
Secure Exchange of Black-Box Simulation Models using
Functional Mockup Interface in the Industrial Context

Christian Wolf1 Miriam Schleipen1 Georg Frey 2,3

1EKS InTec GmbH, Germany, {christian.wolf,miriam.schleipen}@eks-intec.de
2Chair of Automation and Energy Systems, Saarland University, Germany, georg.frey@aut.uni-saarland.de

3Department of Industrial Security, Center for Mechatronics and Automation Technologies (ZeMA), Germany,
georg.frey@zema.de

Abstract
Functional Mockup Interface (FMI) is a standard for
exchanging simulation models described as Funcional
Mockup Units (FMUs) in a platform-agnostic way. FMUs
can be implemented as white-box or black-box models.
In the industrial context, it is common to exchange black-
box models between partners to hide intellectual property.
Using and running such models, though, is a security is-
sue as there is no way to verify and validate the content
of the models. This security issue must be addressed es-
pecially in the industrial context where security is con-
sidered high priority in general. Based on an exemplary
model exchange, possible attacks and possible counter-
measures are analyzed in this work. By using cryptog-
raphy, three different approaches to pack the additional
metadata are presented that aim at providing end-to-end
integrity checks to a black-box simulation model. To-
gether with administrative measures, this allows to define
those FMUs to be trusted and executed. For the sake of
completeness, a prototype was implemented to help with
the cryptographic processes and show the effectiveness of
the provided solution.
Keywords: Simulation, Security, FMI/FMU, Automa-
tionML, Black-Box Model, Certificate, PKI

1 Introduction
In the current design and development process of products
and goods, simulation provides a way to verify function-
ality and optimize in an early stage of development. For
the sake of reducing the involved manpower to build such
simulation models, these models are typically shared be-
tween stakeholders. Current developments like the FMI
standard show the need to provide a standardized way to
simplify model exchange. However, not all models can
and should be provided as a white-box model, e.g. there
might be restrictions on who should be able to read and
understand the model in depth.

Current practice is that FMUs are transmitted via email
or download from the vendor website. Although there
might be SSL-based security added on the point-to-point
transports, like HTTPS, these processes must be consid-
ered insecure as there is no end-to-end guarantee of the

security. The FMU stored on the web server could be
changed intentionally or by accident without notice.

One way to tackle the problem would be to use secure
data spaces where the platform itself is designed for secu-
rity, see Christoph Schlueter Langdon and Karsten Schwe-
ichhart (2022). On such a platform, access is coupled with
the trust in the corresponding entity, so within this data
space everyone can be trusted. One project to create a safe
space is Catena-X (Hedda Massoth 2022).

By closing down the models in form of black-box sim-
ulations, it is (ideally) impossible to check the model for
correctness, feasibility, and security. There might be ar-
bitrary code included in the model that will get executed
once the simulation is run. There are approaches to re-
duce the risk by e.g. running the model in an secured, im-
mutable environment (“sandboxing” the model) but this is
prone to bugs and should only serve as a last resort. In-
stead, this paper presents a method that allows to check
statically the validity of a simulation model before even
running it.

In this work, some basic tools and concepts from var-
ious domains are presented in Section 2. The underlying
problem of this paper is presented in Section 3 and some
risk analysis on possible attacks in the state of the art car-
ried out in Section 4. To tackle the issues, some abstract
considerations in Section 5 as well as some rejected con-
siderations in Section 6 are used to derive multiple differ-
ent propositions in Section 7. Finally, a proof-of-concept
prototype is presented in Section 8 and an outlooks as well
as a summary of the results is given.

2 Preliminaries
Throughout this paper, concepts from different domains
need to be combined. In this section, the basics of dif-
ferent fields are covered for later connection in Sections 5
through 7. By integrating cryptogrphical methods with
simulation models/FMUs, new benefits can be generated.

2.1 Functional Mockup Units
Functional Mockup Interface (FMI) is a standardized way
to exchange simulation models for various purposes. The
current version 3 is described in FMI V3 (2023). A single
model is called a Functional Mockup Unit (FMU).



An FMU is technically speaking a compressed folder
with some files inside. There is for one the manifest, an
XML file describing the model. In the manifest the inputs
and outputs are specified, as well as parameters and other
options.

The actual implementation of the model logic can be
provided by means of embedded source code or a pre-
compiled library (DLL or shared object depending on the
operating system). It is also possible to have both or a
mixture of these approaches.

There are in fact three types of FMUs available: model
exchange, co-simulation, and scheduled execution. Each
type has its dedicated use case. While the co-simulation
type brings its own mathematical kernel and is run as a
dedicated process during execution, the other two types
run within the process context of the host’s simulation en-
vironment.

There exists the FMU Trust Center presented by Jo-
hannes Mezger et al. (2011). This allows to encapsulate
the FMU under consideration into its own trusted environ-
ment. By using a dedicated and secured infrastructure, the
FMUs can be encrypted during transport. Only during the
time of simulation, a decrypted version is existing. That
way, one can provide encrypted FMUs without the risk of
sharing internal knowledge.

2.2 Digital Twin and Meta Models
In typical industrial applications, there is the need for a
common description of arbitrary data in a structured way.
This allows to exchange data in generic ways and is com-
monly referenced as a digital twin (DT).

Currently, two major meta models to describe such dig-
ital twins are established: AutomationML (AML, Rainer
Drath (2021)) and the Asset Adminstration Shell (AAS,
Deutsches Institut für Normung (2019) and IEC 63278-1
(2022)). Both models have a similar goal and are inter-
changeable in terms of this paper. Thus, throughout this
publication only AML is going to be used as an exam-
ple. Similar results can be obtained with AAS with slight
modifications.

Coming from the DT context, these meta models pro-
vide a method to describe things in a portable way. By
defining common file formats the problem is reduced to
understanding the semantic of the various parts. Instead
of defining their own vocabulary, these models rely on ex-
isting descriptions. For example, simulation models can
be integrated as FMUs.

