The Assessment Gap: Racial Inequalities in Property Taxation

Carlos F. Avenancio-Leon
University of California – San Diego

Troup HowardUniversity of Utah

Key feature of property tax:

- Tax paid intended to be proportional to market value of home...
- ... but tax bills are computed based on "assessment" value

Key feature of property tax:

- Tax paid intended to be proportional to market value of home...
- ... but tax bills are computed based on "assessment" value

$$\frac{(Theoretical ad valorem tax)}{\text{ad valorem tax}} \frac{r M_i}{M_i} = \frac{r M_j}{M_j}$$

Key feature of property tax:

- Tax paid intended to be proportional to market value of home...
- ... but tax bills are computed based on "assessment" value

$$\frac{(Theoretical ad valorem tax)}{Tax Bill} = \frac{r M_j}{M_j} \longrightarrow Tax Bill$$

Key feature of property tax:

- Tax paid intended to be proportional to market value of home...
- ... but tax bills are computed based on "assessment" value

$$\frac{(Theoretical \ ad\ valorem\ tax)}{ad\ valorem\ tax)} = \frac{r\ M_i}{M_i} = \frac{r\ M_j}{M_j}$$

Key feature of property tax:

- Tax paid intended to be proportional to market value of home...
- ... but tax bills are computed based on "assessment" value

$$\frac{(Theoretical ad valorem tax)}{\text{ad valorem tax}} \frac{r M_i}{M_i} = \frac{r M_j}{M_j}$$

Key feature of property tax:

- Tax paid intended to be proportional to market value of home...
- ... but tax bills are computed based on "assessment" value

(How the property
$$tax \ actually \ works$$
)
$$\frac{r \ A_i}{M_i} = \frac{r \ A_j}{M_j}$$

Key feature of property tax:

- Tax paid intended to be proportional to market value of home...
- ... but tax bills are computed based on "assessment" value

$$\frac{A}{M}$$
: "assessment ratio" $\frac{r A_i}{M_i} = \frac{r A}{M}$

Key feature of property tax:

- Tax paid intended to be proportional to market value of home...
- ... but tax bills are computed based on "assessment" value

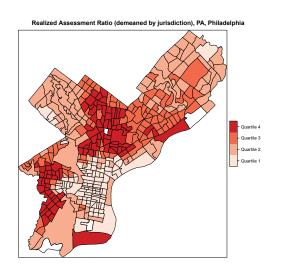
$$\frac{A}{M}$$
: "assessment ratio" $\frac{r A_i}{M_i} = \frac{r A_j}{M_i}$ Effective tax rate: $f\left(\frac{A}{M}; r\right)$

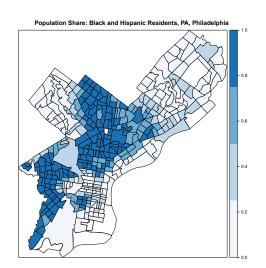
Key feature of property tax:

- Tax paid intended to be proportional to market value of home...
- ... but tax bills are computed based on "assessment" value

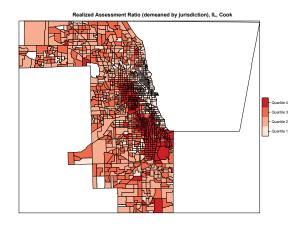
If:
$$\frac{r A_i}{M_i} > \frac{r A_j}{M_j}$$
, $effrate_i > effrate_j$

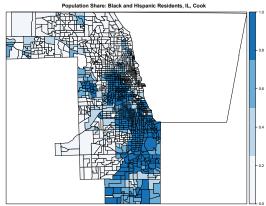
Key feature of property tax:


- Tax paid intended to be proportional to market value of home...
- ... but tax bills are computed based on "assessment" value


Two people, *i* and *j*, subject to same tax, *r*:

If:
$$\frac{r A_i}{M_i} > \frac{r A_j}{M_j}$$
, $effrate_i > effrate_j$


Within taxing jurisdiction, variation in assessment ratio is sufficient for inequality

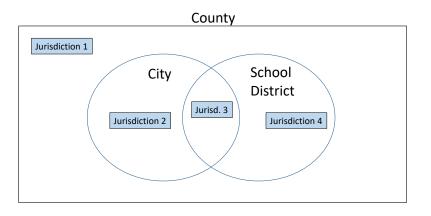

Philadelphia: Assessment Ratios and Demographic Heatmap

Cook County, IL: Assessment Ratios and Demographics

The Racial Assessment Gap

Assessment gap: 10-13% higher tax burden for black and Hispanic homeowners, within Tax Jurisdiction

- Cannot be Tiebout sorting along preferences for public goods
- \$300-\$390 annually for median minority homeowner
- At 90th percentile: approx \$800 annually

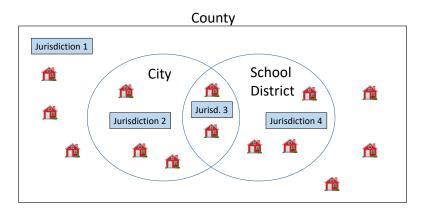

Two channels:

- 6%-7%: neighborhood attributes and racial sorting (spatial / between)
 - ► Assessments insufficiently responsive to highly local characteristics
- ∘ 5%-6%: individual homeowner (not spatial / within)
 - ► Racial differential in appeals behavior/outcomes

Small-geography Home Price Indices are potential policy fix

Simple algorithm, using public data, fixes ~70% of total inequality

"Taxing Jurisdiction": Precise Definition



"Jurisdiction": Geography served by unique network of overlapping gvts

► Further Theoretical Example

▶ Real-World Example

"Taxing Jurisdiction": Precise Definition

"Jurisdiction": Geography served by unique network of overlapping gvts

Estimating Equation

$$ln(rac{A_{ijt}}{M_{ijt}}) = \gamma_{jt} + eta$$
 race $_{ijt} + arepsilon_{ijt}$

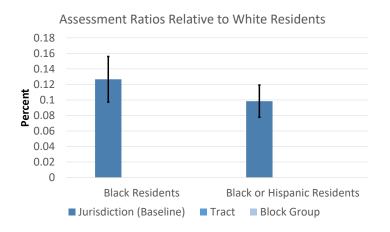
- \circ Equitable tax null: $\beta = 0$
- o Omitted group in all regressions: white, non-Hispanic residents

i: property, j: jurisdiction, t: year, race: race or ethnicity

▶ Equitable Null Derivation

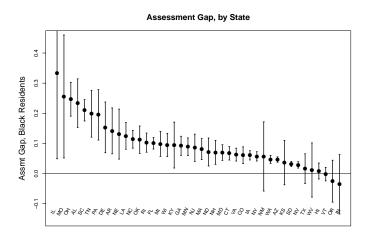
Group Means: Legal Grounding

$$ln(rac{A_{ijt}}{M_{ijt}}) = \gamma_{jt} + eta$$
 race $_{ijt} + arepsilon_{ijt}$

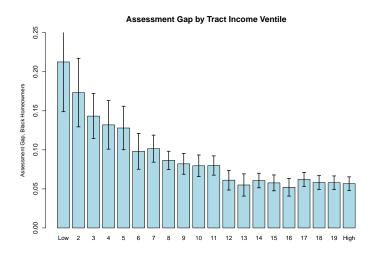

"Disparate impact" is legal standard by which courts evaluate discrimination claims

Federal Law, 24 CFR S100.500(a):

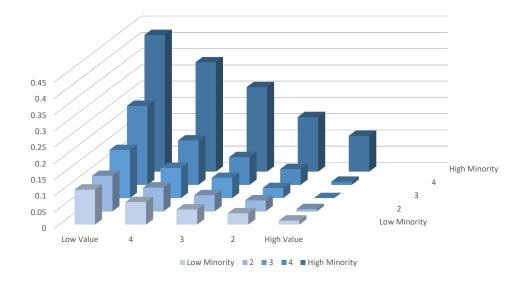
"[a] practice has a discriminatory effect where it actually or predictably results in a disparate impact on a group of persons[...] because of race, color, religion, sex, handicap, familial status, or national origin"


US Supreme Court (2015): in housing, sufficient for discrimination

The Assessment Gap



State Breakdown

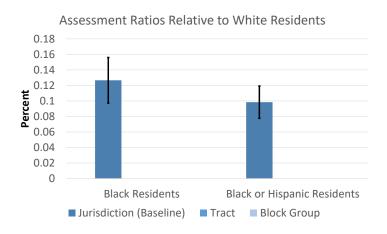


Assessment Gap by Tract-Level Income (Black Residents)

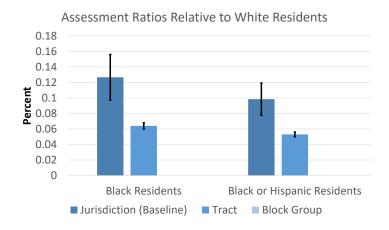
Assessment Gap by Tract-Level Home Value and Minority Share

Decomposing Assessment Gap

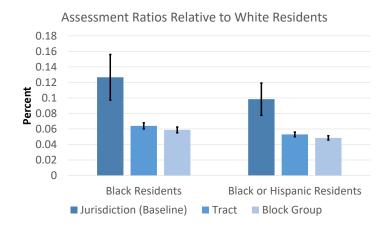
Roadmap:

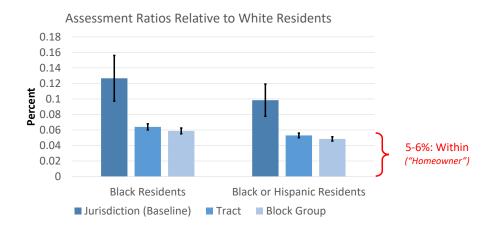

- 1 Distinguish: within-neighborhood inequality vs between-neighborhood inequality
- 2 Neighborhood Composition: between-variation in assessment ratio
- 3 Homeowner Effect: within-variation in assessment ratio

