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Abstract
This article examines the consequences of introducing a
new language construct into an equation-based language
to model infinitely fast processes. We do this by extending
the equation-based language Modelica with a special time
constant, Θ. Θ provides modelers with an additional lan-
guage construct that they can utilize both to improve the
performance of numerical integration for existing models
as well as express and simulate models that existing tools
may struggle with. In this paper we exemplify this with
two examples. The first is an artificial DAE-System using
a monotonic function; the second is an electrical circuit
with and without a parasitic capacitance.

Based on our observations, we believe that by enabling
modelers to express common idealizations using Θ we can
improve both performance and maintainability. This is the
case since it is possible to express the relevant idealiza-
tions can now be expressessd using Θ and are thereby ex-
plicitly encoded in the model.
Keywords: continuous system modeling, Modelica, mod-
eling, nonlinear systems, simulation

1 Introduction
In the context of Modeling and Simulation (M&S) a com-
monly used modeling language is the Modelica Language
which enables modelers to model complex systems using
object orientation and equations to represent various phys-
ical components. By using equations, the Modelica lan-
guage can model any domain that can be expressed using
equations. The goal of the language is to provide mod-
elers with the necessary abstractions to express complex
cyber-physical systems.

However, modeling complex cyber-physical systems
is a challenging task, and when designing such systems
modelers frequently utilize idealization techniques in or-
der to formulate models that can be simulated efficiently.
Still, as of this writing, there are some techniques common
in modeling practice that the Modelica language, and, ac-
cording to our best knowledge and mainstream equation-
based languages in general, do not support.

One such idealization technique is the method of Ar-
tificial States where the modeler extends the dynamics of

systems by introducing additional state variables and asso-
ciated equations, and in that way, reducing the complexity
of the resulting nonlinear equation system, allowing effi-
cient and reliable solving.

The use of artificial states is generally seen as malprac-
tice in the modeling community, however, Zimmer (2013)
provides recommendations concerning how M&S frame-
works, and consequently equation-based modeling lan-
guages, can be extended such that modelers may express
this idealization explicitly.

This idea is further expanded upon in (Zimmer 2014),
where he proposes an augmentation to existing equation-
based languages by introducing a new time constant, Θ.

1.1 Motivation

While the method proposed by Zimmer has been previ-
ously discussed and suggestions for implementing it have
been described in (Zimmer 2013; Zimmer 2014), it has not
yet been integrated into any mainstream equation-based
language. In this article, we investigate the method ini-
tially proposed by Zimmer empirically. Hence, we aim
to provide additional insights concerning the applicabil-
ity Θ in pratice. We do this by examining and discussing
the practical consequences of integrating these concepts
into the equation-based language Modelica and provide
details concerning how to integrate it in compilers for
equation-based languages. To illustrate the concept we use
a common modeling scenario with a nonlinear circuit and
a DAE-System that existing Modelica environments have
difficulties solving.

1.2 Organization

The remainder of this article is organized as follows: Sec-
tion 2 further expands on the background provided in the
introduction by discussing Θ and summarizing the math-
ematical background. We then provide details concern-
ing how to extend a Modelica Simulation environment by
adapting the structural transformation phases to accom-
modate this new operator in Section 3. Section 4 presents
the results using the proposed new operator, and Section
5 presents additional related work. Finally, the conclusion
is presented in Section 6.



2 Handling infinitely fast processes in
continuous system modeling

In an equation-based language, the system of equations of
the final system that is to be simulated is derived by col-
lecting and merging the equations resulting from the com-
ponents of some model. Systems in the following form
are typical:

dx
dt

= f (x,u, p, t)

where x is the set of state variables, u is the set of alge-
braic variables, and p is a vector representing parameters
and constants. These systems consisting of both algebraic
and differential equations are called DAEs. Compilers for
equation-based languages such as Modelica translate such
systems into executable code for simulation by techniques
such as index reduction and topological sorting of the de-
pendencies between its constituent parts.

Figure 1. A sketch on how simulation code might look for a
model that contains algebraic loops.

