross-

factor ratios alike. For illustration, let us look at the variance of the logarithm of the measured crop 

yields: 

𝑉𝑎𝑟 (ln (
𝑌ℎ

𝑜

𝐿ℎ
0 )) = 𝑉𝑎𝑟(𝑦ℎ

𝑜 − 𝑙ℎ
𝑜) = 𝑉𝑎𝑟(𝜖𝑌ℎ − 𝜖𝐿ℎ) + 𝑉𝑎𝑟(𝑦ℎ − 𝑙ℎ) 

                               > 𝑉𝑎𝑟(𝑦ℎ − 𝑙ℎ) = 𝑉𝑎𝑟 (ln (
𝑌ℎ

𝐿ℎ
)) 

Similarly, it can easily be proved that the presence of measurement error also generates more 

dispersion in other observed factor productivities as well as any factor ratio combination.  

Observing these measures and letting them inform us of the existing level of distortion, therefore, 
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can exaggerate the misallocation problem. If measurement error varies greatly, it can create a lot 

of noise in the distribution of these distortion measures that otherwise may have low spreads. 

Next, we will quantify the overstatement in potential gains from reallocation.  If resources are to 

be optimally distributed, the observed output is: 

       𝑌ℎ
𝑜∗ = exp(𝜖ℎ) exp(𝜔𝑌ℎ) (

exp (
𝜔𝑌ℎ

1 − ∑ 𝛼𝐽𝐽
)

∑ exp (
𝜔𝑌ℎ

1 − ∑ 𝛼𝐽𝐽
)ℎ

)

∑ 𝛼𝐽𝐽

∏ 𝐽𝛼̅𝐽

𝐽
 

               = exp(𝜖ℎ) exp (
𝜔𝑌ℎ

1 − ∑ 𝛼𝐽𝐽
) (∑ exp (

𝜔𝑌ℎ

1 − ∑ 𝛼𝐽𝐽
)

ℎ

)

− ∑ 𝛼𝐽𝐽

∏ 𝐽𝛼̅𝐽

𝐽
 

               = exp(𝜖ℎ) exp (
𝜔𝑌ℎ

1 − ∑ 𝛼𝐽𝐽
) (𝑁𝐸 (exp (

𝜔𝑌ℎ

1 − ∑ 𝛼𝐽𝐽
)))

− ∑ 𝛼𝐽𝐽

∏ 𝐽𝛼̅𝐽

𝐽
 

In expectation, optimal observed output turns out to be:  

𝐸(𝑌ℎ
𝑜∗) = 𝐸(exp(𝜖ℎ)) (𝐸 (exp (

𝜔𝑌ℎ

1−∑ 𝛼𝐽𝐽
)))

1−∑ 𝛼𝐽𝐽

𝑁− ∑ 𝛼𝐽𝐽 ∏ 𝐽𝛼̅𝐽
𝐽 . 

In practice, researchers use the production function residuals to generate TFP estimates and to 

generate estimates of optimal factor allocation and output. As shown previously in section 2.1, 

these TFP estimates contain measurement errors and are in fact “inconsistent” with the true TFP. 

The estimated optimal output in an allocation planned according to the confounded TFP estimates 

is 

𝑌ℎ
𝑜∗̂ = exp(𝜔𝑌ℎ + 𝜖ℎ) (

exp (
𝜔𝑌ℎ + 𝜖ℎ

1 − ∑ 𝛼𝐽̂𝐽
)

∑ exp (
𝜔𝑌ℎ + 𝜖ℎ

1 − ∑ 𝛼𝐽̂𝐽
)ℎ

)

∑ 𝛼𝐽̂𝐽

∏ 𝐽𝛼̅𝐽̂

𝐽
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A similar derivation as above will reveal the expected value of estimated output as: 

𝐸(𝑌ℎ
𝑜∗̂) = (𝐸 (exp (

𝜖ℎ

1 − ∑ 𝛼𝐽𝐽
)))

1−∑ 𝛼𝐽𝐽

(𝐸 (exp (
𝜔𝑌ℎ

1 − ∑ 𝛼𝐽𝐽
)))

1−∑ 𝛼𝐽𝐽

𝑁− ∑ 𝛼𝐽𝐽 ∏ 𝐽𝛼̅𝐽

𝐽
 

To compare the estimated and true optimal outputs, simply take their ratio: 

𝐸(𝑌ℎ
𝑜∗̂)

𝐸(𝑌ℎ
𝑜∗)

=

(𝐸 (exp (
𝜖ℎ

1 − ∑ 𝛼𝐽𝐽
)))

1−∑ 𝛼𝐽𝐽

𝐸(exp(𝜖ℎ))
 

Within the caveat of a decreasing returns to scale Cobb-Douglas production function, 1 − ∑ 𝛼𝐽𝐽 >

0. Apply Jensen’s Inequality, it can be seen that 

(𝐸 (exp (
𝜖ℎ

1 − ∑ 𝛼𝐽𝐽
)))

1−∑ 𝛼𝐽𝐽

> (exp (𝐸 (
𝜖ℎ

1 − ∑ 𝛼𝐽𝐽
)))

1−∑ 𝛼𝐽𝐽

 

                                                                               = exp ((1 − ∑ 𝛼𝐽𝐽 ) 𝐸 (
𝜖ℎ

1−∑ 𝛼𝐽𝐽
)) = 𝐸(exp(𝜖ℎ)), 

and therefore 𝐸(𝑌ℎ
𝑜∗̂) > 𝐸(𝑌ℎ

𝑜∗), i.e optimal outputs are overestimated using the estimated TFP 

confounded by measurement error. To quantify the magnitude of optimal output overestimation, 

assume 𝜖ℎ to follow a normal distribution. Then, 

𝐸(exp(𝜖ℎ)) = exp (𝐸(𝜖ℎ) +
𝑉𝑎𝑟(𝜖ℎ)

2
) = exp (

𝑉𝑎𝑟(𝜖ℎ)

2
), and  

(𝐸 (exp (
𝜖ℎ

1 − ∑ 𝛼𝐽𝐽
)))

1−∑ 𝛼𝐽𝐽

= (exp (𝐸 (
𝜖ℎ

1 − ∑ 𝛼𝐽𝐽
) +

𝑉𝑎𝑟 (
𝜖ℎ

1 − ∑ 𝛼𝐽𝐽
)

2
))

1−∑ 𝛼𝐽𝐽
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                                                          = (exp (
𝑉𝑎𝑟(𝜖ℎ)

2(1 − ∑ 𝛼𝐽𝐽 )
2))

1−∑ 𝛼𝐽𝐽

= exp (
𝑉𝑎𝑟(𝜖ℎ)

2(1 − ∑ 𝛼𝐽𝐽 )
) 

 

 
⇒

𝐸(𝑌ℎ
𝑜∗̂)

𝐸(𝑌ℎ
𝑜∗)

= exp (
𝑉𝑎𝑟(𝜖ℎ)

2(1 − ∑ 𝛼𝐽𝐽 )
−

𝑉𝑎𝑟(𝜖ℎ)

2
) = exp (

𝑉𝑎𝑟(𝜖ℎ) ∑ 𝛼𝐽𝐽

2(1 − ∑ 𝛼𝐽𝐽 )
) 

(3) 

 

It can be concluded that under our set of assumptions, using production residuals as TFP estimates 

to inform about the efficient allocation overstates the misallocation gap, the magnitude of which 

depends on the returns to scale ∑ 𝛼𝐽𝐽  of the production technology, as well as variance 𝑉𝑎𝑟(𝜖ℎ) of 

the aggregate measurement error. Elasticities 𝛼𝐽 can be consistently estimated in the production 

function. The remaining task is to calculate the variance of measurement error 𝑉𝑎𝑟(𝜖ℎ), separating 

it from the actual productivity variance. In order to do so, next we turn to the household’s problem.  

2.4. Separation of productivities and measurement errors 

Assume that households are efficient and maximize profit subject to their shadow input prices 

𝑝𝐽ℎ = (𝑝𝐿ℎ, 𝑝𝑁ℎ, 𝑝𝑀ℎ) relative to normalized output price 𝑝𝑌 = 1.  

