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Abstract
The calibration of models against measurement data is im-
portant to ensure model dynamics that are close to its real-
world system. Derivative-free minimizing methods can be
used for any model calibration regardless of continuous
differentiability requirements, and find a (local) minimum
in a reasonable number of iteration steps.

A user-friendly, python-based calibration Dash app to
use with the cloud-based Modelica platform Modelon Im-
pact is introduced. Basic calibration setup is done through
the GUI of the app and graphical feedback (i.e. plots) is
provided.

Two example calibrations are shown: A mechanical Fu-
ruta pendulum that only uses Modelica Standard Library
components is calibrated against real-world measurement
data, and a low-fidelity heat exchanger testbench model
that uses Modelon’s Air Conditioning Library is calibrated
against a corresponding high-fidelity model.
Keywords: calibration, Modelon Impact, Dash, Nelder-
Mead, Modelica, Air Conditioning Library, optimization

1 Motivation
Physical modeling can be used to optimize existing sys-
tems, predict the behaviour of a system under different
boundary conditions, or design new systems.

When working with a system that exists in the real
world, it is important that the system model shows the
same dynamic behavior as the existing, real-world system
with reasonable accuracy. This requires model calibration
of relevant system parameters using real-world measure-
ment data.

When working on the detailed design of a complex
component, it is common to use testbenches with a high-
fidelity model. The finalized model is then integrated in a
larger system model. Often, this requires to switch from
a high-fidelity to a low-fidelity model to allow for rea-
sonable computation times. The uncalibrated low-fidelity
model can behave differently from the high-fidelity model.
Therefore, it is required to calibrate the low-fidelity model
using high-fidelity model simulation data.

2 Optimization
Following Olsson, Mattsson, and Elmqvist (2006), we can
mathematically describe the general problem with a num-
ber of measured/simulated inputs vi, outputs wi, and a re-

lation between them

wi = m(p,vi) (1)

where m() describes our model function, and p describes
system parameters. The goal of the optimization problem
is to minimize the residuals by finding the optimal set of
parameters p:

ri(p) = m(p,vi)−wi (2)

Typically, we are interested in more than one residual.
Therefore, we can weight and combine all of the residuals
into one scalar to be minimized:

f (p) = ∑
i

kir2
i (p) (3)

where ki is a weighting factor. Note that here the least
squares formulation is used. The choice of good weight-
ing factors is difficult. Finding good weighting factors has
to be done with the problem formulation in mind and a
good understanding of the underlying equations. It is also
possible to formulate it using the square root or even cus-
tom error functions. Our optimization problem can then
be represented as

f (popt)≤ f (p) (4)

with f as our objective function, and popt as the optimal
set of parameters. In this case, p can be the set of all possi-
ble design parameters and therefore the equation describes
the global optimum. This is typically unfeasible to solve
for. In the following, it is assumed to solve for a local
optimum.

There are different methods and approaches to find the
optimal solution for the problem at hand.

Normally, a sensitvity analysis is carried out prelimi-
nary to a calibration. This will not be discussed here.

In the following subsections, three optimization meth-
ods are described.

2.1 Parameter Sweep
A parameter sweep is a simple method where simulations
are run repeatedly with a range of different parameter val-
ues. The batch of simulation results (outputs) can then be
compared to the target data (inputs). Using a compare al-
gorithm or visualization tools, parameters can be picked.



Since each simulation run with a set of parameters is in-
dependent from the others, each can be run completely in
parallel. This method does not pose any model restrictions
in terms of continuity, differentiability and/or events.

As picking the set of parameters is not based on an op-
timization algorithm, it is unlikely to find an optimal solu-
tion within a reasonable number of iteration steps.

2.2 Advanced Methods
For the advanced methods, picking a set of parameters fol-
lows a certain pattern. Typically, after a few initializing
simulation runs, the next set of parameters is picked based
on previous results and/or on (local) derivatives. Whether
derivatives are used or not has different implications for
the model architecture and end applications. This iterative
process continues until a termination condition is met, e.g.
the difference of the objective function results from con-
secutive simulation runs falls below a threshold.

In general, it is recommended to give bounds to the sys-
tem parameters. Otherwise, it is possible to find a mathe-
matically optimal solution which is unphyscial (e.g. neg-
ative joint friction) or economically not feasible (e.g. heat
exchanger with the size of a space ship). Since the min-
imization can be sensitive to the choice of initial param-
eter sets, it is common to run the optimization method of
choice several times with different initial parameters.

2.2.1 Derivative-free Methods

Derivative-free methods involve algorithms that work
without using derivatives. The methods can be catego-
rized depending on the type of method and shape of ob-
jective function. For an extensive overview see Larson,
Menickelly, and Wild (2019).