Due to the presence of algebraic loops, such systems
may contain a nonlinear subsystem of equations and a sys-
tem of ordinary differential equations. Figure 1 illustrates
how a DAE-System might be translated by a model com-
piler. In this example, the part of the system that can
be fully causalized is denoted the Algebraic Equation
Block. Following this block is the Algebraic (Nonlinear)
Equation Block. This block represents a nonlinear sys-
tem of algebraic equations, caused by the existance of al-
gebraic loops in the underlying model. Finally, in this ex-
ample is the block of the differential equations, the State
Equation Block.

Zimmer (2014) argues that a common occurrence in
modeling practice is a system where parts of a system con-
verge faster than others and provide the following exam-
ple: 

dx
dt

= fx(x,y,u, t)

dy
dt

= fy(x,y,u, t)
(1)

In Equation 1, we assume that the process involves the
state variable x, and converges faster than the process as-
sociated with the state variable y. Here, u denotes a set of

algebraic variables. If we assume that the system in Equa-
tion 1 is stiff, and that the modeler is not interested in the
dynamics of x a possible idealization is the system defined
in Equation 2: 

0 = fx(x,y,u, t)
dy
dt

= fy(x,y,u, t)
(2)

In this case, the dynamics of the state variable x have been
removed to make the system easier to solve. However, in
this case we need to solve the nonlinear system:

0 = fx(x,y,u, t)

The modeler, Zimmer (2014), argues, has to choose be-
tween two alternatives, either a stiff model represented by
Equation 1 or a model with a possibly complex nonlin-
ear system as in Equation 2. Zimmer (2014), argues that
this selection is often made pragmatically; hence, once the
modeler selects one alternative, the choice is not explicitly
encoded in the model code. Consequently, future mod-
elers that are to maintain such a model might not know
that an idealization has been made, which arguably, makes
maintenance more difficult.

Instead, Zimmer (2014) proposes the inclusion of a uni-
versal time constant, denoted Θ for equation-based lan-
guages to make this idealization explicit. Using this ap-
proach, Equation 1 can be formulated as follows:

dx
dt
·Θ = fx(x,y,u, t)

dy
dt

= fy(x,y,u, t)
(3)

In Equation 3 the modeler explicitly expresses that
dx
dt ·Θ = fx(x,y,u, t) is an infinitely fast process. Conse-
quently, this entails that the part of the system dependent
on Θ is to be solved by means of a sub-simulation1. In
other words, if Θ is used as in Equation 3, the system
should be solved as in Equation 4. Where a sub-simulation
provides the x̂ value, by solving the differential equation
dx̂
dt = fx(x̂,y,u, t, t̂) where the state variable y, the variables
in u and the global time2 are treated as constants. Here, t̂
is the artificial time used by the sub-simulation to model it
as a infinitely fast process.

For additional details and mathematical background
concerning Θ we refer to (Zimmer 2014).

0 = fx(x̂,y,u, t)
dy
dt
·Ty = fy(x,y,u, t)

(4)

1In the article Handling infinitely fast processes in continuous sys-
tem modeling (Zimmer 2014), this is described to be solved by a con-
tinuation solver.

2The time t of the main simulation.



model DAE_Example
Real x(start = 1.0);
Real y;
Real a;

function s
input Real a;
output Real oa;

algorithm
if (a < -1) then

oa := a/4 -3/4;
elseif (a > 1) then

oa := a/4 + 3/4;
else

oa := a;
end if;

end s;
equation
der(x) = y;
der(y) = -0.1*a - 0.4*y;
der(a) = (10*x - s(a));

end DAE_Example;

Listing 1. A first attempt of a Modelica implementation of
Equation 5.

2.1 Example 1: A Differential Algebraic
Equation System

We turn now to a more concrete example of the previous
discussion to exemplify how Θ can be used in the context
of Modelica. Later in Section 4, we provide an example
on how Θ may be used to significantly speed up simula-
tions, and arguably, make models more maintainable by
allowing modelers to explicitly state their intent. In Zim-
mer (2013) the following system is given:

f (x,y,a, t) =



dx
dt

= y

dy
dt

=−0.1a−0.4y

dx
da

= 10x− s(a)

(5)

With the monotonic increasing function s defined as:

s(a) =


a−4−3/4 if a <−1

a/4+3/4 if (a > 1)∧¬(a <−1)
a otherwise

(6)

If we formulate a model for the system defined by
Equation 5 in the equation-based modeling language
Modelica, see Listing 1, we end up with a stiff system.
Still, if we attempt a similar idealization as described ear-
lier in this section we could do so by substituting dx

da =
10x− s(a) with 0 = 10x− s(a).

model DAE_Example2
Real x(start = 1.0);
Real y;
Real a;

equation
der(x) = y;
der(y) = -0.1*a - 0.4*y;
0 = (10*x - s(a));

end DAE_Example2;

Listing 2. An attempted idealization of the model in Listing 1,
the function s has been omitted.