AML uses XML files and all linked files just are con-
nected using so-called external interfaces. There is how-
ever the option to embed all relevant files into a bundle
called an AutomationML container (Rainer Drath 2021).
Such an AMLX file is a zipped folder with all attachments
plus additional files to satisfy formal requirements. Ac-
cording to Rainer Drath, Markus Rentschler, and Michael
Hoffmeister (2019), both AMLX and AASX (from AAS)
files comply with the Open Packaging Conventions (OPC)
in accordance to IEC 29500 (2012).

2.3 Security
For computing systems, there exist various requirements
that a typical user assumes but that need careful planning
and engineering. In Avizienis et al. (2004) these are cate-
gorized into dependable and secure aspects.

Dependable in this context means that a system is be-
having as expected and not causing any major risks dur-
ing operation. This is mostly the same definition that we
would call a physical product functional: a freezer must
keep the goods frozen even during e.g. an outage of a half
an hour while not emitting any toxic gases to the environ-
ment.

There however is the concept of security that mainly be-
came common with digitalization. Security breaks down
to three main aspects: confidentiality (Is my data safe and
nobody can access it?), integrity (Can I trust my data or
has anyone tampered with it?), and availability (Can I ac-
cess my data anytime I want?). Typically, not all of these
goals can be achieved 100 % at the same time.

Some methods to establish these aspects of security are
hashing, asymmetric cryptography, and certificates. The
following sections will give a brief introduction for the
reader.

2.3.1 Hashing

A hash function is a cryptographic algorithm that can be
applied to data and files and that results in a determinis-
tic value, aka there must be no randomization involved
(Bart Preneel 1994). There are different hashing func-
tions commonly used also with different goals and mo-
tivations involved like SHA-1, SHA-256, BLAKE-256,
etc (Jean-Philippe Aumasson et al. 2008; Alex Biryukov,
Dumitru-Daniel Dinu, and Dmitry Khovratovich 2015;
Rajeev Sobti and G Geetha 2012; Stefan Tillich et al.
2009).

The output of such a hasing function is called a hash
and of fixed size. For example, the SHA-256 hash func-
tion uses 256 bit to represent a hash. This is true for ar-
bitrary long input data sequences, so the function cannot
be injective: multiple input streams can result in the same
hash.

This property of non-injectiveness has multiple effects.
First, hashing cannot be undone. Once a data steam has
been hashed it is no longer possible to conclude the origi-
nal data. Hashing is thus a one-way function.

In order to compare the content of files/data streams,
comparing the hashes is one typical method. One has
to keep in mind that comparing function values and de-
duce the equality of the function arguments only works
for injectve function by definition. For non-injective func-
tions, like the hashing functions, there is a (small) proba-
bility that two distinct data streams result in the same hash,
called a hash collision. Therefore, hash functions are con-
structed such that small changes in the input data (even as
small as a single bit) lead to significant changes in the re-
sulting hash value. This should reduce the probability of
small defects to get unnoticed.



One typical use case for hashing is to establish integrity
of data. Unless there is a collision, one can identify and
reject a compromised data stream if the hash is known.

2.3.2 Asymmetric Cryptography and Keys
The RSA algorithm named after Ronald L. Rivest, Adi
Shamir, and Leonard M. Adleman (1978) is a well-known
method for asymmetric encryption and signatures. In the
meantime there were different variants developed to over-
come some shortcomings in the original version. These
modified versions serve as a backbone of the current inter-
net encryption in e.g. HTTPS, IMAPS, or other encrypted
protocols.

All cryptographical methods base on pure numbers,
thus all data is interpreted as such (big) numbers. There
are now two different operators that are typically used in
cryptography: encrypt/decrypt and sign/validate.

Assume a (big) number M that contains a message. By
using a publicly known mapping E(·), anyone can encrypt
M and will obtain Menc = E(M). The mapping however is
designed to not be reversible in a simple manner. By only
knowing Menc one cannot deduce the value of M. The
intended recipient of the message knows another mapping
D(·) that allows to decrypt the message again D(Menc) =
D(E(M)) = M. Of course, the mapping D(·) must be kept
secret.

The RSA algorithm provides an implementation of this
scheme by using big prime numbers and some properties
of integer arithmetic. The important part is that the mes-
sage Menc can be transmitted over insecure lines and its
confidentiality is guaranteed by cryptography.

When the mappings E(·) and D(·) are constructed ac-
cordingly, it is possible that they are mutual inverses

D(E(M)) = M = E(D(M)).

That means that applying both operations once will cancel
each other independently of the order of application. If the
decryption is applied on M, this is called signing and the
later encryption process verification.

The signing can only be carried out using the private
mapping D(·). This allows to create a proof that a certain
message was written by a certain person. Everyone can
verify using E(·) if the message was changed. Thus, this
method allows to ensure integrity using cryptography.

In the RSA algorithm, the mappings E and D use spe-
cially crafted numbers. These numbers are called public
(in case of E) and private (in case of D) keys. These keys
can be seen as parameters to general functions to obtain
the individual implementations of the two mappings E and
D mentioned above.

If the private mapping D(·) gets compromised (leak-
age of the private key) or the encryption method itself gets
broken, the methods do no longer work. In case of encryp-
tion, the unencrypted message might be leaked. in case of
signatures, an attacker might fake valid signatures.

For the sake of speed and memory consumption, these
methods are typically combined with other cryoptographic

methods that use symmetric cryptography. These details
are more implementation-related and do not play a signifi-
cant role for the whole process when implemented accord-
ingly. They will therefore be neglected here.

2.3.3 Certificates and PKI

In order to simplify the management of public keys to be
trusted, a new infrastructure needed to be built. A first
step is to encapsulate the public keys into another structure
to attach some meta data with them. Such a structure is
called a X.509 certificate (Sharon Boeyen et al. 2008). The
infrastructure to manage and use these certificates is called
a Public Key Infrastructure (PKI).