Max 𝑝𝑌𝑌ℎ − ∑ 𝑝𝐽ℎ𝐽ℎ

𝐽

 

The first order condition of the problem 𝐽ℎ =
𝛼𝐽ℎ𝑌ℎ

𝑝𝐽ℎ
 implies: 

𝑌ℎ = (𝑒𝛽𝑊ℎ𝑒𝜔𝑌ℎ)
1

1−∑ 𝛼𝐽ℎ𝐽 ∏ (
𝛼𝐽ℎ

𝑝𝐽ℎ
)

𝛼𝐽ℎ

1−∑ 𝛼𝐽ℎ𝐽

𝐽
 

The output and input solutions in log are: 
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𝑦ℎ =
1

1−∑ 𝛼𝐽ℎ𝐽
(𝛽𝑊ℎ𝑡 + 𝜔𝑌ℎ + ∑ 𝛼𝐽ℎ(ln 𝛼𝐽ℎ − ln 𝑝𝐽ℎ)𝐽 ) and 𝑗ℎ = 𝑦ℎ + (ln 𝛼𝐽ℎ − ln 𝑝𝐽ℎ) 

It is not possible in this paper to empirically separate factor-specific productivities 𝛼𝐽ℎ from 

distortions in the corresponding market 𝑝𝑗ℎ. Therefore, we combine them through the term 𝜔𝐽ℎ ≡

ln 𝛼𝐽ℎ − ln 𝑝𝐽ℎ, then 𝑗ℎ is rewritten as 𝑗ℎ   = 𝑦ℎ + 𝜔𝐽ℎ,  

Where 𝜔𝐽ℎ represents both a household’s ability to use factor 𝐽 and the idiosyncratic distortion 

they face in that factor market. We call 𝜔𝐽ℎ factor 𝐽-specific productivity-distortion. A household’s 

profit maximizing solution for the logarithm of factor demand 𝐽 is the sum of its total output 𝑦ℎ 

and factor 𝐽- specific productivity-distortion 𝜔𝐽ℎ. 

The observed factor demands and observed production outcome are simply the sum of their true 

value and their measurement errors.  

𝑦ℎ
𝑜 = 𝜖𝑌ℎ + 𝑦ℎ 

𝑗ℎ
𝑜 = 𝜖𝐽ℎ + 𝑦ℎ + 𝜔𝐽ℎ  

(4) 

 

This set of rules breaks down the observable factor demands and production output in the left-hand 

side of (4) into components that are known (𝜔𝑌ℎ, 𝜔𝐽ℎ) and unknown (𝜖𝑌ℎ, 𝜖𝐽ℎ) to farmers at the 

time of decision making. For the sake of convenience, some short-hand notations are defined as 

follows: variances of output and input measurement errors (𝑉𝑎𝑟(𝜖𝑌ℎ), 𝑉𝑎𝑟(𝜖𝐽ℎ)) = (𝜎𝜖𝑌
2 , 𝜎𝜖𝐽

2 ), 

variances of output productivity and input-specific productivities-distortions 

(𝑉𝑎𝑟(𝑦ℎ), 𝑉𝑎𝑟(𝜔𝐽ℎ)) = (𝜎𝑌
2, 𝜎𝐽

2) , and covariances between any two productivities 

( (𝐶𝑜𝑣 (𝑦ℎ, 𝜔𝐽ℎ), 𝐶𝑜𝑣 (𝜔𝐼ℎ, 𝜔𝐽ℎ)) = (𝜎𝑌𝐽 , 𝜎𝐼𝐽). 
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Since measurement errors are assumed to be independent of each other and of productivities, 

expressing (4) in terms of variances and covariances provides the following set of equations: 

𝑉𝑎𝑟(𝑦ℎ
𝑜) = 𝜎𝜖𝑌

2 + 𝜎𝑌
2 

𝑉𝑎𝑟(𝑗ℎ
𝑜) = 𝜎𝜖𝐽

2 + 𝜎𝑌
2 +  𝜎𝐽

2 + 2𝜎𝑌𝐽 

𝐶𝑜𝑣(𝑦ℎ
𝑜 , 𝑗ℎ

𝑜) = 𝜎𝑌
2 + 𝜎𝑌𝐽 

𝐶𝑜𝑣(𝑖ℎ
𝑜 , 𝑗ℎ

𝑜) = 𝜎𝑌
2 + 𝜎𝑌𝐼 + 𝜎𝑌𝐽 + 𝜎𝐼𝐽 

(5) 

 

This system is short of identifying all variances of measurement error, with the number of 

unknowns exceeding the number of equations by 𝐽 + 1. Certain assumptions are needed to identify 

the key parameters of the system, which will be further discussed in a later section. 

In the next section, we will present the data used in this study, and explore the potential of market 

distortions and factor misallocation, before moving on to outline the identification strategies we 

will apply on this dataset in section 4.  

 

3. Data 

This paper is based on three rounds 2012, 2014, and 2016 of household data from the Vietnam 

Access to Resources Household Survey (VARHS). The survey is collected by the United Nations 

University World Institute for Development Economics Research (UNU WIDER) and provides a 

household panel representative of the rural population in 12 provinces across all regions of the 

country in 2006. The subsequent waves of data follow up on previously selected households with 

additional households surveyed in 2008 and 2012.  
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While we draw on households’ all crop farming activities, special focus is also given to the rice 

crops and those households that exclusively grow rice. A comparison between the aggregate and 

rice crops provides insights into the magnitude of measurement error impact on lower-level data 

and aggregate data usage. If what Aragon, Restuccia, and Rud (2021) assert is true, a higher 

dispersion of measurement error is expected in the rice crop function relative to the household-

level aggregate crops. 

Physical outputs and revenue are given for each specific crop production for different annual crops, 

perennial crops, fruits, and forestry, which is aggregated to the household total4. Despite that data 

on factor inputs are scarcer in detail for each specific crop in the survey, household level and rice 

crop information are reported. 

Data on factor demand used in this paper includes land use area, labor, and intermediate inputs 

(i.e. expenses on seeds, saplings, fertilizers, pesticides/herbicides, energy, irrigation, maintenance, 

and other costs). For production function identification, we control for self-reported land 

characteristics (distance from the household, land value, irrigation, land use rights certification, 

crop restriction) and quality (below, average, or above local average) aggregated from plot level, 

as well as household demographics including household head’s age, gender, and educational level. 

Further controls are weather shocks (drought). Some other household shocks are employed are 

excluded variables (avian flu, change in commodity price, whether household’s head is sick). 

 
4 The annual crops reported are rice, maize, potato, sweet potato, cassava, peanuts, soybean, vegetables, and other 

annual crops. The perennial crops include coffee, tea, cocoa, cashew nuts, sugar cane, pepper, rubber, medicinal 

trees, and other perennial crops. With the exception of aggregate categories like vegetables, other annual crops, 

fruits, and forestry products, where physical production is not available, physical production and revenue were 

reported for all of the listed crops. 
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The sample is summarized in Table 1. The main analysis is drawn from 8264 household 

observations in three separate years, 2,887 in 2012, 2861 in 2014, and 2,516 in 2016, which 

account for 3140 unique crop-growing households in the sample. Geographically, these 

households belong to 492 administrative communes in 138 districts drawn from 12 provinces from 

across the regions of Vietnam, which can be divided into North and South regions. On average, 

households in the sample grow more than two different crops a year. To examine misallocation 

and measurement error in the rice crop production, we also focus on the subsample of single rice-

crop households5. This sample narrows the number of observations down to 2,755 across all three 

years. 

Table 2, which includes two panels, panel A for any household that grow crops, and panel B for 

rice specialized households, gives insights into crop revenues and land, labor, and intermediate 

input factor demands. All four measures (the first column) are highly skewed to the right with the 

mean several times of the median. For starters, the sample averages $1,672 in crop revenue per 

household, almost 2.5 folds of its median with a huge 3,252 standard deviation6. Revenue from 

rice specialization is smaller in both mean ($1,003) and median ($374). On average, households 

use less than 1 hectare of land for crop growth, the median is only slightly more than half of that. 

The distribution has a long right tail suggesting most are small farming households. Labor use on 

farms is between a third and a half of the year at median and mean. Intermediate input use averages 

$582 a year with a median of $174. For rice crop specialized households, panel B in table 2 reports 

not only smaller output revenue but in all categories of input use as well due to smaller production 

 
5 These households are highly specialized in rice production and the sample makes sure output and input 

observations are untampered with other crops. 
6 I deflate all VND values of 2012, 2014, and 2016 by factors of 1.3451, 1.4607, 1.4741, respectively, and convert 

all to 2010 US dollar at the exchange rate of $1 = 18,802VND. 
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scale. Mean land use area is only half compared to the full sample, labor and intermediate input 

demands are also smaller. To make meaningful comparison between the two sets of samples, next 

we examine the productivities and factor intensity. 