With this change we can formulate the Modelica model
in Listing 2. If we attempt to simulate this system the
state-of-the-art OpenModelica Compiler (Fritzson et al.
2020) is unable to simulate it correctly due to the result-
ing nonlinear system, unless a very small step size is se-
lected. As discussed previously, this is clearly disadvanta-
geous since it requires manual adjustments of solver set-
tings. Furthermore, this impacts simulation performance
negatively since a very small step size is needed.

(Zimmer 2013), presents a clear use case for introduc-
ing an operator called balance. The similarities to Θ

means that it may be used in place of balance, much in
the same way. If we apply Θ to Equation 5 we get the
following system:

dx
dt

= y

dy
dt

=−0.1a−0.4y

dx
da
·Θ = 10x− s(a)

− (7)

The resulting Modelica model and the associated code
generation extensions needed for Θ will be discussed in
Section 3, and the simulation resuls are presented in Sec-
tion 4.

2.2 Example 2: Nonlinear Circuit
Let us now consider a less artificial example exemplified
by using two configuration examples of an electrical cir-
cuit model.

The first example in question is a nonlinear circuit with
a few diodes. The diodes are real diodes with an ex-
ponential voltage-current characteristic, not ideal diodes
with either zero voltage or zero current. The model
Circuit1Static, see Figure 2, has a series connec-
tion between the diodes and a large resistor. The result
of this connection is a very strongly nonlinear system of
equations. In this case the nonlinearity index (Casella and
Bachmann 2021), will be >> 1. As a consequence, if
simulated by the OpenModelica Compiler (Fritzson et al.
2020) the nonlinear algebraic equation solver experiences
convergence issues, causing the master ODE integration



Figure 2. An electrical circuit with a nonlinear system that is
difficult to solve. Model Circuit1Static.

Figure 3. An electrical circuit with a less complex non-
linear system due to the parasitic capacitance Cnl. Model
Circuit1Dynamic.

method to reduce the time step, and to eventually give up
after 0.015 seconds.

The second circuit Circuit1Dynamic, see Figure 3
solves the problem by connecting a small parasitic capaci-
tance between the diodes and the large resistor. The intro-
duction of an additional state variable to the model makes
the voltage at that node known at each time step during the
simulation, hence significantly easing the solution of the
system. Hence, by utilizing the method of artificial states,
we ensure that the simulation can proceed without issues.

To conclude, the examples in Subsection 2.1 and Sub-
section 2.2 exemplify how various idealizations might be
used in practice. Still, sometimes it might be difficult to
get the correct simulation results as exemplified in the dis-
cussion of Subsection 2.1. In other cases we can get a sys-
tem to simulate at the cost of introducing additional states.
However, and as previously discussed and argued by Zim-
mer (2014) this might be a future detriment in terms of
model maintainability. As we will see in Section 4, Θ may
be used to significantly speed up simulations in this case,
and arguably make the idealization more maintainable.

3 Implementation
In this section we present implementation details concern-
ing the introduction of Θ in a Modelica compiler.

3.1 OpenModelica.jl
We implemented the ideas presented in this paper in
OpenModelica.jl, a Julia-based Modelica Compiler (Tin-

nerholm, Pop, and Sjölund 2022). OpenModelica.jl is
written in the programming language Julia and supports
some experimental features not currently available in
mainstream Modelica Compilers. This compiler inte-
grates several Julia packages such as ModelingToolkit
(MTK) (Ma et al. 2021) and DifferentialEquations.jl
(Rackauckas and Nie 2017). The main feature of this
compiler being its modularization and extensions that in-
troduce support for Variable Structure System Modeling
for Modelica. As a part of this work a new code gener-
ator was written to export the intermediate representation
produced by MTK models to a more portable low-level
representation. Furthermore, we implemented support for
a significant subset of the Electrical Library of the Model-
ica Standard Library for this new code generator.