Each certificate contains (apart from the public key)
some additional information: there are some pieces of
technical data (like the key size) stored. Also, there are a
few human-readable strings describing the person or orga-
nization the certificate is associated with. These attributes
are defined in Sharon Boeyen et al. (2008) and contain e.g.
the country, the common name, and others. There are stan-
dardized abbreviation (CN for common name, etc). The at-
tributes are rather restricted in terms of size and type: only
64 byte of ASCII text are possible per attribute for sim-
ple fragments of information like mail addresses or host
names.

Additionally, certificates are issued by some authority.
Each certificate has exactly one issuer. Issuing a new cer-
tificate is twofold: First, all relevant data like public key,
meta data, etc is combined in a so-called certificate sign-
ing request (CSR). Next, the issuer uses his private key to
sign the CSR after checking it. The new certificate is built
from the CSR, the signature, and some unique reference
to the issuer.

This principle of issuing certificates is its strength: it al-
lows to delegate trust from a single source (so called trust
anchor) recursively. Any user can trust some authorities,
typically done by the operating system. Every service just
needs to provide a chain of certificates to such a trust an-
chor, a so called trust chain. In that way the user can trust
a public key without manually verifying the authenticity
of said public key.

One last link is missing in order to establish trust in a
thing, a connection, a name, or anything outside the cryp-
tographic environment. The trust so far is in a certificate.
For example, to obtain a certificate for a dedicated host
name, the CN of the underlying CSR must have been set
to the host name. This connects the certificate with the
host name: a HTTPS connection requires that the CN of
the signed certificate is equal to the host name. There are
extensions for more complex scenarios that allow multi-
ple host names per certificate (see subjectAltName in
Sharon Boeyen et al. (2008)) but this is out of scope for
this paper.

2.4 Intellectual Property
In Keith Eugene Maskus (2000), intellectual property is
defined as following: “Human thought is astonishingly



creative in finding solutions to applied technical and sci-
entific problems [. . . ]. These intellectual efforts create
new technologies [. . . ], develop new products and services
[. . . ]. They result in intellectual assets [. . . ], that may have
economic value if put into use in the marketplace. Such
assets are called intellectual property to the extent they
bear recognized ownership.”

All pieces of software, tools and knowledge obtained
by a company in its productive effort is considered to be
owned by said company. The company will use these
pieces for further benefit and protect them against access
by third parties. This is intellectual property (IP).

3 Problem Formulation
Let’s assume there are two (industry) partners A and B.
One of them (A) is a vendor that sells some products. The
other one (B) is a big player that buys these and integrates
them together with dozens other products into complex
systems. In order to simplify and optimize the engineer-
ing process, A provides simulation models for the relevant
products to B. In the rest of the paper, we are focusing on
one such model.

3.1 Concerns of Model Provider
These models are generated by the staff of A and con-
tain parts of the internal knowledge of A. There could
e.g. be some fancy algorithm implemented in the con-
troller firmware of these products. The simulation model
will eventually mirror these controller features to provide
a good match of the model with the real world. Thus,
part of the simulation model would probably be the propri-
etary firmware which A considers IP. As a result, partner A
might have concerns to publish a white-box model to the
partner B. Speaking in terms of security from Section 2.3,
the partner A has a high requirement for confidentiality.

There might be additional wishes by the model provider
A. For example, a model should have a lifetime after that
it should be updated to the newest version. There might
also be companies whose business model is to sell model
hours.

3.2 Concerns of Model User
After transmitting the model to partner B over a to-be-
defined transport, there are also some other aspects to
be taken into account. At first, the model must be run-
ning in general and according to the specification. That
is mostly covered by the dependability. However, there
are also security considerations: The model might, in gen-
eral, contain malicious code that is executed on the infras-
tructure of partner B. These threads range from attaching
spamware by accident to active attacks (e.g. distribution
of ransomware by a former employee).

So, from the perspective of B there are other require-
ments.

• Integrity: The model in question should be exactly
the model of the product and not be tampered with.

Partner A

Internet

Partner B

Employee A1 Employee B1

2 4

1 5

3

Figure 1. Data flow of the simulation model with possible attack
vectors.

• Availability: The model should run anytime the part-
ner B needs to run simulations without interfering
with or blocking B’s infrastructure.

• Confidentiality: The complete simulation model,
where the model of A is integrated to, might be IP-
related from the perspective of B. No data should be
extracted using the simulation model.

3.3 General considerations
Having seen the positions of both parties one has to realize
there are multiple levels of concerns. On the administra-
tive level the partners use legal contracts to fix their mutual
responsibility and accountability. This results in (internal)
policies about what model from which partner might be
run in which context. The technical level is located below
that to ensure the correct realization of the administrative
decisions and policies. This paper focuses on the techni-
cal level on how the parties can establish trust in the ex-
changed model. Therefore, it is assumed that both parties
can be trusted and an appropriate policy is in place.

In that sense the exchange is very similar to sending
potentially malicious data like documents with macros en-
abled, DLLs/SOs, etc via email. In contrast to best prac-
tices (e.g. only opening documents with macros globally
disabled), exchanging FMUs in this way will enforce the
user to actively open such untrusted documents.

4 Attack vectors
There are multiple parties involved, thus the analysis of
possible attack vectors need to be carried out for all of
them.

Starting with the process description in Section 3, one
might follow the path of the simulation model. In Figure 1
the data exchange between the participants is depicted as
well as the possible points of attacks. The possible attacks
are numbered to simplify referencing them later.

1. The first opportunity for an attack is the user A1 who
generates the FMU on the side of A. He might will-



ingly or accidentially add malicious code to the FMU
to be shipped.

2. The next opportunity is the infrastructure of com-
pany A. Although A1 does his best in order to ship
the FMU in a valid state, e.g. a virus on his machine
might leak into the process and thus compromise the
generated FMUs.