Cross factor ratio (labor/land) reveals that on average, labor-land intensity is comparable between 

all crops and rice crops, spending 386 days per hectare of land. In the median, rice-specialized 

households use 100 more labor days per hectare of land than in the full sample, suggesting a 

slightly more labor-intensive technology for rice farming compared to other crops. Unsurprisingly, 

labor productivity is higher for rice crops in both mean and median, yielding $0.33-$0.80 more 

each day of labor than with other crops, earning more than $10.15 in revenue at the mean though 

only $6 at the median. The picture painted by land productivity is not as straightforward since land 

returns higher revenue in the mean but less in the median for all crops compared to rice crops, 

yielding between $2,270-$2,466 per hectare of land a year. Most strikingly, the distribution of 

returns to intermediate input is almost identical between all household crops and rice crop, yielding 

4.62 times in revenue at the mean, 3.4 times at the median, and a 6.5 standard deviation. It is 

suggestive that intermediate input use is quite robust to crop technologies for the households in 

the sample.  

Figure 1 shows a visual presentation of the dispersion in factor productivities and intensity. In the 

absence of measurement error, efficient allocation of resources implies that marginal product of 

factors, which is proportional to crop yield of the corresponding factor, are the same among 

households in any particular year as they would share the same factor price and face no household-

specific distortions. A similar argument can be made about equalized labor-land intensity across 

households in optimal allocation. Figure 1 reveals a picture far from non-dispersed productivities 

and cross factor ratios. 
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The figure plots the distribution of all three factor productivities and labor-land intensity after 

logarithm transformation using the kernel estimate of the density of the dispersion. In each graph, 

controls are included for characteristics about households, land quality, and shocks as well as year 

dummies. Then further geographical controls are added, including regional fixed effects and then 

narrowing down to commune, and lastly, household fixed effects to account for regional and 

commune differences and finally the yearly household’s deviation.  

The same pattern exists in all four graphs and tells the same story. Take the first panel for example. 

This graph depicts the distribution of land productivity (in logarithm) where dispersion exists in 

all four specifications but decreases with further controls. Based on the theoretical framework in 

section 2, these dispersions reveal potential variation in household’s shadow prices for land, 

suggesting the likely market distortions and misallocation of land. The variation appears smaller 

in more narrow geographical units as price differences become less drastic with a higher level of 

localization. The variance for logarithm for land productivity after controlling for observable 

characteristics and year fixed effects is measured at 0.32. Regional differences account for only 

4% of that variation, while controlling for smaller geographic units at the commune level accounts 

for almost 30% of variation. This suggests that while there are regional differences, differences 

across communes within regions can explain a significantly greater fraction of the market 

condition heterogeneity. That still leaves more than 70% to be explained by within-commune 

variation. The household fixed-effects specification addresses changes over time and contains the 

least amount of dispersion.  

Including commune fixed effects eliminates 30% of the variation in measured crop yield per 

hectare of land, 35% of the variation in measured revenue per labor day, and 29% of the variation 

in measured output returns per dollar on intermediate input. Productivity of intermediate inputs 
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also displays the least amount of within-commune-year dispersion, reporting a 0.16 variance 

compared to 0.23 in land productivity and 0.25 in labor productivity. The household-fixed effects 

specification has the least dispersion with a greatly reduced variance of 0.109 in productivity of 

intermediate inputs, less than the 0.116 and 0.15 equivalent variances in land and labor, 

respectively. This suggests that the households face limited changes in market conditions or 

distortions over time.  

These observations motivate the key assumption that there is little change both within a household 

over time and little within-commune-year variance in the shadow prices as well as elasticities for 

intermediate inputs, and that most of the observed variance of intermediate input productivity 

comes from the variation in its measurement error.  

The last panel in figure 1 plots the distribution of the logarithm of the labor-land ratio in the data. 

The cross-factor ratio may be advantageous to output to land size or labor days because it involves 

only physical measures of land and labor inputs. It mitigates the concern about variations from 

demand-related factors in production measures. Having said that, the cross-factor ratio reveals a 

variance even higher (0.164) than that of either land or labor productivity. More variation seems 

to come from the factor input rather than output, potentially suggesting distortion in the land and 

labor markets.  

These observations are suggestive of factor misallocation, but its extent and the magnitude of 

potential gains generated from reallocation remain unclear. If measurement error exists, it could 

be a driving force to introduce dispersion into measured productivities and give a skewed picture 

of allocative efficiency. Grasping a more accurate understanding of the extent of factor 

misallocation and its impacts on revenues requires identifying variances of measurement errors. 
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In what follows, we will lay out the production function estimation and present my key assumption 

to identify the measurement error variance, and the test for that assumption. After TFP and the 

variance of measurement errors are estimated, the final step is to measure misallocation and adjust 

the estimated TFP and potential gains for measurement errors. 

 

4. Estimation  

4.1 Production function estimation 

Cross-sectional estimation of the production function likely generates inconsistent coefficient 

estimates since TFP affects household input decisions, while fixed effects is a commonly used 

approach to control for unobservable time-invariant effects. However, it leaves the estimator 

susceptible to time-varying factors that the model fails to capture. More importantly, while 

addressing measurement error, the fixed effects estimation can exacerbate measurement error bias. 

The fixed effects estimates are reported as a reference point only. Another benchmark reported in 

the paper is the calculation made with the coefficients used in Ayerst, Brandt, and Restuccia (2020) 

since their study also investigates factor misallocation in Vietnam using the same dataset7. For my 

own analysis in this paper, the parameters  𝛽 and the expected factor productivity 𝛼𝐽 in equation 1 

are estimated using Two-stage least squares (2SLS). The observations are at household level with 

the full sample and one subsample of households who specialize in rice. The estimation includes 

year fixed effects and the standard errors are clustered at the commune level.  

 
7 This paper includes data only from the years 2012, 2014, and 2016, whereas in their paper, earlier rounds of data 

from 2006, 2008, and 2010 were used as well. However, the coefficients used in Ayerst, Brandt, and Restuccia 

(2020) were borrowed from the U.S. benchmark rather than estimated. 
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Output values measured in 2010 US dollar are either the reported rice crop output in the subsample 

or the aggregate revenue across all crops in the survey in the full sample. Land area and labor 

supplied by household members used in crop production are available in the survey. Similar to the 

process performed by Ayerst, Brandt, and Restuccia (2020), we calculated the median of 

provincial daily wage from a household income and time worked in agriculture outside of 

household’s own farm and used that measure to approximate the amount of hired labor to work on 

household production. The labor input on the farm is then constructed from the amount of hired 

labor and self-supplied labor. Intermediate inputs are reported as the aggregate expenditure 

converted into 2010 US dollars on seeds, saplings, fertilizers, pesticides and herbicides, energy 

and fuel, maintenance, irrigation and other costs. Covariates used as controls for household 

observable characteristics are the household head’s age, gender, and education level. Land quality 

controls are aggregated from plot level weighted by their area and include furthest distance of land 

plot from household, land value, irrigation fraction, fraction of land with land use rights 

certificates, and perceived land quality compared with commune average (below, average, or 

above local average). Drought shocks reported by the households are also controlled and allowed 

to have heterogenous effects on crops depending on land quality through their interactions. 

In order to implement the 2SLS estimator, instrumental variables are required to be correlated with 

the three factor inputs and satisfy the exclusion restriction. The first set of instruments draws from 

household shocks regarding avian flu, change in commodity price, whether household’s head is 

sick. We argue that these shocks may place a restraint on household’s cash and labor available that 

would affect intermediate input and labor use in crop farming, but otherwise have no direct effect 

on crop output. Another component of instruments, like the instruments used in Gollin and Udry 

(2021), involves the interaction between the share of weather shocks (drought) with the share of 
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land of different qualities in the commune outside the household, proxied by the sample data from 

the commune’s other households. It captures the varying effects of droughts on different soil 

quality. The idea is that having controlled for weather shocks differential impacts based on 

household’s land quality distribution, weather shock effects on the rest of the commune bear no 

direct effect on household’ return except through a shadow price change. As such, drought shocks 

are restricted to only six months out of the survey year so that only droughts that happened early 

in the crop season would have an impact on input allocation decisions.  

Diagnostic tests (under-identification, weak-identification and over-identification tests) are 

performed and reported at the bottom of table 4 after the results of the second stage estimation. 

The P-value for the LM-statistic is 0.0047, rejecting the null hypothesis in the under-identification 

test and suggests that the instruments are indeed relevant and correlated with the endogenous 

inputs. However, the low Wald F-statistic of 2.916 relative to the critical values at various levels 

indicates weak instruments. Importantly, the number of instrumental variables allows for the 

exclusion restriction assumption to be tested. The result indicates that the hull hypothesis that all 

instruments are valid cannot be rejected, lending confidence to the model specification. The first 

stage is reported in table A1 in the appendix. 