3.2 Extending Modelica with Θ

The typical compilation process of a compiler for an
equation-based language is to transform the provided
model into a suitable format for some solver. The general
process is described in Figure 4.

Figure 4. An illustration of a typical compiler pipeline for an
equation-based language. The frontend is similar to that of an or-
dinary compiler; it performs parsing, syntactical, and semantical
analysis of the input model. Finally, a compiler for an equation-
based language typically generates code targeting a solver such
as DASSL (Petzold 1982).

In principle introducing Θ involves only slight changes
to key parts of this process. First of all, Θ should not only
be used as a low-level operator; instead, Θ should be ap-
plicable in a non-invasive way such that the internal equa-
tions of models that it is applied to are untouched. Further-
more, Θ should be propagated and not be removed dur-
ing any optimization phase. As such, Θ should be avail-
able and taken into consideration by the various structural
transformation phases, such as sorting performed by the
compiler backend.

3.3 Preparing Code For Simulation
Zimmer (2014) provides an initial sketch for simulation
code generation when expanding an equation-based lan-
guage with Θ. In summary, the steps are as follows:

1. Treat Θ as an irreducible variable.

2. Analyze that Θ has been applied correctly.



3. Generate code for simulation with respect to how Θ

has been applied.

To provide initial support for Θ we implemented it as a
special parameter by introducing a new reserved keyword
THETA3. By reserving a name we can via static analysis
follow the def-use chains in the frontend and abstain from
removing the parameter during the backend optimization
phases. Hence, concerning the first step, we fulfill it by
omitting certain optimization phases such as not remov-
ing simple equations that have structural dependencies
on THETA. This means that Θ remains in the system of
equations, after the sorting, matching, and index-reduction
phases are completed.

The second step entails adhering to several constraints,
Zimmer (2014) proposes the following constraints:

1. The resulting system should be successfully bal-
anced.

2. The resulting system should be successfully causal-
ized.

3. Furthermore, each variable may be expressed as a
factor of Θn where n is an integer. Moreover, Θ

may not be used as a function argument for non-
linear functions such as sin, cos. Furthermore,
the variables in dx

dt should be multiplied by Θ or
Θ0, where multiplication by Θ indicates that sub-
simulation code should be generated for that vari-
able4

These requirements were fulfilled by augmenting the
compiler backend with additional checks before proceed-
ing with simulations, however, the check concerning in-
valid usage of Θ in nonlinear functions was omitted.

3.4 Generating code for state variables de-
pending on Θ.

As previously stated, variables in dx
dt should be multiplied

by either Θ or Θ0 where the first indicates that code repre-
senting an infinitely fast process should be generated for
that part of the system. For more mathematical detail con-
cerning the code generation for this process, we refer to
(Zimmer 2014).

To exemplify the current state of our code generator let
us consider the Modelica model in Listing 1. Using the
aforementioned new parameter THETA we can augment
our code and write a new model as in Listing 3.

The structural analysis is simple for the model depicted
in Listing 3. Code for a sub-simulation is generated for

der(a) * THETA = (10*x - s(a))

3We note that this might break existing models using parameters
with the same name, however, we use it in the initial implementation
to illustrate the concept.

4Θ0 means that Θ has not been applied.

model DAE_Example_THETA
Real a;
Real x(start = 1);
Real y;
parameter Real THETA = 1.0;

equation
der(x) = y;
der(y) = -0.1*a - 0.4*y;
der(a)*THETA = (10*x - s(a));

end DAE_Example_THETA;

Listing 3. A Modelica implementation of Equation 5, here the
function s is omitted.