3. Knowing the dangers of the current time, the internet
cannot be considered a safe place. Traffic might be
transmitted over insecure channels that are not end-
to-end encrypted. This also covers simpler methods
like spoofing messages or just crawling and collect-
ing data.

4. Analogously to attack 2, the infrastructure of B could
be affected.

5. Finally, the user B1 might be responsible for the po-
tential attack similar to vector 1.

These attack vectors are not exhaustive, in fact there are
attacks possible that combine different approaches. An ex-
ample of such a combined attack would be the following:
via social engineering the attacker could gain knowledge
on A1 (attack vector 1) to get known about a common
project. Using a forged mail (attack vector 3) he tricks
B1 into opening and starting the model (attack vector 5).

For almost all possible attack vectors, there are con-
cerns for both parties A and B involved. Some cases do
not make sense, though: exposing some IP of A by A1 can
be done in various forms and does not fit in the context of
this paper. Similarly, the IT department of A will do its
best to prevent attack vector 2 to be used against A. The
same is true for vectors 4 and 5 with respect to protection
of B.

5 Abstract Solution Approaches
There are some general approaches that should be consid-
ered before the implementation can be done.

First, in order to simplify implementation effort on
both sides A and B, the FMI standard is used as a basis.
This directly addresses the requirements of the partner A
with respect to confidentiality: the FMU can contain pre-
compiled versions of the models leading almost to black-
box models. In theory, one could reverse-engineer the
binary codes and obtain knowledge. There however are
options to obfuscate and encrypt binary code until used
(Michael Klooß, Anja Lehmann, and Andy Rupp 2019;
Thomas Agrikola 2021). In order to use such methods, it
is required for the FMI standard to support such enhance-
ments officially: the official standard (FMI V3 2023) al-
lows to augment functionality by using so called layered
standards, the resulting unit must, however, still be com-
pliant to the basic standard. If the encapsulated binary

code was encrypted, this is no longer covered by the stan-
dard. The simulation environment needs to be able to de-
crypt accordingly on the fly in order to make any use of
the FMU.

The primary goal for B is to establish trust on techni-
cal level between the partners A and B. This should be
done using cryptography: a method is to be derived that
can crypographically prove the integrity of the model and
its origin (partner A). No model should be run that was
tampered with or that was broken during transport.

The most prominent issues come from attack vector 3,
potentially in combination with other ones. Apart from
that, it is typically sufficient to require trust between A and
B: by contracts and legal bindings these parties typically
consent on mutual trust. The trust of B in A1 is not needed
as A will trust A1 and hold him liable and responsible for
his actions. Also, from B’s perspective, still A is liable
for any issues. The same holds true for the trust of A in
B1. Therefore, in this work the attack vector 3 is to be
considered the primary one.

In order to prevent the model from accitential changes,
a hash of the model is generated directly after forging the
FMU by A. This hash can be delivered with the model and
checked just before the real execution of the model. The
model verification will detect changes to the model with a
very high probability (i.e. if there are no hash collisions)
and report that. It might be up to said user how to cope
with such a situation but this decision is part of the ad-
ministrative policies excluded from this paper. In fact, the
tests are just an addon to FMI and can always be overrid-
den by the simulation environment.

So, in general the hash allows to detect transmission and
storage errors between A and B. In case of a malicious
actor, the hash will only provide little help: the attacker
could simply calculate the hash of the modified FMU and
replace the original hash as well. The user will check the
(modified) FMU and compare with the faked hash. Thus,
no warning will be issued and the user might be running
the tampered FMU without further notice.

To prevent such an attack, it is necessary to establish
trust in the hash. This can be achieved by crypographical
means in the form of certificates. The vendor A creates
a valid certificate (plus its private key) before deploying
the FMU. The private key is used to sign the hash. This
certificate with the complete trust chain including the sig-
nature of the hash is delivered with the FMU.

On the user’s side (B), first, the hash is validated. To
do that, the hash of the FMU is calculated by B. If the
signature matches with the calculated hash, B has proven
that the person who created the signature had access to the
corresponding private key.

It is not required to provide a hash of the FMU in the
metadata as long as there is a croptographic signature
available. However, deploying the hash as well has the
benefit that the test of the validity can provide more de-
tailed error messages on why the validation failed. With
the hash it is possible to distinguish an accidential trans-



mission error from an attack that might need further inves-
tigation.

This process of authentication is however not sufficient
to provide authorization to run the FMU. Here, the admin-
istrative policies as depicted in the problem formulation
need to be addressed. The question is: which entities are
to be allowed to provide trusted FMUs and how to pre-
vent other entities from pretending and faking their iden-
tity? Typically, this is done by enforcing certain rules on
the certificate chain. For example, there could be a re-
quirement that the certificate is (indirectly) signed by a
certificate with a well-known CN. If the systems are on-
line, one can use authentication using other systems, but
this is not the major point in this paper (see e.g. challenges
HTTP-01 and DNS-01 in Daniel McCarney (2017)).

In any case, the simulation environment on the infras-
tructure of B must run these tests just before the FMU gets
loaded and started. This is similar to the signing process of
system libraries in the Microsoft Windows operating sys-
tem that refuses to install unsigned libraries. These checks
are in fact a requirement for the software providers that
handle the FMUs. These providers need to add support for
appropriate steps in order to ensure security of the models,
potentially establishing an accompanying standard to the
plain FMI standard.

It is vital to understand that once the simulation envi-
ronment separates the simulation model from the security
data by checking the signatures (and only passing the sim-
ulation model on), the protection ends. For example, as-
sume that party B checked some FMU by whatever means,
decides the FMU to be secure, and stores the FMU in a
local simulation library without the security data. The at-
tack vector 1 through 3 has been ruled out so far. How-
ever, the attack vector 4 is still open: changing the FMU
in the library could easily get unnoticed. Thus, the sep-
aration should be done as late as possible to cover most
of the possible attack surface. Ideally, the check is done
right before the simulation itself is run and the first call to
a function in the FMU is carried out.