4.2 Identifying variance of measurement errors 

The measures observed and recovered in this section are within-household (across year) and 

within-commune variances. The variation of deviations from the mean is lower than the variation 

coming from the total sample. Moreover, it allows more room for interpretations8. The demean 

 
8 In Gollin and Udry (2021), the variation from shadow prices would be completely eliminated in the process of 

taking the deviation from the mean of plots under the same management in the same season. The household-level 

data does not afford the removal of any source of variation. However, the distribution of mean deviations does allow 
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transformation is represented in system (4HH) where  ̃ represents the deviations from a 

household’s average. Alternatively, in (4C)  ̃ denotes the deviations from a commune’s yearly 

average, with an extra subscript 𝑐 for communes.    

𝑦ℎ𝑡
𝑜 = 𝜖𝑌ℎ𝑡 + 𝑦ℎ𝑡 

𝑗ℎ𝑡
𝑜 = 𝜖𝐽ℎ𝑡 + 𝑦ℎ𝑡 + 𝜔𝐽ℎ𝑡 + ln 𝛼𝐽 − ln 𝑝𝐽  

→ 

 

𝑦̃ℎ𝑡
𝑜 = 𝜖𝑌̃ℎ𝑡 + 𝑦̃ℎ𝑡 

𝑗ℎ̃𝑡
𝑜 = 𝜖𝐽̃ℎ𝑡 + 𝑦̃ℎ𝑡 + 𝜔̃𝐽ℎ𝑡  

(4HH) 

 

Or expressed in commune’s mean deviations: 

𝑦ℎ𝑡
𝑜 = 𝜖𝑌ℎ𝑡 + 𝑦ℎ𝑡 

𝑗ℎ𝑡
𝑜 = 𝜖𝐽ℎ𝑡 + 𝑦ℎ𝑡 + 𝜔𝐽ℎ𝑡 + ln 𝛼𝐽 − ln 𝑝𝐽  

→ 

 

𝑦̃ℎ𝑐𝑡
𝑜 = 𝜖𝑌̃ℎ𝑐𝑡 + 𝑦̃ℎ𝑐𝑡 

𝑗ℎ̃𝑐𝑡
𝑜 = 𝜖𝐽̃ℎ𝑐𝑡 + 𝑦̃ℎ𝑐𝑡 + 𝜔̃𝐽ℎ𝑐𝑡  

(4C) 

 

The key assumption is that there is little change within a household over time or alternatively, little 

within-commune variance in the shadow prices and elasticities for intermediate inputs. 

Mathematically, it assumes 𝜔̃𝑀ℎ𝑡 ≈ 0 or 𝜔̃𝑀ℎ𝑐𝑡 ≈ 0. Furthermore, system of equations (5) 

becomes: 

𝑉𝑎𝑟(𝑦̃ℎ𝑡
𝑜 ) = 𝜎𝜖𝑌

2 + 𝜎𝑌
2 

𝑉𝑎𝑟(𝑙ℎ𝑡
𝑜 ) = 𝜎𝜖𝐿

2 + 𝜎𝑌
2 +  𝜎𝐿

2 + 2𝜎𝑌𝐿 

𝑉𝑎𝑟(𝑛̃ℎ𝑡
𝑜 ) = 𝜎𝜖𝑁

2 + 𝜎𝑌
2 + 𝜎𝑁

2 + 2𝜎𝑌𝑁 

𝑉𝑎𝑟(𝑚̃ℎ𝑡
𝑜 ) = 𝜎𝜖𝑀

2 + 𝜎𝑌
2 

𝐶𝑜𝑣(𝑦̃ℎ𝑡
𝑜 , 𝑙ℎ𝑡

𝑜 ) = 𝜎𝑌
2 + 𝜎𝑌𝐿 ≈ 𝐶𝑜𝑣(𝑙ℎ𝑡

𝑜 , 𝑚̃ℎ𝑡
𝑜 ) 

(5HH) 

 

 
for a further assumption based on intermediate input use that is important for the identification of measurement error 

variances.  
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𝐶𝑜𝑣(𝑦̃ℎ𝑡
𝑜 , 𝑛̃ℎ𝑡

𝑜 ) = 𝜎𝑌
2 + 𝜎𝑌𝑁 ≈ 𝐶𝑜𝑣(𝑛̃ℎ𝑡

𝑜 , 𝑚̃ℎ𝑡
𝑜 ) 

The last two equations of (5HH) provide a simple test for the assumption. If the assumption holds 

and most of that dispersion comes from measurement errors rather the heterogeneity in 

productivity or shadow price, then 𝐶𝑜𝑣(𝑦̃ℎ𝑡
𝑜 , 𝑙ℎ𝑡

𝑜 ) ≈ 𝐶𝑜𝑣(𝑙ℎ𝑡
𝑜 , 𝑚̃ℎ𝑡

𝑜 ) and 𝐶𝑜𝑣(𝑦̃ℎ𝑡
𝑜 , 𝑛̃ℎ𝑡

𝑜 ) ≈

𝐶𝑜𝑣(𝑛̃ℎ𝑡
𝑜 , 𝑚̃ℎ𝑡

𝑜 ). That is the observed intermediate inputs are expected to covary with the other 

observed factor demands similarly to how measured output covary with them.  On the contrary, if 

the assumption does not hold, and there are a lot of changes in technology, factor quality, and 

market conditions within a household over the years, those changes would covary with land in a 

different way from output.  

Observations from figure 1 and table 2 motivated the assumption. It is now time to turn to more 

concrete evidence from the data. Table 3 reports on variances and covariances of observables. In 

panel A, the differences 𝐶𝑜𝑣(𝑦̃ℎ𝑡
𝑜 , 𝑙ℎ𝑡

𝑜 ) − 𝐶𝑜𝑣(𝑙ℎ𝑡
𝑜 , 𝑚̃ℎ𝑡

𝑜 ) and 𝐶𝑜𝑣(𝑦̃ℎ𝑡
𝑜 , 𝑛̃ℎ𝑡

𝑜 ) − 𝐶𝑜𝑣(𝑛̃ℎ𝑡
𝑜 , 𝑚̃ℎ𝑡

𝑜 ) are 

very close to 0. There are the most striking differences in the rice sample between the covariances 

with labor, and even here the differences are only around 0.01. These observations further 

strengthen the argument for little heterogeneity in market and productivity conditions for 

intermediate inputs and lend support to this key identification assumption. 

Under (5HH), not every variance is identifiable. The solvable variables are variances of 

measurement error in output and intermediate input (𝜎𝜖𝑌
2 , 𝜎𝜖𝑀

2 ), variance of true production output 

and variances of land and labor productivities-distortions (𝜎𝑌
2, 𝜎𝐿

2, 𝜎𝑁
2), and the covariance between 

land and labor productivities-distortions (𝜎𝐿𝑁). The two variances of measurement error in land 

and labor (𝜎𝜖𝐿
2 , 𝜎𝜖𝑁

2 ) remain unidentifiable.  
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This estimate of measurement error variance provides a lower bound for the overall variance of 

measurement error. Adjusting for within-household variance instead of total sample variance 

coupled with under-identification ensures that misallocation is not over-adjusted for measurement 

error.  

4.3 Misallocation gap and adjustment  

Household TFP is estimated by the production residuals. Applying the  TFP and coefficient 

estimates to the optimal household’s allocation share 𝑠ℎ =
exp(

𝜔𝑌ℎ
1−∑ 𝛼𝐽𝐽

)

∑ exp(
𝜔𝑌ℎ

1−∑ 𝛼𝐽𝐽
)ℎ

 provides the complete 

estimates of all households’ efficient allocation and production as well as potential gains from 

reallocation before adjustment for measurement error. The estimate for the variance of TFP  is 

adjusted using equation (2) by subtracting from its variance the within-commune or within-

household variance of aggregate measurement error  𝑉𝑎𝑟̂(𝜖ℎ𝑡) = 𝜎̂𝜖𝑌
2 + 𝛼̂𝑀

2 𝜎̂𝜖𝑀
2 . The potential gain 

from reallocating factors can also be adjusted using equation (3). 

 

5. Results 

5.1.Production Function Estimation 

The production estimates are presented in table 4. For comparison, column 1 reports the 

coefficients of land, labor, and intermediate input used in Ayerst, Brandt, and Restuccia (2020) 

paper, column 2 is the household fixed-effects results, and column 3 reports my preferred 2SLS 

estimates for the whole sample. The first stage is reported in table 1 of the appendix. The land, 

labor, and intermediate input coefficients are estimated to be 0.42, 0.19 and 0.33. Compared to 
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ABR 9and fixed-effects specifications, the 2SLS estimates are closer to constant returns to scale.  