For the main simulation, this equation is replaced with the
following nonlinear equation as described in Section 2:

0 = (10*x - s(a))

During the simulation, the sub-simulation is solved us-
ing the implicit Euler integration algorithm, providing x̂
for the main simulation. The current termination criterion
for the sub-simulation is running the artificial time t̂ from
t̂ = 0 until tcurrent

5. For a high-level description of the code
generated for the solvers, we refer to Algorithm 1 and Fig-
ure 5.

Algorithm 1 High-level description of the code generated
when translating the Modelica model in Listing 3.

function K(u)
Initialize x and y using u.
ox[1]← 10y[1]− s(x[1])

end function
function H(dy,y,u, t)

sub-simulation(u)
nonlinear-solve(k)
dy[1]← y[2]
dy[2]←−0.1x[1]−0.4y[2]

end function
function SUB-SIMULATION(u)

extract x from u.
solve da

dt = 10 · x− s(a)
Update u, provide â for the main simulation.

end function
function SIMULATION-FUNCTION

Simulate by integrating the H function.
Report results.

end function

In general, however, the structural analysis needed, may
be more involved. Consider, the electrical circuit in Fig-
ure 3, just as in Listing 3 the model is a suitable candidate

5It should be noted that a dedicated algorithm to describe the sub-
simulation is presented in (Zimmer 2013). Compared to the algorithm
suggested in (Zimmer 2013) we currently take more steps in the sub-
simulations then necessary.



Figure 5. Graphical illustration of the simulation code generated
for a model with n non-nested subprocesses. Showing where Θ

appears in generated code, the Θ-processes supply the nonlinear
solver with initial values.

package CircuitTest
model ThetaCircuit2Dynamic

parameter Real THETA = 1.0;
extends Circuit1Static;
Capacitor Cp(C = 1e-12 * THETA);

equation
connect(Cp.n, ground.p);
connect(diode.n, Cp.p);

end ThetaCircuit2Dynamic;
end CircuitTest;

Listing 4. Modelica model showcasing how the Θ is used at
the top level of the component hierarchy. The components used
are from the Modelica Standard Library; the package paths have
been omitted.

for applying Θ. To illustrate how it can be applied to ex-
isting models without changing any equations at a lower
abstraction level consider the model depicted in Listing 4
where Θ is applied at the top level.



0 =Cp_v−R1_R_actual ·R1_i

0 = diode_i− (10−9(tmp53−1)− (10−8))diode_v
0 = D2_i+diode_i−D1_i

Cp_v
dt

=Cp_i/(10−12
Θ)

C1_v
dt

= 9999.99999999999 ·C1_i
(8)

When used as in Listing 4, the compiler initially gen-
erates the equations listed in Equation 8, then, the com-
piler starts Θ specific code generation. During this pro-
cess structural analysis is used to extract the processes that
should be run as sub-simulation from the resulting equa-
tions. This is achieved by using the following steps:

1. Construct a graph based on equation-variable depen-
dencies.

2. Extract equations were the Θ operator is used.

3. Extract the set of variables depending on Θ.

4. Return the strongly connected components of the
equation-variable dependency graph.

Figure 6. Excerpt of the dependency graph for
ThetaCircuit2Dynamic in Listing 4. The variables
that depend on Θ is marked in green, the other state is marked
in yellow.

The last step to extract the strongly connected compo-
nents uses Tarjans algorithm (Tarjan 1971). To illustrate
this process graphically we refer to Figure 6. We refer to
the algorithm in (Zimmer 2014) for a more formal descrip-
tion of the steps involved.

After the structural analysis, the compiler generates
Equation 9 for the main simulation process and Equa-
tion 10 for the sub-simulation.

0 =Cp_v−R1_R_actual ∗R1_i

0 = diode_i−10−9(tmp53−1)10−8diode_v
0 = D2_i+diode_i−D1_i

C1_v
dt

= 9999.99999999999 ·C1_i
(9)

Cp_v
dt

=Cp_i/(10−12
Θ) (10)



4 Simulation Results
In Section 3 we discussed the practical integration of Θ

in a Modelica compiler. In this section we will present
our findings concerning concrete practical benefits of us-
ing this new construct. We do so by presenting two moti-
vating examples, the first being a description of our results
when simulating the model in Listing 3. The second ex-
ample concerns simulation speedup when simulating the
circuit depicted in Figure 3 compared to the circuit using
Θ listed in Listing 4.

4.1 Simulating the DAE_Example
As discussed previously simulating DAE_Example with-
out Θ resulted in undeseriable results, see Listing 2 both
when using OpenModelica.jl and OpenModelica.