Note, that the suggested approach does only secure the
transport of the models. The execution is not affected,
which can be seen that the existing simulation cores do
not need to be altered. So, there is no protection against
online-changes to the FMU while it is running, e.g. due to
defective RAM.

The approach of using certificates also allows for the
additional feature of lifetimes of the models. All certifi-
cates have a lifetime which ends at some time. This can
be used to invalidate a model after a certain point in the fu-
ture. The checker in the software will refuse the validity of
the certificate due to an expired certificate if the lifetime of
the model has expired. This is however not cryptographi-
cally enforced.

There is no guarantee about confidentiality so far from
the perspective of A. Anyone who has access to the FMU
will be able to run the system. To prevent that, one could
use encryption on top of the provided solution. The en-

cryption is not as simple as signatures as each legitimate
user of the FMU needs a way to decrypt it with their in-
dividual private keys. One possible solution was that ven-
dor A provides a public API where any potential customer
(like e.g. B) can request an individually encrypted simu-
lation model. To do so, the potential buyer needs to au-
thenticate. Before the model is encrypted and provided,
the vendor can check if the request is authorized.

The certificate chain can be adopted to the needs of the
use case. If the vendor A provides individual certificates
for their employees, A1 would use his personal certificate
(and key) to sign the FMU certificate. This means an addi-
tional benefit of accountability: whenever a problem arises
it can be tracked down to the individual user A1 who has
signed the FMU in question. This simplifies incident anal-
ysis and provides some internal mutual protection between
A and A1.

By defining an extension to the FMI standard, one could
introduce a formal certification scheme: FMUs could be
labeled as “certified secure according to the standard”.
This could also be applied for the simulation tools to cer-
tificate that these abide some security guidelines about
when a model is considered harmful and not to be run.

6 Alternatives considered
There are a few alternatives to the abstract solutions pre-
sented above. These can be ruled out for different reasons
and the argumentation should be mentioned here, shortly.

6.1 Classical transport with cryptography
The most direct approach to this problem would be to use
state of the art mechanisms provided by the IT to establish
cryptographal security. One could use S/MIME (Blake
C. Ramsdell 1999) or GPG/PGP (Simson Garfinkel 1995)
to add end-to-end encryption to e.g. mail delivery. This
has however the drawback that the signatures are typi-
cally bound to a single person instead of the corresponding
company. Volatility in personnel will make handling hard
and error-prone.

Additionally, these approaches need manual work by
the users. While this seems only a minor burden, it adds
the risk of wrong application and user errors. In case
of problems, people might tend to avoid the system al-
together. A fully automatic solution is preferable here.

6.2 Callback in FMU
Looking at the problem from the FMI context, one straight
forward approach would be to put the security information
into the code. The user’s simulation environment could
use fmi3GetBinary to extract and check it. This will
however not serve well as the function call would already
execute code from the FMU that is (not yet) to be trusted.
So, in order to check the validity, the simulation environ-
ment must only use statically available information.

After the security has been established by other means,
there are still use cases to call a custom callback in the
FMU. This would allow to realize the already mentioned



business models that require the validation of a license of
the customer. So, after the initial security check, the FMU
itself could issue a check if the user (B) is to be allowed to
run the simulation and abort if not. There could be some
license fees to be paid or simply the model must only be
run on behalf of real customers. The checks could be ar-
bitrary to match with the business model of A. Currently,
different other callbacks are (mis-)used for such function-
ality, having a dedicated callback would be preferable.

6.3 Storage of hash in CN
One has to note that the attributes of a certificate are gen-
erally not potent enough to store the complete FMU. This
is true for the proposed solution as well.

Complying with the de-facto standard of storing in the
CN a unique identifier, one could try to calculate an im-
mutable identifier for an FMU using hashing. Then, this
hash could be used in the CSR to generate a certificate
with the CN set to the hash of the underlying FMU. That
way, the certificate would not just be a generic certificate
but the certificate of said FMU. In that sense, it would
avoid to use external signatures and keep all cryptography
in the PKI.

By looking at the recent hash functions SHA-512 or
BLAKE-512, these use 512 bit or 64 byte in binary form
to represent such a hash. As the attributes are only ASCII
text, the binary must be mapped into ASCII which en-
larges it further. For example, to represent the complete
hash one could use base64 encoding but will then need
88 characters (86 as the length can be considered known).
Considering that the attributes are capped at 64 charac-
ters, the hash will not fit. Consequently, one could only
use hashes with 384 bit or less.

Larger hashes provide better security in theory and
make (exploitable) hash collisions less likely. The size of
the hashes was therefore growing in the past and one has
to assume that this trend will continue. So, one must at
least consider larger hashes and cannot reject them in the
architecture of this approach.

7 Proposed Solutions
The so far described approaches are of rather abstract na-
ture. There are different ways thinkable how this could be
implemented and especially where the hash and the signa-
ture could be stored.

7.1 Adaption in a layered FMI standard
The most simple way would be to implement the hash-
ing and signing inside an extended layered FMI standard.
That way, the FMU would still be an encapsulated and
complete model that has the security features included.
The FMI standard allows to provide additional data like
static (XML) files in an appropriate folder under the top
level folder called meta. For example, one could define a
folder meta/de.eks-intec.fmi-sec that contains
further files with the required security-related data.

The trivial approach of hashing the complete FMU has
one major drawback, though. In order to zip the FMU
file, one needs the hash, leading to an chicken-and-egg
problem.

Consequently, one needs a more fine-tuned approach.
Just before packing of the FMU, all included files are
listed. The algorithm will filter out the files in the folder
meta/de.eks-intec.fmi-sec. For each file, a
hash is calculated and is stored individually with the cor-
responding (relative) filename in the hashes.xml file in
said folder. Having finalized this file, one can calculate a
hash and a signature of hashes.xml and write these into
a sibling file security.xml. The latter is augmented
by the complete certificate chain to help validating.