Land accounts for a relatively higher share of revenue using 2SLS, whereas the share of 

intermediate inputs is comparable across the two models.  

Land value and self-reported relative land quality prove to be good indicators of land quality, 

which show statistically significant positive correlations with revenue even if modest in 

magnitude. Particularly, doubling the value of land leads to a 1.4% increase in revenue, which 

translates into a $9.4 increase in median crop value. Drought weather shocks negatively affect crop 

revenues. The coefficients of demographic controls are not surprising but not significant. 

Households with older or higher-educated heads receive higher crop revenue, whereas female 

heads tend to have lower yields. 

5.2. TFP dispersion and its relationship with output and inputs 

Production estimation provides estimates for the unadjusted logarithm of TFPs using production 

residuals.  In a distortion-free environment, TFP would have a strong positive correlation with all 

inputs and hence revenue as well. The more friction is introduced into factor and output markets, 

the weaker this relationship becomes; and in extreme cases, the direction could turn negative in 

instances where distortions are severe, which prevent more productive households from acquiring 

more inputs. Examining how TFP correlates with factor inputs and revenue can provide insight 

into the allocative efficiency of the factor markets. Insights can be gained even when TFP estimates 

are confounded by measurement errors as long as true productivities and measurement errors are 

orthogonal. Figure 2 features four graphs depicting the relationships and linear fits between the 

log TFP estimates (with 1% trimmed at the top and bottom) and inputs and revenue. In all four 

 
9 The paper makes many references to Ayerst, Brandt, and Restuccia (2020) , which will be shortened as ABR for 

convenience. 
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panels, productivity shows the strongest positive association with revenue with a 0.8 correlation 

and a 0.6 correlation with intermediate inputs. The relationship with land and labor is still positive, 

but the correlation is found to be around 0.3 The pattern remains the same in figure 3 in rice 

production. This suggests distortion in the land labor markets. This observation is of little surprise 

in the presence of, among other things, crop regulations where certain plots of land are restricted 

to rice growth to ensure food security.  However, intermediate input use is found to be relatively 

efficient.   

Table 5 reports on the dispersion of productivity, including the variance of log and the 90th-10th 

percentile log difference after trimming the top and bottom 1% of the residual prediction. ABR’s 

coefficients while controlling for no other observable characteristics understandably result in the 

most dispersed TFP with a 0.28 log variance and a 1.26 difference between the 90th and 10th 

percentiles. When demographics, shocks, and input qualities are taken into account, the dispersion 

drops significantly. With full crops, both FE and 2SLS estimates report similar variances at 0.16 

and 0.14 respectively, which is about half that using ABR.  

5.3. Calibrating Measurement Errors and True Output/Input variances  

We now move on to calculating the measurement error induced variance within the raw TFP 

estimate. As noted in Section 4, the system of equations in my approach is not identified with the 

assumptions made. We are only able to solve for variance of measurement error in output revenue 

and intermediate inputs. Table 6 documents the solutions to identifiable variables, which also 

include variance of output productivity, covariance of output and land productivities, covariance 

of output and labor productivities, and covariance of land and labor productivities. Panel A is 
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similar to a household fixed effects approach where household’s data is demeaned by their average 

across years while panel B uses data points demeaned by year-commune average while.  

The majority of dispersion in observed outputs is caused by actual output variation rather than 

measurement error, and there seems to be more variation in productivity in the south than the north. 

Within-household true output variance across years is 0.14 in the country, 0.11 in the north and 

0.18 in the south in the full sample of households regardless of crops. This holds true for the 

restricted sample of rice-exclusive farming households as well, to a lesser magnitude, with 

variances of 0.08, 0.07, and 0.1 in the nation, north and south regions, respectively. The decrease 

in the spread of true output productivity nationwide and both regions suggests a more 

homogeneous set of rice-exclusive farming households in terms of productivity. The covariances 

results indicate that land and labor specific productivities are positively correlated and are each 

negatively correlated with true output. One interpretation is that land and labor use efficiency are 

complementary rather than supplementary, the better households can make use of land the better 

they can make use of labor. Furthermore, constraints in one factor market could be positively 

linked with that in the other factor market as well.  

My measurement error variance results indicate that there are rather large dispersions in 

measurement error of intermediate inputs relative to the measurement error of output. For example, 

we found 0.12 a within-household variance in intermediate input measurement error in the full 

sample, 0.15 in the north and 0.1 in the south. In the rice-crop restricted sample, these variances 

are even higher, 0.24 in the nation, 0.2 in the north, and 0.27 in the south. Compared to that, the 

within-household variances in output measurement error are a few times smaller in the modest 

range of 0.02-0.04. Indeed, considering the diverse items reported in the survey under the category 

of intermediate input, it is reasonable that there be more variation in measurement error of 
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intermediate inputs. Measurement error in intermediate inputs is weighted by the square of its 

output elasticity, which is a range of 0.11-0.15. Measurement errors in land and labor are 

unidentified, leaving the aggregate measurement error variance estimate most likely under-

computed. Panel B reports the same findings using within commune-year variances. As expected, 

we find much less within-household true output variation, since most of it comes from year-to-

year shocks and may be price distortion differences, rather than actual households’ factor use 

efficiency. There is barely any variation at all when we examine rice growers only. 

5.4. Measurement Error and Reallocation gains 

Table 7 combines the findings of TFP from table 5 and measurement error from table 6. After the 

estimates of the raw log TFP and measurement error variance are obtained, the next investigation 

is to learn how much measurement error in aggregate confounds the true TFP and calculate output 

gains from reallocating before and after adjustment for confoundment. In table 7, we again report 

two panels for two sets of estimates, within households across years in panel A, and years within 

commune-year in panel B.  

The unadjusted log TFP estimates are the residuals from the production function, its variance 

report is repeated from table 5. The adjusted variance of log TFP is simply the difference between 

unadjusted log TFP and measurement error variances. Aggregate measurement error variance is 

the weighted sum of variances of output and intermediate input measurement errors.  

Between the within-household and within-commune variances, measurement error variance is 

calculated to be between 0.04 and 0.06, accounting for 30-45% of TFP variance. Based on these 

findings, the country could more than double its crop output by reallocating. While this is not 

uncommon, this magnitude is more often seen in African agriculture such as a 186% increase in 
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Uganda (Aragon, Restuccia, and Rud, 2021), and 259% in Malawi (Chen, Restuccia, and 

Santaeulàlia-Llopis 2023), and is far from what is seen for Vietnam’s neighbor China with an 

increase of 53% (Adamopoulos et al., 2022). This adds to the evidence that allocative inefficiency 

may be overstated by raw TFP estimates.  

Using ABR’s coefficients and calculated output gains for benchmark and found only a 79% 

potential increase. This difference is neither surprising nor does it speak to which estimate is closer 

to the truth. Rather the estimates offer a possible range and point out room for improvement. The 

set of coefficients estimated in this paper using 2SLS translates into a distribution of TFP, 30-45% 

of whose variation is confounded by measurement errors, while ABR’s coefficients estimate that 

only15-22% of TFP variation is measurement error induced. The adjustment for measurement 

error reduces all estimates of potential gains from reallocation. After adjustment, the 2SLS method 

estimates a much more modest 45-72% allocative efficiency gain, and the ABR ranges from 58%-

65% potential gain. Depending on the set of coefficients and measurement error adjustment 

method/assumption, we find that the gains through factor reallocation are overestimated up to 

threefold in the national sample of households.  

Both methods of adjustment using within-household variances and within-commune variances are found to 

perform consistently and yield simila results.  

5.5. Heterogeneity analysis results 

The TFP variance from rice production is drastically smaller, suggesting the rice specialists constitute a 

more homogeneous selection of farmers. Measurement error from the rice production is consistently 

responsible for a higher fraction of the TFP than from the aggregate crop production, with one exception 
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(the within commune-year variances). This potentially suggests that the aggregation method does seem to 

have power against the impact of measurement error. 

The historical and natural differences between the two regions translate into large differences in agricultural 

practices and efficiency. Both regions specialize in rice crops but the South is a larger rice producer by far. 

The comparative analysis between the North and the South examines their respective efficiency.  