A prominent example is the Nelder-Mead method
(Nelder and Mead 1965) which uses n+ 1 test points ar-
ranged as a simplex for an optimization problem with n
parameters. By reflection, expansion, inner contraction
and shrinkage of the simplex (see Figure 1), a local min-
imum can be found. For a description with an example

Figure 1. Nelder-Mead simplex operations: original simplex,
reflection, expansion, inner contraction, and shrinkage (Larson,
Menickelly, and Wild 2019).

implementation in C see Press et al. (1992).
Other examples of derivative-free optimization meth-

ods are the Powell method (see Powell (1964)) and the
further developed COBYLA method (see Powell (1994)).

Since the objective function is not required to be contin-
uous and differentiable, derivative-free optimization meth-

ods can be applied to any function. This is especially use-
ful for complex models in Modelica that involve model
discontinuities (such as media phase changes) or events.
As opposed to the parameter sweep, with these methods
it is more likely to find a (local) optimal solution with a
limited number of iteration steps. Depending on the used
algorithm, parts of the implementation can be parallelized,
e.g. the calls to the objective function within one iteration
of the Nelder-Mead algorithm.

For (two times) continuously differentiable objective
functions, these methods can be inefficient to find the (lo-
cal) minimum.

2.2.2 Derivative-based Methods

Derivative-based methods involve algorithms that use
derivatives of the objective function. This means our un-
derlying system model needs to be continuously differen-
tiable or have even stricter requirements. Depending on
the used method it might also be necessary to explicitly
give the derivative in form of the Jacobian as an extra in-
put.

This sub-category of optimization methods can for ex-
ample be used for techno-economic assessments of well
formulated system models (Köppen et al. 2022). Since our
focus is the calibration of general mechanical and thermal
applications, regardless of differentiability and continuity,
further explanation of derivative-based methods is left out.

2.3 Existing Frameworks
In this subsection, some existing frameworks are intro-
duced. One of them has been tested with the thermal ap-
plication described below. The others serve as a reference
for an interested reader to test and compare.

All of the introduced frameworks use functional mock-
up units (FMU) and work in a python environment. This
makes the user independent from Modelica tools, but is
as a stand-alone workflow less integrated in the modeling
process.

ModestPy

ModestPy (see Arendt et al. (2018)) is a discontinued
open-source python package for parameter estimation
in FMUs. Available algorithms are genetic algorithm,
(legacy) single-process genetic algorithm, pattern search
and some SciPy solvers. These methods can be used in a
sequence within the framework, which makes it a power-
ful framework. It outputs several plots that help to analyze
the results and parameter interdependencies. The whole
package is command line based and changes to the setup
are done in the python code. There is no direct graphical
interface.

For an inexperienced user, the framework can be dif-
ficult to use even for simple applications. Without the
knowledge of the different algorithms and how to effec-
tively use them sequentially, this framework can be too
complicated.



EstimationPy

Similarly to ModestPy, EstimationPy (see EstimationPy
(2023)) is a Python package for the estimation of state
and parameters of dynamic systems that conform to FMI
standard. It uses the packages NumPy and SciPy for
the computation , is compatible with Pandas DataFrames
and DataSeries and relies on PyFMI and Assimulo to run
the model simulations. It goes beyond typical calibration
problems, such as model-based fault detection. It also
gives the user the option to use Kalman filter to solve
state estimation problems. The whole package is com-
mand line based and changes to the setup are done in the
python code. There is no direct graphical interface.

For an inexperienced user, the package can be difficult
to use even for simple applications.

AixCaliBuHA

AixCaliBuHA (see Wüllhorst et al. (2022)) is a framework
that aims at automatizing the process of calibrating models
used in Building and HVAC simulations. As opposed to
the aforementioned python packages, this framework has
a focus on calibrating models. It includes the capability to
perform a sensitivity analysis and several visualization op-
tions that help to analyze the results. For the optimization
method, it is possible to choose between SciPy’s differ-
ential evolution method, SciPy’s minimize methods, and
dlib’s minimize (implemented in C++). The whole pack-
age is command line based and changes to the setup are
done in the python code. There is no direct graphical in-
terface.

For an inexperienced user, the package can be difficult
to use even for simple applications.

This framework was tested with the thermal application
described here and delivered reasonable results.

3 Technical setup
In the following, the general calibration setup for two dif-
ferent models - one mechanical and one thermal - is out-
lined. The model specific setup is described in section
section 4.

On the modeling side, the cloud-based platform
Modelon Impact is used. It is not necessary to manually
convert the model into a FMU. There are no specific
requirements to the model itself. A python-based
dashboard app created in Dash (https://dash.plotly.com)
connects to Modelon Impact using the Impact Python
Client (https://github.com/modelon-community/impact-
client-python). The dashboard uses the client to set up
the workspace, get and set parameter values and compile
and run the model. Dash is low-code frameowrk to build
data apps in Python. The used optimization algorithm is
the Nelder-Mead algorithm that is one method included
in scipy.optimize.minimize. Note that it is also
possible to use the Powell or Cobyla method from the
same python module or differential_evolution, as
these are derivative-free methods as well. The underlying

objective function is constructed as the sum of the
squared error over the time window for the calibration. A
simplified graph of the base setup can be seen in Figure 2.