To check the validity of such a composed FMU, the
simulation environment has to carry out multiple steps:
first, the validity of the certificates need to be ensured (like
checking for expiry, trust, and pairwise signatures). Then,
the certificate can be used to check the validity of the
hashes.xml file. Once this is confirmed, each file in the
FMU has to be checked against the stored hashes. There
should be no additional files found, so, if that happened,
the algorithm would issue a warning or even fail validation
of the complete FMU. Once all files in the FMU have been
validated, it can be considered harmless and processed fur-
ther. In contrast to the approach in Section 7.3, this one
does not need additional tools (e.g. to read AML files).

7.2 Externally in the Network
Another option to handle the hashes, certificates, and sig-
natures would be to define one URL per FMU that will
provide all relevant information. So, the software running
the model in question would need to download the secu-
rity information from the site and check the FMU against
that.

This is possible because the URL can be pre-defined
and thus statically embedded in the FMU somehow. This
might work similar to the approach in Section 7.1. In the
open source world it is common to have for each down-
loadable file an additional file with some hash or signature
to check for download errors. In a similar fashion, one
could manage the deployment of the security-related data
of FMUs.

As the security information is generally available on-
line, this process allows also to update the certificates (re-
new it in case its lifetime should be extended past the
original end). Regular updates of short-lived certificate
enhance the overall security (Emin Topalovic et al. 2012;
Ronald L. Rivest 1998): the longer the certificates are
valid, the more time is to break the keys. Short-living
certificates and keys reset these time windows and make
breaking the keys by pure chance very unlikely.

As the vendor A has control over the certificates, it is
also possible to think of new business models. One could
pay per issued certificate, per hour of model usage, per
simulation run, or other metrics. The need to fetch a
certificate makes it rather simple to control these type of



usage-based billing. The online approach works similar
to a physical token but without the overhead of physically
transferring it.

The drawback of this method is that the simulation en-
vironment needs to have continuous access to the certifi-
cation service. This makes it impossible to use air-gapped
systems. There could be caches included that provide a
way to store the certificate until it expires, still, the re-
newal process needs to be triggered sometime. Also the
certification provider (typically A) could anytime stop is-
suing new certificates (e.g. also due to technical issues or
bankruptcy) and the certificates as well as the simulation
models will cease to work.

7.3 Embedding in a Digital Twin
By combining technologies of different fields, one might
achieve a matching solution for most of the problems pre-
sented. Instead of embedding the data in the FMU as de-
scribed in Section 7.1, there might be already a location
present to store these additional information. According
to Roberto Minerva, Gyu Myoung Lee, and Noel Crespi
(2020) many products are in the meantime supported by
their individual DT. Using the example of AML as a de-
scription language for DTs, one has to realize that for
many use cases (not only in the context of this paper but
for general problems), on might fall back to pre-existing
solutions.

In AML, e.g. a library to import FMUs into the AML
file exists already (Olaf Graeser et al. 2011). If the vendor
A already provides a DT for his products, the FMU can
easily be added into said DT. If no DTs are yet existing,
the overhead to create such a twin is minimal.

With the AML in place, one has a clear and well-
defined outer shell. The security elements in AML need
to be modeled separately, the basic elements are certificate
chain links. One example modelling of such a DT can be
seen in Christian Wolf, Miriam Schleipen, and Georg Frey
(2023).

The benefit to use a dedicated format over extending
the FMU in 7.1 is that other modelling standards (like e.g.
SSP (SSP 2022)) can be used without change. This makes
this approach a very generic one.

For the AAS, Andre Bröring et al. (2022) present an ap-
proach that allows to prove integrity of the data. However,
the basic idea is to mimic the GIT version control system
in terms of a DT meta model. As with GIT, it is possi-
ble to rewrite the history to insert a tampered FMU unno-
ticed. The integrity of the history and trust in the FMU
can thus only be guaranteed for read-only access. Having
said that, by augmenting the suggestions with cryptogra-
phy (and migrating to AML), one would have a very sim-
ilar result to the one presented in this paper.

7.4 FMI as Open Document
The current FMI standard is very similar to the storage for-
mat described by the open document standard IEC 29500
(2012). As the open documents standard has some se-

curity features embedded, this would allow to secure the
FMUs directly. It might thus be considerable to make the
FMI fully conforming with IEC 29500 (2012), probably a
rather small change. As this would require a change in the
core FMI standard, it is neglected for this paper, though.

8 Prototype
In order to show feasibility of the proposed approach in
Section 7.3 a prototype as a proof of concept has been
implemented. This approach is a good tradeoff: it al-
lows arbitrary extensions, is attached with products more
and more, works offline, and is intentionally not back-
ward compatible (which might cause security risks by
false trust). The prototype does not carry out any real sim-
ulations but provides a way to execute and validate the
complete process as described in this paper in a minimal
environment.

The prototype has three major functions: first, in a boot-
strapping process a self-signed PKI can be generated. This
allows for local testing and understanding the concepts in-
volved. Additionally, there is the option to sign an FMU
and pack it into an AMLX file. This allows also to gener-
ate AMLX files with broken or spoofed FMUs to test the
detection. Finally, one can extract the FMU again from
the AMLX while checking the security measures.

The bootstrapping function allows to create a complete
PKI from scratch with a self-signed root certificate as CA.
Obviously, this should not be used for production but only
serves as a demonstrator of the process. For more details,
please have a look at the corresponding code and docu-
mentation (Christian Wolf 2023). This step will as well
generate multiple AMLX files in accordance to the de-
scription in Section 7.3:

nominal A fully functional FMU, correctly hashed and
signed

broken To simulate a defective file/transport, the FMU is
modified but the other metadata are copied from the
nominal case

tampered The FMU and its corresponding hash is modi-
fied in the AMLX by a targeted attack, all other meta-
data is copied over

The second step is to sign a custom FMU with the cer-
tificates as provided in the test instance. This process is
rather straight forward, as no tests are carried out. Only
the required files are read and interpreted and a valid sig-
nature is created. The process is depicted in Figure 2 as a
flow diagram.