Regionally, the raw TFP has higher dispersion in the Southern sample than the Northern sample in 

the aggregate production. The unadjusted estimate of potential gains from reallocation is large in both 

regions for aggregate crops, more than doubling productions (131% and 123% in North and South, 

respectively). Unsurprisingly, efficiency is higher in rice production with smaller predicted gains from 

allocation; however, the potential gains are still estimated to be more than half of current production (66% 

and 59% in North and South, respectively). In both productions, the unadjusted estimates find the South to 

be more efficient in resource allocation.  

After adjusting for measurement error, the allocative gain estimate is drastically reduced in both regions 

and both crop productions. The gains from reallocation of resources within each region are estimated in the 

32%-51% range for all crops. However, a different pattern emerges. The North is subject to such large 

variation in measurement error that after adjustment, the region seems to gain a slight edge in the overall 

production, and the edge is higher using within-commune variance estimates. This finding is surprising and 

calls for a closer examination of the agricultural practices and conditions in the two regions. On the other 

hand, not only is rice crop confirmed to be the comparative advantage of the South in rice production, but 

the adjusted measures find that the South is greatly efficient at allocating resources in rice growing that 

reallocation can only increase production by 15% of production. 

5.5. Crop-level analysis  
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In this section, we replicate Gollin and Udry (2021) method and assumptions for identification. 

The results are included in the appendix. The structure of household survey data used in this study 

is not suited for a highly demanding plot-level data approach. The lack of seasonal and plot-level 

input information prevents the analysis to be performed at this level. Thus we divided crops into 

three categories: rice, maize, and all other crops, as output and input observations are available in 

the available dataset for these categories. The drawback of this procedure is that additional 

dispersion is being added rather than removed from the production residuals, stemming from crop 

technology heterogeneity, inherent factor quality requirement differences, varying seasons and 

timing within a year, etc. It is for these reasons that the results of this exercise should not be taken 

literally. 

Table A3 summarizes the observed variances and covariances of observed outputs and inputs 

deviation from the household-year average. A quick look reveals nonnegligible differences 

between how output and intermediate inputs covary with land and labor, suggesting non-trivial  

variation in true intermediate input use across households’ different crops, which invalidates my 

assumption on intermediate inputs. 

Another concern of this approach is that since there can be multiple seasons growing different 

crops within any year, the sum of land use often far exceeds the total amount of land available to 

farmers. This creates a challenge in computing the output loss from misallocation since any plot 

of land can be counted multiple times if it is used repeatedly and spread across different categories 

of crops. 

For the sake of the exercise, consider each year a single point in time, and the amount of land 

available is the sum of area every time it is used. Every household has its own ratio of self-reported 
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land use for crops over landholdings, where the median of this distribution is 2, with a 2.07 mean 

and 3.6 at 90th percentile. If we simply total every household’s self-reported land use at crop level, 

the sum is 1.6 times every household’s landholding. Gains from reallocating are calculated and 

reported using these four values. The higher land availability is assumed, the larger the output gap.  

Table A4 shows that within the 0.39 variance of unadjusted log TFP from the set of IV coefficient 

estimates, measurement error causes 63.2% of that dispersion. Even in the most conservative 

estimate, the raw gain from reallocation comes at an unrealistic 548%, and becomes an outlandish 

815% in the more liberal assumption. After removing the 63% share of measurement error from 

log TFP variance, the gap is drastically adjusted down to anywhere from less than 1% to a 

seemingly reasonable 42%. It also means that the output gap is being exaggerated from 19 times 

to over 900 times. These estimates should not be taken literally for the many reasons discussed 

above, but they showcase once again how measurement error can lead to a severe overstatement 

of misallocation gap.  

 

6. Conclusion 

Resource misallocation in the agricultural sector is the main cause of productivity and income 

differences across nations and regions and there are a large number of existing studies exploring 

the determinants and consequences of resource misallocation in the agricultural sector (Caselli 

2005; Restuccia, Yang, and Zhu 2008; Restuccia and Rogerson 2017). However, few have 

seriously taken the measurement errors of output and inputs into account in their estimations of 

the productivity costs of resource misallocation despite the fact that measurement errors are known 

to be prevalent in developing countries.  As a result, the costs of resource misallocation are likely 
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to be overestimated because part of the estimated effects are indeed associated with measurement 

errors. Gollin and Udry (2021) is the first study developing approaches to decompose the causes 

of productivity gaps in the agricultural sector into a part that is truly due to resource misallocation 

and a part associated with measurement errors.  They found that failing to account for misallocation 

would substantially overestimate the productivity costs of misallocation.  

Despite the difference in data structure and different empirical strategies, this study largely 

confirms the findings of recent studies (Gollin and Udry 2021, Aragon, Restuccia, and Rud 2021) 

that measurement error plays a substantial role in the estimation of productivity effects of resource 

allocation. More specifically, failing to account for measurement error associated with output and 

inputs would lead to a large overestimation of the negative effects of resource misallocation on 

productivity. Further analysis shows that misallocation varies across regions where the property 

rights and market conditions are historically quite different. These findings further highlight the 

importance of taking the measurement errors into account for future studies quantifying 

misallocation and productivity inefficiency.     

The paper is limited in several ways. The assumption of classical measurement error may be too 

restrictive given the emerging evidence of non-classical measurement error (Desiere and Jolliffe 

2018; Abay et al. 2019; Abay 2020; Ayalew et al. 2024)10. The method in this paper only allows 

for the identification of within-household and within-commune variances rather than the overall 

variances; additionally, measurement errors in land and labor are unidentified, leading to an 

underestimation of measurement error impact. The variances of two factor inputs, land and labor, 

 
10 Like Bils, Klenow, and Ruane (2021) and Gollin and Udry (2021), measurement error is necessarily assumed to 

be classical for identification in the paper. Furthermore, studies on non-classical measurement error find that they 

tend to correlate with extreme farm sizes. A highly homogeneous society, farm size and farming practices are less 

likely to be dichotomous in Vietnam, lending some support to the classical measurement error assumption. 
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cannot be identified, and the recovered measurement error variances are within-household and 

within-commune, rather than total sample variance. Nevertheless, the conservative estimates 

significantly lower the risk of overadjustment.  

 This paper makes several contributions. It is an entry to the thin literature on the impact of 

measurement error on misallocation and the first to do so for Vietnam. The method developed in 

the paper is adaptable to household survey data in similar contexts, saving costs on high-quality 

data. The paper proposes a key assumption on intermediate input use that allows for testing and 

identification of the variance of measurement error. The addition of intermediate inputs is essential 

in this context since Vietnam is within the region with the highest consumption. The method 

contributes by not only adding intermediate inputs into the production function but also using it as 

a key identification instrument. The use of household-level data to address measurement error is 

cost-effective and may even be advantageous over plot-level data if measurement error can be 

aggregated out (Aragon, Restuccia, and Rud 2021). Finally, the regional differences in allocative 

efficiency between the North and the South are highlighted, drawing attention to the differential 

needs of the two agricultural economies.   

The paper finds that measurement error accounts for 30%-45% of the variation in TFP, and failing 

to address the measurement error leads to doubling and tripling the estimated gains from 

reallocation. This study suggests that after adjustment for measurement errors, potential gains from 

reallocation are drastically lowered and range from 46% to 71%. Given the significant impact of 

measurement error on the estimate of gains from reallocation, researchers and policymakers should 

exercise caution when interpreting measures of potential gains from reallocation, especially when 

comparing them with the often large costs of reallocation. 
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Figure 1: Distribution of factor productivities and labor/land ratio, controlling for 

observable characteristics with top and bottom 1% trimmed 
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Figure 2: Output, Input and unadjusted log TFP in all crop sample 

 

Figure 3: Output, Input and unadjusted log TFP in sole rice farming households 

 

  

2
4

6
8

1
0

L
o

g
 C

ro
p

 V
a
lu

e

-1 -.5 0 .5 1
Unadjusted Log TFP

4
6

8
1
0

1
2

L
o

g
 L

a
n
d

-1 -.5 0 .5 1
Unadjusted Log TFP

0
2

4
6

8

L
o

g
 L

a
b
o

r

-1 -.5 0 .5 1
Unadjusted Log TFP

0
2

4
6

8
1
0

L
o

g
 I
n

te
rm

e
d
ia

te
 I
n
p

u
t

-1 -.5 0 .5 1
Unadjusted Log TFP

0
5

1
0

L
o

g
 C

ro
p

 V
a
lu

e

-1 -.5 0 .5 1
Unadjusted Log TFP

4
6

8
1
0

1
2

1
4

L
o

g
 L

a
n
d

-1 -.5 0 .5 1
Unadjusted Log TFP

0
2

4
6

8

L
o

g
 L

a
b
o

r

-1 -.5 0 .5 1
Unadjusted Log TFP

0
2

4
6

8
1
0

L
o

g
 I
n

te
rm

e
d
ia

te
 I
n
p

u
t

-1 -.5 0 .5 1
Unadjusted Log TFP



45 
 

Table 1: Sample 

Sample size Pooled 2012 2014 2016 

 Household-years 8264 2887 2861 2516 

 Households 3140 2887 2861 2516 

 Communes 492 481 464 456 

 Districts 138 138 136 135 

 Provinces 12 12 12 12 
      

 Mean Crops/Household-years 2.11 2.12 2.14 2.06 

Source: VARHS by UNU WIDER. Statistics are calculated by the author. 
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Table 2: Output, inputs, and factor productivities 