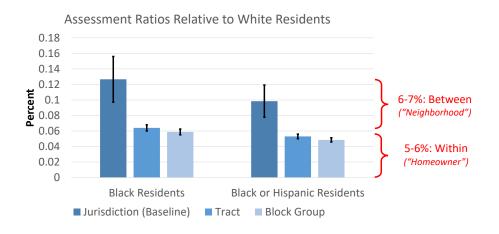
"Neighborhood": US Census tract or block group (much smaller than jurisdiction)


Goal: Hold constant all spatial & geographic factors

<u>Ideal experiment</u>: Adjacent homes; homeowners of different race/ethnicity


Feasible: Condition on successively smaller geographies; show stable estimates



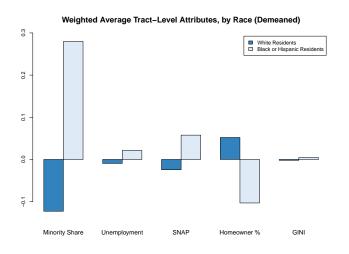


▶ Block Group Regression

▶ Block Group Regression

Neighborhood Composition

Spatial sorting by race in US is well-known


o Ananat (2011), Cutler and Glaeser (1997); many others

Result: neighborhood attributes faced by average resident varies by race

Characteristics are capitalized differently in market prices vs assessments

Generates spatial variation in tax burden that correlates with race

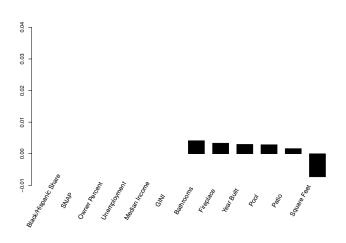
Sample Differences

Implied Hedonic Prices

"Automated Valuation Models": some form of hedonic regression

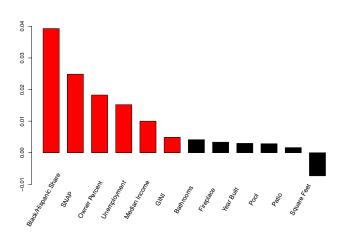
Estimate two hedonic models: 1) LHS = Market, 2) LHS = Assessment

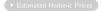
$$V_{icjt} = \gamma_{jt} + \Theta^V X_{icjt} + \beta^V W_{cjt} + \varepsilon_{icjt}$$


Goal: compare Θ^A , β^A with Θ^M , β^M

V: assessment or market; i: home, c: tract, j: jurisdiction

t: time, X_{icjt} : home attributes, W_{cjt} : local attributes


Relative Hedonic Prices



Relative Hedonic Prices

Taking Stock

Overall assessment gap: 10-13%

Between variation: 6-7%

Assessors underweight neighborhood attributes in projecting market prices

o Tactically: hedonic F.E. or rule-of-thumb growth for too large an area

Within variation: 5-6%

So far unexplained

o Hypothesis: racial differential in appeals behavior/outcomes

Mechanism for Homeowner Effect

Extensive social science literature:

- o Minority residents may be less trusting of public officials
- May perceive institutions are not designed to serve them

Assessment Appeals:

- o Almost always process for appealing assessment
- Obtained administrative micro-data from 2nd largest county

Cook County, IL

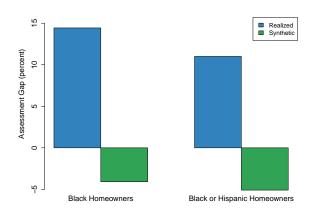
Population: 5M; Homes: 1.9M

o Appeals, 2003-2015: 3.5M

Usual to hire tax attorney - perception: connections matter Antiquated data/tech & low staffing: "assessment by appeal"

Additional info:

- 1 Appeal filed
- 2 Win / loss
- 3 Amount of reduction


Results: Appeals in Cook County

	Dependent Variable:		
	Appeal	Win Appeal (2)	Reduction (3)
	(1)		
Black or Hispanic Mortgage Holder	-0.982***	-1.993***	-0.258***
	(0.068)	(0.245)	(0.074)
Baseline Rate	14.6	67.4	12.0
Fixed Effects	BG-Year	BG-Year	BG-Year
No. Clusters	3954	3933	3893
Observations	4,076,655	694,553	476,368
R^2	0.383	0.415	0.443

Notes: 1) linear probability model, 2) coefficients are (%)

▶ Black Homeowners

Correcting Assessment Gap: Using Zip-Code Level HPIs

Take Aways

- 10-13% higher property tax burden for black and/or Hispanic residents
- 2 Geographic channel and a homeowner channel:
 - Assessments insufficiently sensitive to local attributes
 - Racial differentials in appeals behavior and outcomes
- 3 Inequality can be significantly reduced by linking assessments to local-HPIs