As final step, the prototype provides a way to check any
AMLX file against a given root certificate. It allows to ex-
port the embedded FMU into a stand-alone file that can be
run in legacy FMI-3-based simulation tools. Alternatively,
it can serve as a boilerplate to implement an import feature
for productive third party simulation tools.



Load certificate and key data from files
Read FMU data

Hash FMU and sign using certificate key

Store FMU and data in AMLX

Figure 2. Flow diagram of the signing of FMUs.

The verification process is more complex than the sign-
ing as various checks need to be carried out. The ordering
is in general of lower priority as all test must necessarily
pass.

• (optional) The hash stored in the AMLX file must
match the hash of the stored FMU.

• The certificate chain must be anchored on a user-
provided trust anchor

• The complete certificate chain must be a chain, no
branching is allowed and the chain must be in the
correct ordering. Each certificate must be signed by
the next certificate in the chain.

• Each certificate in the chain must not be expired.

• The signature must be valid

The overall process is sketched in Figure 3
Please note that the extraction process checks the cer-

tificates but after the splitting, the FMU is just a common
FMU. There are no security features attached anymore.
Changing the FMU after the export will not be detectable
anymore in a secure manner. As a minimal measure to
prevent accidential changes, a hash file is generated auto-
matically during export.

By testing the various auto-generated examples in the
first step through the checker, it is possible to see that the
demonstrator can detect the changes in the FMU and meta-
data. Only the nominal version is accepted by the proto-
type.

9 Further Work
A survey with various industry partners is carried out at
the time of writing. The goal is to identify detailed re-
quirements and wishes from both FMU providers and con-
sumers. Especially the position of the producers and their
need to protect/encrypt the models is not yet analyzed
strictly. Using this as a baseline, further improvements
should be investigated as well as the other implementa-
tions in Section 7 addressed.

Load AMLX file

Calculate hash

Hash correct?

Trust in one
certificate?

Complete
chain ok?

Certificates’
lifetimes valid?

Signature valid?

Export or run FMU Expired or
tampered

Incorrect
hash

y

n

y

n

y

n

y

n

y

n

Figure 3. Flow diagram of verifying and exporting an FMU.

10 Summary
In this paper the general security problem especially for
untested, unverified, or black-box simulation models is fo-
cused. There are different attack vectors presented that
could be used to compromise the usage of shared mod-
els. Each attack vector has its individual attack surface
and risk involved.

Due to the impossibility to prevent all attacks in gen-
eral, an abstract analysis of the situation and possible gen-
eral solutions are given. There are four possible imple-
mentations shown to realize the abstract considerations.
For one of the four options a prototype has been imple-
mented to show the effectiveness of the approach as a
proof of concept.

The same approach as presented in this paper can be
used to augment combinations of FMUs: one can use
the System Structure and Parametrization standard (SSP
2022) instead of plain FMUs to be embedded.



Acknowledgements
The EKS contribution to this paper is part of the AIToC
project. AIToC is a project of the European ITEA Initia-
tive, funded by the German Federal Ministry of Education
and Research under the funding code 01IS20073C.

References
Alex Biryukov, Dumitru-Daniel Dinu, and Dmitry Khovratovich

(2015). Argon and Argon2. Password Hashing Competition
(PHC).

Andre Bröring et al. (2022-11-03). “An Asset Administration
Shell Version Control to Enforce Integrity Protection”. In:
Kommunikation in Der Automation : Beiträge Des Jahreskol-
loquiums KommA 2022. Vol. 13, pp. 192–203.

Avizienis, A. et al. (2004). “Basic Concepts and Taxonomy of
Dependable and Secure Computing”. In: IEEE Transactions
on Dependable and Secure Computing. DOI: 10.1109/TDSC.
2004.2.

Bart Preneel (1994). “Cryptographic Hash Functions”. In: Euro-
pean Transactions on Telecommunications 5.4, pp. 431–448.

Blake C. Ramsdell (1999-06). S/MIME Version 3 Message Spec-
ification. DOI: 10.17487/RFC2633.

Christian Wolf (2023). Christianlupus-Phd/Prototype-AMLX-
checker. URL: https : / / github . com / christianlupus - phd /
Prototype-AMLX-checker.

Christian Wolf, Miriam Schleipen, and Georg Frey (2023-05-
11). “Dynamische Systemmodelle austauschen mit FMI –
aber sicher!” In: atp magazin 2023.5, p. 26.

Christoph Schlueter Langdon and Karsten Schweichhart (2022).
“Data Spaces: First Applications in Mobility and Industry”.
In: Designing Data Spaces: The Ecosystem Approach to
Competitive Advantage. Ed. by Boris Otto, Michael ten Hom-
pel, and Stefan Wrobel, pp. 493–511. DOI: 10.1007/978-3-
030-93975-5_30.

Daniel McCarney (2017-06). “A Tour of the Automatic Certifi-
cate Management Environment (ACME)”. In: The Internet
Protocol Journal 20.2, pp. 2–14.

Deutsches Institut für Normung, ed. (2019). Asset Adminstration
Shell Reading Guide. 1st edition. ISBN: 978-3-8007-4990-4
978-3-410-28919-7.

IEC 63278-1 (2022-06-17). DIN EN IEC 63278-1: Asset Ad-
ministration Shell for Industrial Applications - Part 1: Ad-
ministartion Shell Structure.

Emin Topalovic et al. (2012). Towards Short-Lived Certificates.
FMI V3 (2023). Functional Mock-up Interface Specification

v3.0. URL: https : / / fmi - standard .org /docs /3 .0/ (visited on
2023-01-06).