A. All crops            B. Rice only HH           

Output ($)   Labor/Land (Days/ha)  Output ($)   Labor/Land (Days/ha) 

 Mean 1672.36   Mean 385.13   Mean 1003.31   Mean 386.29 

 Median 672.09   Median 271.07   Median 374.053   Median 337.06 

 STD 3252.15   STD 573.63   STD 2441.94   STD 306.17 

               

Land Area (ha)  Land productivity ($/ha)  Land Area (ha)  Land productivity ($/ha) 

 Mean 0.8915   Mean 2466.45   Mean 0.4796   Mean 2270.04 

 Median 0.47   Median 1981.6   Median 0.19   Median 2216.7 

 STD 1.5238   STD 3748.18   STD 1.0458   STD 1693.19 

               

Labor (days)  Labor productivity ($/Day)  Labor (days)  Labor productivity ($/Day) 

 Mean 175.69   Mean 9.35   Mean 131.78   Mean 10.15 

 Median 130   Median 5.67   Median 84   Median 6 

 STD 162.93   STD 18.71   STD 149   STD 19.69 

               

Intermediate input ($)  Interm. input productivity   Intermediate input ($)  Interm. input productivity  

 Mean 581.93   Mean 4.62   Mean 343.83   Mean 4.62 

 Median 173.94   Median 3.37   Median 102.81   Median 3.38 

  STD 1327.24     STD 6.46    STD 966.73     STD 6.47 

Source: VARHS by UNU WIDER. Statistics are calculated by the author. 
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Table 3: Variances and Covariances of observed outputs and inputs 

  All crops   Rice only HH 

  Nation 

North 

Region 

Southern 

Region   Nation 

North 

Region 

Southern 

Region 
        

A. Within HH across year        

Var(Output) 0.1745 0.1459 0.2215  0.1113 0.0901 0.1321 

Var(Land) 0.1107 0.1167 0.1008  0.0921 0.0886 0.0957 

Var(Labor) 0.2257 0.2162 0.2413  0.2286 0.1979 0.2588 

Var(Interm. Input) 0.2636 0.2553 0.2774  0.3186 0.2695 0.3667 

Cov(Output, Land) 0.0506 0.0511 0.0499  0.0573 0.0538 0.0606 

Cov(Output, Labor) 0.0851 0.0794 0.0946  0.0577 0.0552 0.0603 

Cov(Output, Interm. Input) 0.1389 0.112 0.1833  0.0823 0.0662 0.098 

Cov(Land, Labor) 0.0406 0.0462 0.0315  0.0459 0.0536 0.0383 

Cov(Land, Interm. Input) 0.0463 0.0411 0.0549  0.0536 0.0514 0.0559 

Cov(Labor, Interm. Input) 0.0831 0.072 0.1015  0.0696 0.0604 0.0786 

        

Cov(Output, Land) - 

  Cov(Land, Interm. Input) -0.0043 -0.01 0.005  -0.0037 -0.0024 -0.0047 

Cov(Output, Labor) - 

  Cov(Labor, Interm. Input) -0.002 -0.0074 0.0069  0.0119 0.0052 0.0183 
        

B. Within commune-year        

Var(Output) 0.5663 0.4063 0.8286  0.4125 0.293 0.5383 

Var(Land) 0.5486 0.4563 0.6999  0.4382 0.3222 0.5604 

Var(Labor) 0.4533 0.3872 0.5617  0.4569 0.399 0.5181 

Var(Interm. Input) 0.6516 0.4728 0.9444  0.6737 0.4961 0.8606 

Cov(Output, Land) 0.3925 0.2973 0.5486  0.3712 0.2638 0.4843 

Cov(Output, Labor) 0.3584 0.28 0.4868  0.2986 0.2313 0.3694 

Cov(Output, Interm. Input) 0.5151 0.3468 0.7908  0.3896 0.275 0.5102 

Cov(Land, Labor) 0.3173 0.2592 0.4125  0.304 0.2404 0.371 

Cov(Land, Interm. Input) 0.3898 0.2878 0.5568  0.3721 0.2634 0.4865 

Cov(Labor, Interm. Input) 0.3589 0.2735 0.4988  0.3121 0.2428 0.3852 

        

Cov(Output, Land) - 

  Cov(Land, Interm. Input) -0.0027 -0.0095 0.0082  0.0009 -0.0004 0.0022 

Cov(Output, Labor) - 

  Cov(Labor, Interm. Input) 0.0005 -0.0065 0.012   0.0135 0.0115 0.0158 
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Table 4: Production Function 

 ABR FE 2SLS 
        

Land in m2 (Log) 0.2 0.225*** 0.420*** 

  (0.0213) (0.114) 

Labor (Log) 0.3 0.178*** 0.190* 

  (0.0162) (0.107) 

Intermediate input (Log) 0.3 0.429*** 0.328*** 

  (0.0185) (0.113) 

Year = 2014  -0.0169 -0.0121 

  (0.0167) (0.0407) 

Year = 2016  0.0335 -0.0196 

  (0.0209) (0.0366) 

Head's age  0.00171 0.000751 

  (0.00146) (0.000708) 

Female head  -0.0184 -0.0498 

  (0.0447) (0.0496) 

Head's education  0.0168 0.0446* 

  (0.0125) (0.0248) 

Furthest distance from land (Log)  0.000185 -0.0202 

  (0.00832) (0.0237) 

Land value (Log)  0.000385 0.0213** 

  (0.00240) (0.00916) 

Irrigated fraction  0.0123 0.473*** 

  (0.0360) (0.172) 

LURC fraction  0.0199 0.0680 

  (0.0255) (0.0422) 

Crop restricted fraction  0.0444** -0.160 

  (0.0218) (0.120) 

Below average land quality  -0.0492** -0.0734** 

  (0.0207) (0.0297) 

Average land quality  -0.0188 0.0189 

  (0.0298) (0.0374) 

Above average land quality  0.0190 0.0952*** 

  (0.0290) (0.0362) 

Missing land quality  -0.000401 -0.115 

  (0.196) (0.127) 

Drought  -0.0858 -0.150 

  (0.103) (0.115) 

Drought  x Below average land quality  -0.0128 0.0495 

  (0.0689) (0.0663)  
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Drought x Average land quality  0.0733 0.101 

  (0.0935) (0.109) 

Drought x Above average land quality  0.0260 0.104 

  (0.145) (0.195) 

Constant  1.473*** 0.246 

  (0.164) (0.983) 
    

Observations  8,233 8,032 

R-squared  0.500 0.831 

Number of hhid   3,146   

Under-identification test   

Kleibergen-Paap rk LM-statistic  15.01 

𝜒2(4) P-value 0.0047 

Weak identification test  
Cragg-Donald Wald F-statistic 3.527 

Kleibergen-Paap rk Wald F-statistic 2.916 

Stock-Yogo weak ID test critical values  
5% maximal IV relative bias 12.20 

10% maximal IV relative bias 7.77 

20% maximal IV relative bias 5.35 

30% maximal IV relative bias 4.4 

Over-identification test of all instruments  
Hansen J-statistic 6.182 

𝜒2(3) P-value 0.1031 
 

Note: Standard errors are clustered at the commune level. Robust standard errors reported in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1  
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Table 5: Unadjusted TFP 

  All crops   Rice crop 

  Variance of log 

90-10 log 

difference   Variance of log 

90-10 log 

difference 

ABR 0.28 1.26  - - 

FE 0.16 1.04  - - 

IV      

Nation 0.14 0.94  0.10 0.79 

Northern Region 0.11 0.84  0.10 0.75 

Southern Region 0.18 1.03   0.11 0.84 

 

Table 6: Estimates of variances and covariances of measurement error and productivity  