Figure 7. Simulation result showing the oscillation of x for List-
ing 2.

Figure 8. Simulation result showing the oscillation of x after
theta has been applied.

Simulating the model using Θ as done in Listing 3 pro-
duces the correct plot; see Figure 8. As we did not have
access to the original code nor to the model simulated as
the small application example in (Zimmer 2013) the initial
values of the system were assumed to be x0 = {1,0,0} for
x, a and y respectively.

4.2 Simulating the Dynamic circuit using Θ

As previously mentioned, simulating the static circuit de-
picted in Figure 2 resulted in failure for the nonlinear
solver.

Simulating the same system using the parasitic capac-
itance as depicted in Figure 3, leads to a successful sim-
ulation, however, the nonlinear system is complicated to
solve leading to the solver having to take several time steps
to integrate the system successfully, see Figure 9 for the
plot of C1.v for this circuit.

Figure 9. Simulation of C1.v for the circuit in Figure 3 using
Rodas5.

Using the method for code generation described in Sec-
tion 3 simulation code was successfully generated for the
model in Listing 4. We validated the solution of simu-
lating the system using an infinitely fast sub-simulation
by comparing the obtained results to the original results.
There were no notable differences between the two simu-
lations, see Figure 9 and Figure 10.

Figure 10. Simulation of C1.v for the circuit model in Listing 3
using Tsit5.



Similarly, to the DAE_Example using Θ for the cir-
cuit model permits using solvers for non-stiff problems
rather than stiff solvers such as DASSL (Petzold 1982).
In this example, we compare the results of simulating
Circuit1Dynamic using the following setup:

1. Simulating the System using the OpenModelica
Compiler with the DASSL solver.

2. Simulating the System using OpenModelica.jl, the
Julia-based Modelica Compiler with the Rodas5
solver6

3. Simulating the System using OpenModelica.jl, the
Julia-based Modelica Compiler using Θ and the Ro-
das5 solver.

4. Simulating the System using OpenModelica.jl, the
Julia-based Modelica Compiler using Θ with the ex-
plicit Tsit5 solver (Tsitouras 2011).

The simulations in the experiment had the absolute and
relative tolerance levels set to 1e−6. The experiment was
run on a Laptop with an AMD Ryzen 7 PRO 5850U with
Radeon Graphics and 32.0 GB internal memory, using
Microsofts Subsystem for Linux with version 5.10.102.1-
microsoft-standard-WSL2. In terms of software, the Ju-
lia version used was 1.9-RC1 and the version of Open-
Modelica was v1.21.0.

Table 1. Solver statistics when simulating the dynamic circuit
in Figure 3. CRodas refers to the simulation of the circuit without
using Θ with the Rodas5 solver. CΘRodas and CΘT SIT 5 refers to
the result of simulating the same circuit using Θ.

Statistic CRodas CΘRodas CΘT SIT 5

#Accepted Steps 109 36 39
#Rejected Steps 5 0 0
#Jacobians Created 109 36 0
#Linear Solves 912 288 0

The solver statistics for the models generated by the
OpenModelica.jl are available in Table 1. As expected,
we can see that using the Θ not only allows us to use ex-
plicit solvers such as Tsit5, it also reduces the amounts of
integration steps needed to complete the simulation.

It is interesting to also compare the results with respect
to the total simulation time for existing Modelica Compil-
ers. For this purpose, we also compared the result of run-
ning the simulation using the OpenModelica Compiler. To
benchmark the Julia code generated by OpenModelica.jl,
we used Benchmarking software (Chen and Revels 2016)
with the maximum number of samples set to 100. The
simulation time for the OpenModelica Compiler was ob-
tained by sampling the simulation statistics 10 times.

6https://docs.sciml.ai/DiffEqDocs/stable/solvers/ode_solve/ Ac-
cessed 2023-04-25.

Table 2. Simulation Statistics comparing the simulation
of Circuit1Dynamic using the OpenModelica Compiler
(OMC), and the results of running the same model using Θ with
the Julia-based Compiler, OpenModelica.jl (shorten to OM.jl in
the table). The sample mean, median and standard deviation of
the total simulation time are denoted x̂, M̂, and σ̂ respectively.