Hedda Massoth (2022-11-21). Catena-X Operating Model
Whitepaper, Release V2. URL: https://catena-x.net/fileadmin/
user_upload/Publikationen_und_WhitePaper_des_Vereins/
CX_Operating_Model_Whitepaper_02_12_22.pdf.

IEC 29500 (2012-09-01). ISO/IEC 29500-2: Open Packaging
Conventions.

Jean-Philippe Aumasson et al. (2008). “Sha-3 Proposal Blake”.
In: Submission to NIST 92.

Johannes Mezger et al. (2011-07). “Protecting Know-How
in Cross-Organisational Functional Mock-up by a Service-
Oriented Approach with Trust Centres”. In: 2011 9th IEEE
International Conference on Industrial Informatics, pp. 628–
633. DOI: 10.1109/INDIN.2011.6034951.

Keith Eugene Maskus (2000). Intellectual Property Rights in the
Global Economy. Peterson Institute.

Michael Klooß, Anja Lehmann, and Andy Rupp (2019).
“(R)CCA Secure Updatable Encryption with Integrity Pro-
tection”. In: Advances in Cryptology – EUROCRYPT 2019.
Ed. by Yuval Ishai and Vincent Rijmen. DOI: 10.1007/978-3-
030-17653-2_3.

Olaf Graeser et al. (2011). “AutomationML as a Basis for Of-
fline and Realtime Simulation - Planning, Simulation and
Diagnosis of Automation Systems:” in: Proceedings of the
8th International Conference on Informatics in Control,
Automation and Robotics, pp. 359–368. DOI: 10 . 5220 /
0003537403590368.

Rainer Drath (2021-07-19). AutomationML: A Practical Guide.
Walter de Gruyter GmbH & Co KG. 290 pp. ISBN: 978-3-11-
074623-5.

Rainer Drath, Markus Rentschler, and Michael Hoffmeister
(2019-09). “The AutomationML Component Description in
the Context of the Asset Administration Shell”. In: 2019 24th
IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), pp. 1278–1281. DOI: 10 .
1109/ETFA.2019.8869214.

Rajeev Sobti and G Geetha (2012). “Cryptographic Hash Func-
tions: A Review”. In: International Journal of Computer Sci-
ence Issues (IJCSI) 9.2, p. 461.

Roberto Minerva, Gyu Myoung Lee, and Noel Crespi (2020-10).
“Digital Twin in the IoT Context: A Survey on Technical Fea-
tures, Scenarios, and Architectural Models”. In: Proceedings
of the IEEE 108.10, pp. 1785–1824. DOI: 10.1109/JPROC.
2020.2998530.

Ronald L. Rivest (1998). “Can We Eliminate Certificate Re-
vocation Lists?” In: Financial Cryptography. Ed. by Rafael
Hirchfeld. Red. by Gerhard Goos, Juris Hartmanis, and Jan
Van Leeuwen. Vol. 1465, pp. 178–183. DOI: 10 . 1007 /
BFb0055482.

Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman (1978-
02-01). “A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems”. In: Communications of the ACM
21.2, pp. 120–126. DOI: 10.1145/359340.359342.

Sharon Boeyen et al. (2008-05). Internet X.509 Public Key In-
frastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280. DOI: 10.17487/RFC5280.

Simson Garfinkel (1995). PGP: Pretty Good Privacy. "O’Reilly
Media, Inc." 442 pp. ISBN: 978-1-56592-098-9.

Stefan Tillich et al. (2009). “Compact Hardware Implementa-
tions of the SHA-3 Candidates ARIRANG, BLAKE, Grøstl,
and Skein”. In: Cryptology ePrint Archive.

SSP (2022-07-25). System Structure and Parametrization V
1.0.1.

Thomas Agrikola (2021). “On Foundations of Protecting Com-
putations”. PhD thesis. Karlsruher Institut für Technologie
(KIT). 281 pp. DOI: 10.5445/IR/1000133798.

https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.17487/RFC2633
https://github.com/christianlupus-phd/Prototype-AMLX-checker
https://github.com/christianlupus-phd/Prototype-AMLX-checker
https://doi.org/10.1007/978-3-030-93975-5_30
https://doi.org/10.1007/978-3-030-93975-5_30
https://fmi-standard.org/docs/3.0/
https://catena-x.net/fileadmin/user_upload/Publikationen_und_WhitePaper_des_Vereins/CX_Operating_Model_Whitepaper_02_12_22.pdf
https://catena-x.net/fileadmin/user_upload/Publikationen_und_WhitePaper_des_Vereins/CX_Operating_Model_Whitepaper_02_12_22.pdf
https://catena-x.net/fileadmin/user_upload/Publikationen_und_WhitePaper_des_Vereins/CX_Operating_Model_Whitepaper_02_12_22.pdf
https://doi.org/10.1109/INDIN.2011.6034951
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.5220/0003537403590368
https://doi.org/10.5220/0003537403590368
https://doi.org/10.1109/ETFA.2019.8869214
https://doi.org/10.1109/ETFA.2019.8869214
https://doi.org/10.1109/JPROC.2020.2998530
https://doi.org/10.1109/JPROC.2020.2998530
https://doi.org/10.1007/BFb0055482
https://doi.org/10.1007/BFb0055482
https://doi.org/10.1145/359340.359342
https://doi.org/10.17487/RFC5280
https://doi.org/10.5445/IR/1000133798

	Introduction
	Preliminaries
	Functional Mockup Units
	Digital Twin and Meta Models
	Security
	Hashing
	Asymmetric Cryptography and Keys
	Certificates and PKI

	Intellectual Property

	Problem Formulation
	Concerns of Model Provider
	Concerns of Model User
	General considerations

	Attack vectors
	Abstract Solution Approaches
	Alternatives considered
	Classical transport with cryptography
	Callback in FMU
	Storage of hash in CN

	Proposed Solutions
	Adaption in a layered FMI standard
	Externally in the Network
	Embedding in a Digital Twin
	FMI as Open Document

	Prototype
	Further Work
	Summary