  All crops   Rice only HH 

  Nation 

North 

Region 

Southern 

Region   Nation 

North 

Region 

Southern 

Region 
        

A. Within HH across years        

Output ME 0.03 0.04 0.04  0.03 0.02 0.03 

Interm. Input ME 0.12 0.15 0.1  0.24 0.2 0.27 

True output 0.14 0.11 0.18  0.08 0.07 0.1 

Total and land productivities -0.09 -0.06 -0.13  -0.02 -0.02 -0.04 

Total and labor productivities -0.05 -0.03 -0.09  -0.02 -0.01 -0.04 

Land and labor productivities 0.04 0.03 0.07   0.01 0.01 0.02 
        

B. Within commune-year        

Output ME 0.05 0.06 0.04  0.02 0.01 0.03 

Interm. Input ME 0.13 0.12 0.15  0.28 0.22 0.35 

True output 0.52 0.35 0.79  0.39 0.28 0.51 

Total and land productivities -0.13 -0.05 -0.24  -0.02 -0.02 -0.03 

Total and labor productivities -0.16 -0.05 -0.2  -0.09 -0.05 -0.14 

Land and labor productivities 0.09 0.05 0.16   0.02 0.03 0.03 
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Table 7: Log TFP adjustment and allocative gains  

  All crops   Rice only HH 

  Nation 

North 

Region 

Southern 

Region   Nation 

North 

Region 

Southern 

Region 
        

A. Within HH across years        

Unadjusted log TFP 0.14 0.11 0.18  0.10 0.10 0.11 

Adjusted log TFP 0.10 0.06 0.13  0.04 0.04 0.04 

ME 0.04 0.06 0.05  0.07 0.05 0.07 

Share of ME in unadj log TFP 30.1% 49.3% 28.7%  64.5% 53.1% 63.6% 
        

Unadjusted gains 138.9% 131.1% 122.9%  63.5% 66.4% 58.5% 

Adjusted gains 71.6% 49.9% 50.7%  26.8% 37.3% 20.8% 

Unadj.gains / Adj. gains 1.94 2.63 2.42   2.37 1.78 2.81 
        

B. Within commune-year        

Unadjusted log TFP 0.14 0.11 0.18  0.10 0.10 0.11 

Adjusted log TFP 0.08 0.04 0.12  0.04 0.05 0.03 

ME 0.06 0.07 0.06  0.06 0.04 0.08 

Share of ME in unadj log TFP 44.8% 64.1% 31.8%  60.8% 45.8% 74.5% 
        

Unadjusted gains 138.9% 131.1% 122.9%  63.5% 66.4% 58.5% 

Adjusted gains 45.9% 31.7% 44.6%  28.7% 40.9% 15.3% 

Unadj.gains / Adj. gains 3.03 4.13 2.76   2.21 1.62 3.81 

 

Table 7 (cont.): Log TFP adjustment and reallocating gains  

  ABR FE    ABR FE 
       

A. Within HH across year    B. Within commune-year   

Unadjusted log TFP 0.28 0.16  Unadjusted log TFP 0.28 0.16 

Adjusted log TFP 0.24 0.11  Adjusted log TFP 0.22 0.09 

ME 0.04 0.05  ME 0.06 0.07 

Share of ME in log TFP 14.5% 31.8%  Share of ME in log TFP 21.9% 45.1% 
       

Unadjusted gains 78.6% 55.7%  Unadjusted gains 78.6% 55.7% 

Adjusted gains 64.6% 37.8%  Adjusted gains 57.8% 30.9% 

Unadj.gains / Adj. gains 1.22 1.47  Unadj.gains / Adj. gains 1.36 1.80 
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Appendix 

A1. First stage of all crop production 

  Land Labor 

Intermediate 

Input 

        

Drought x Commune's below average land quality -0.239 0.254 0.424* 

 (0.203) (0.174) (0.246) 

Drought x Commune's average land quality 0.132 0.0685 0.276* 

 (0.122) (0.106) (0.161) 

Drought x Commune's above average land 0.520 0.694 0.772 

 (0.740) (0.708) (0.731) 

Avian flu 0.0730 0.149*** 0.00643 

 (0.0467) (0.0381) (0.0540) 

Change in other commodity prices -0.0724 0.267*** -0.000883 

 (0.0795) (0.0703) (0.0900) 

Shock from illness or death 0.0268 0.0689 -0.00166 

 (0.0770) (0.0603) (0.0838) 

Head was sick -0.129*** -0.0792** -0.0958** 

 (0.0411) (0.0327) (0.0479) 

year = 2014 -0.0258 -0.205*** 0.120*** 

 (0.0174) (0.0195) (0.0252) 

year = 2016 0.0765*** -0.154*** 0.0621* 

 (0.0249) (0.0251) (0.0326) 

Head's age 

-

0.00727*** 

-

0.00350*** 

-

0.00777*** 

 (0.00154) (0.00119) (0.00185) 

Female head -0.435*** -0.370*** -0.412*** 

 (0.0507) (0.0395) (0.0613) 

Head's education -0.157*** -0.0885*** -0.0137 

 (0.0199) (0.0148) (0.0238) 

Furthest distance from land (Log) 0.173*** 0.116*** 0.0825*** 

 (0.0153) (0.0107) (0.0162) 

Land value (Log) 0.0408*** 0.0235*** 0.0827*** 

 (0.00528) (0.00400) (0.00638) 

Irrigated fraction -0.390*** 0.107*** 1.043*** 

 (0.0483) (0.0389) (0.0646) 

LURC fraction -0.0710* -0.0506* 0.251*** 

 (0.0389) (0.0301) (0.0474) 

Crop restricted fraction -0.743*** -0.304*** -0.778*** 

 (0.0388) (0.0303) (0.0466) 
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Below average land quality 0.0639 -0.0288 -0.103** 

 (0.0430) (0.0371) (0.0513) 

Average land quality 0.211*** 0.228*** 0.218*** 

 (0.0605) (0.0516) (0.0725) 

Above average land quality 0.169** 0.208*** 0.300*** 

 (0.0673) (0.0558) (0.0807) 

Missing average land quality -0.140** -0.0577 -0.178 

 (0.0619) (0.153) (0.269) 

Drought x Household's below average land 

quality 0.0307 0.175*** 0.236*** 

 (0.0683) (0.0598) (0.0872) 

Drought x Household's average land quality 0.190*** 0.234*** 0.282*** 

 (0.0346) (0.0299) (0.0417) 

Drought x Household's above average land -0.306** -0.0454 0.0232 

 (0.136) (0.113) (0.175) 

Drought x Household's missing average land  0.283*** 0.338 -0.213 

quality (0.0940) (0.230) (0.373) 

Constant 7.896*** 4.085*** 7.110*** 

 (0.176) (0.130) (0.198) 

    

Observations 6,474 6,474 6,474 

Robust standard errors in parentheses    

*** p<0.01, ** p<0.05, * p<0.1    
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A2. Variances and Covariances of observed crop outputs and inputs within HH-year across 

crops 

Var(Output) 0.8459 

Var(Land) 0.7727 

Var(Labor) 0.6304 

Var(Interm. Input) 1.3592 

Cov(Output, Land) 0.5645 

Cov(Output, Labor) 0.5527 

Cov(Output, Interm. Input) 0.826 

Cov(Land, Labor) 0.3927 

Cov(Land, Interm. Input) 0.6607 

Cov(Labor, Interm. Input) 0.6583 

 

A3. Estimates of variances and covariances of measurement error and productivity within 

HH-year across crops 

Output ME 0.2 

Land ME 0.14 

Labor ME 0.03 

Interm. Input ME 0.19 

True output 0.65 

Land productivity 0.16 

Labor productivity 0.15 

Interm. Input productivity 0.16 

Total and land productivities -0.09 

Total and labor productivities -0.1 

Total and Interm. Input productivities 0.18 

Land and labor productivities -0.07 

Land and Interm. Input productivities -0.08 

Labor and Interm. Input productivities -0.07 
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A4. Log TFP adjustment and allocative gain estimates at crop level based on land use 

efficiency 

 C. Within HH-year (Crop level) 

Min 

(1.6)11 

50th 

percentile 

(2) 

Mean 

(2.07) 

90th 

percentile 

(3.6) 
     

Unadjusted log TFP 0.39 

Adjusted log TFP 0.14 

ME 0.25 

Share of ME in log TFP 63.2% 
     

Unadjusted gains 548.1% 614.6% 625.1% 814.8% 

Adjusted gains 0.6% 11.0% 12.6% 42.0% 

Ratio of unadj. and adj. gains 913.50 56.03 49.69 19.38 

 

 

 
11 These numbers represent the ratio of land use over landholdings. 

 