Figure 2. Simplified graph of software setup.

4 Applications
The calibration app is structured with three tabs: Model,
Measurement, and Calibration.

The Model tab is used to pick a workspace that is stored
in the user’s Modelon Impact account, and the model of
interest inside that workspace. The picked model is then
to be compiled and simulated for an adjustable stop time.
For verification, model variables can be plotted.

The Measurement tab is used to load in the measure-
ment data. Allowed formats are .mat and .csv. For ver-
ification, the data can be plotted.

The Calibration tab is used for the actual calibration
process. Model variables of interest (output wi as in sec-
tion 2) are assigned manually to the corresponding mea-
surement variable (input vi as in section 2). The vari-
ables can be weighted (weight ki in section 2). The rel-
evant system parameters (p in section 2) are picked and
the bounds can be assigned as well as a nominal value
which serves as start value. It is possible to pick mul-
tiple system parameters for a single calibration. In the
following examples, only two parameters are picked for
each application. Note that with each extra parameter, the
number of iteration steps will increase and thus can be-
come unfeasible to solve the calibration within a reason-
able amount of time. The calibration time interval can
be picked and finally the calibration algorithm is started.
When the calibration is finished, a plot shows the nominal
model variables, measurement variables and the calibrated
model variables. The nominal and calibrated simulation
run results are stored in the model in Modelon Impact.

4.1 Mechanical
A real-world furuta pendulum is modeled in Modelica.
For the model to show the same behavior as the real-world
system a calibration is necessary.

The Furuta pendulum consists of an arm rotating in the
horizontal plane and a pendulum which is free to rotate
in the vertical plane. The construction has two degrees
of freedom, the angle of the arm, ϕ , and the angle of the
pendulum, θ . The real-world system is shown in Figure 3.

The corresponding Modelica model is modeled using
Modelica Standard Library components only. The rev-
olute joint armJoint is connected to the world com-
ponent and the horizontal arm, and allows rotational



Figure 3. Photograph of Furuta pendulum.

movement in the global y-axis. Another revolute joint,
pendulumJoint, connects the horizontal arm with the
vertical pendulum, and allows rotational movement in the
local x-axis. Both revolute joints are connected through
their axis flange to a bearing friction component to allow
friction modeling. The model can be seen in Figure 4.

Figure 4. Modelica model of Furuta pendulum.

Experimental data of the real-world pendulum is used
for the calibration (input vi as in section 2). Variables of
interest are arm angle ϕ , and the pendulum angle θ .

Correspondingly, model variables of interest (output
wi as in section 2) are the angle of the arm joint

Figure 5. Furuta calibration setup in the calibration app’s GUI.

armJoint.phi, and the angle of the pendulum joint
pendulumJoint.phi. Both variables are weighted
equally with factor 1.

The parameters of interest for the calibration pro-
cess are the bearing friction coefficient for the arm
joint armFriction, and the bearing friction coeffi-
cient for the pendulum joint pendulumFriction. For
armFriction, we use 0.012 as nominal value, and for
pendulumFriction we use 0.002 as nominal value. For
both parameters, we set the bounds as 0 and 0.9.

Calibration time interval is set from approximately 0 to
35 seconds.

An overview of all the settings in the calibration app
can be seen in Figure 5.

It took 27 iteration steps to find a local minimum at

armFriction= 0.010125 (5)
pendulumFriction= 0.00117 (6)

Figure 6 and Figure 7 respectively show the the arm angle
and the pendulum angle over time for the experimental
data, and the nominal and calibrated case of the model.

In comparison to the uncalibrated model, we can
see that the result of the calibrated model is in good
agreement with the experimental data. The value of the
objective function has decreased from 1.645 ·102 to 2.729.



Figure 6. Arm angle over time curves of experimental data
(green), and nominal (blue) and calibrated case (orange) for sys-
tem model.

Figure 7. Pendulum angle over time curves of experimental data
(purple), and nominal (red) and calibrated case (light blue) for
system model.

4.2 Thermal
A heat exchanger was designed as a high-fidelity model.
This heat exchanger is now to be used in a complex system
model requiring fast respond times. This requires a com-
putationally less expensive model, a low-fidelity model.
For the low-fidelity model to show the same behavior as
the high-fidelity model, a calibration is necessary.

In our example, we are using a testbench model for mi-
crotube heat exchanger models from Modelon’s Air Con-
ditioning Library (see Figure 8). A testbench is a type of

Figure 8. Testbench model for a microtube heat exchanger
model using Modelon’s Air Conditioning Library.

model that focuses on a single complex component. Ade-
quate boundary conditions in the form of sources and sinks
are connected to complex model that is to be tested. In this

case, a heat exchanger is connected to a source and sink
for the air and refrigerant side respectively. Except for the
air sink, each source and sink is connected to a ramp signal
for each variable. Since we are interested in the dynamic
behavior, the boundary conditions (i.e. all ramp signals)
are configured to change within 170 seconds starting with
the first boundary condition after 60 seconds.

The low-fidelity heat exchanger testbench model ex-
tends the testbench model for the high-fidelity heat ex-
changer. The difference between the two testbench mod-
els is the pressure correlation of the refrigerant side
in the heat exchanger model. The high-fidelity model
uses PlossCommon, which is a Reynolds-based two-
phase pressure loss model for laminar and turbulent
flow based on Friedel (1979). The low-fidelity model
uses DensityProfilePressureLossHX, which is a
distributed pressure loss model for two-phase fluids using
a density profile.

Measurement data (input vi in section 2) is gener-
ated from the high-fidelity testbench model. Variables
of interest are the pressure drop on the refrigerant side
dp_ref, and the total heat flow on the refrigerant side
Qdot_refTotal. Correspondingly, low-fidelity model
variables of interest (output wi in section 2) are the same:
Pressure drop on the refrigerant side dp_ref, and the total
heat flow on the refrigerant side Qdot_refTotal. Both
variables are weighted equally with factor 1. Note that
with the given problem, we could also give the pressure
drop a higher weighting factor as the heat flow.

The parameters of interest for the calibration process
are four calibration factors for the corresponding correla-
tion equations:

1. CF_RefHT, for heat transfer correlation on refriger-
ant side.

2. CF_AirHT, for heat transfer correlation on air side.

3. CF_Refdp, for pressure loss correlation on refriger-
ant side.

4. CF_Airdp, for pressure loss correlation on air side.

A preliminary investigation showed that only the calibra-
tion factors for the refrigerant side are relevant for this par-
ticular case. This makes sense, as we are changing the
pressure loss correlation only on the refrigerant side, and
our variables of interest are on the refrigerant side. For
both parameters, we use 1.0 as nominal value. We set the
bounds to 0.1 and 5.

Calibration time interval is set from approximately 50
to 200 seconds. This is to not capture the initial transient,
and to allow enough time for the system to reach a steady-
state before the ramp signal steps are activated.

An overview of all the settings in the calibration app
can be seen in Figure 9.



Figure 9. Heat exchanger calibration setup in the calibration app’s GUI.

Figure 10. Pressure drop over time curves for high-fidelity
model (green), and nominal (blue) and calibrated case (orange)
for low-fidelity model.

It took 117 iteration steps to find a local minimum at

CF_RefHT= 3.139 (7)
CF_Refdp= 1.422 (8)

Figure 10 and Figure 11 respectively show the pressure
drop and total heat flow over time for the high-fidelity
model, and the nominal and calibrated case of the low-
fidelity model.

In comparison to the uncalibrated model, we can see
that the result of the calibrated low-fidelity model is closer
to the results of the high-fidelity model. The value of the
objective function has decreased from 1.495 ·109 to 4.029 ·
107.

However, it is also visible that the calibrated low-
fidelity model parameterization requires more optimiza-
tion. Including other system parameters can help to find
a parameterization that follows the results of the high-
fidelity model more closely. The underlying correlation of
the low-fidelity model uses 4 extra parameters (pressure,
enthalpy, mass flow, pressure drop) that can be adjusted to
match the steady-state solution of the high-fidelity model.

Figure 11. Heat transfer over time curves for high-fidelity
model (purple), and nominal (red) and calibrated case (light
blue) for low-fidelity model.

This way, the nominal solution is closer to the high-fidelity
solution and potentially less iteration steps are required to
get a more optimized solution.

In a further step, different start values could be picked
and/or different minimizing methods (i.e. Cobyla or Pow-
ell) could be picked, to verify whether a global minimum
within the bounds was found. These next steps are not
discussed here.

5 Conclusion
Derivative-free minimization methods are a good way to
calibrate system models, as these methods do not set strict
requirements on the model architecture and find a (local)
optimal solution in a reasonable number of iteration steps.
To verify that an optimal solution is found with little com-
putational effort, it is recommended to do a sensitivity
analysis, run several calibration runs with different start
values and use different minimization methods, such as
Nelder-Mead, Powell, and Cobyla.

Using a Dash app and scipy.optimize.minimize,
it is possible for a user with limited knowledge to cal-



ibrate Modelica models against measured or simulation
data with the Nelder-Mead method. This can be used inde-
pendently from the physics domain. The reliability of the
results can be improved by implementing an automization
and parallelization of the calibration runs with different
start values and minimization methods.
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