OMC (DASSL) M̂ x̂ σ̂

41.016ms 44.2496ms 11.984ms

OM.jl (Tsit5) M̂ x̂ σ̂

13.709ms 14.801ms 1.892ms

The results are presented in Table 2; from these results,
we can see that there is a clear speedup in the experimen-
tal compiler using this method, in this case, by about 2.9
times.

5 Related Work
The techniques discussed and implemented in this paper
were proposed in Zimmer (2013) and further elaborated
upon in Zimmer (2014).

A technique similar to the extension of the Modelica
language presented in this paper is the homotopy opera-
tor. The homotopy operator was added to the Modelica
language to provide an option for more robust initializa-
tion (Sielemann et al. 2011).

Artificial time integration in the context of Partial Dif-
ferential Equations has been proposed and investigated by
Ascher, Huang, and Van Den Doel (2007).

6 Conclusions and Future Work
In this article, we have demonstrated the usefulness of in-
troducing a new construct, Θ in the equation-based lan-
guage Modelica. We integrated support for Θ in OM.jl and
we used two examples with an associated microbench-
mark to illustrate its advantages. The example presented
in Subsection 4.1 illustrates how more robust simulations
can be achieved using Θ. The second example presented
in Subsection 4.2, shows how Θ may speed up the total
simulation time in models constructed using existing stan-
dard components.

However, several open questions remain unanswered.
The first question is selecting a suitable initial step size for
the sub-simulation. Currently, if the step size is too small
the solver will need to take many steps. If it is too long, it
corresponds to more or less to solving the algebraic equi-
librium equation outright; in that case, this method will
not be used.

Furthermore, the current implementation relies on the
implicit solvers provided by the MTK-ecosystem. This is
not optimal in this case because such solvers tend to re-
port failures late, whereas in this case failures should be
reported as early as possible. Moreover, such solvers save
intermediate values resulting in unnecessary high mem-

https://docs.sciml.ai/DiffEqDocs/stable/solvers/ode_solve/
https://docs.sciml.ai/DiffEqDocs/stable/solvers/ode_solve/


ory consumption furthermore it also compute them with
high precision and error control, which is not relevant in
this case, only the asymptotic result is. While using the
solvers from MTK worked for the example examined in
this paper, a specialized embedded algorithm should be
implemented instead.

An initial proposal of such an algorithm was proposed
in (Zimmer 2013). Still, we believe such an algorithm
could need further improvements. Improvements include
utilize heuristics to select a suitable initial step size. Using
an embedded subsimulation algorithm would also elimi-
nate the need to save intermediate values, hence, reducing
the memory footprint of the final simulation. As an exten-
sion to the work presented here further research should be
invested to design and implement specialized algorithms
and heuristics designed to be embedded for these pur-
poses.

In this paper, we used the circuit model
ThetaCircuit2Dynamic to illustrate how Θ could
be applied to an existing model, Circuit1Dynamic
listed in Listing 6, showing how existing models could
integrate this without changing any low-level implemen-
tation. However, we have yet to investigate how well this
new method scales when using nested sub-simulations.
Hence, we should investigate the practical effects on
larger models with more complex dependencies. This
should be done both to finetune a possible heuristic for
the initial step size of the sub simulations and gain even
more insight concerning the robustness of the method.

To conclude we have examined the consequences when
introducing a construct to an equation-based language to
express infinitely fast processes; our experiments in Sec-
tion 4 show clear net benefits of supporting Θ both in
terms of speed and accuracy for the models that we tested.
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A Models
This appendix contains the Modelica models of the cir-
cuits depicted in Figure 2, Figure 3. It also contains some
example models illustrating different ways the Θ opera-
tor can be used. In ThetaCircuit1Dynamic it is used as
a part of a low-level submodel, ThetaCapacitator and in
ThetaCircuit2Dynamic it is used in the topmost model to
enable efficient code simulation. The components used are
from the Modelica Standard Library; the package paths
have been omitted. The annotations have been omitted.

package DAE_Examples
function s
input Real a;
output Real oa;

algorithm
if (a < -1) then

oa := a/4 -3/4;
elseif (a > 1) then

oa := a/4 + 3/4;
else

oa := a;
end if;

end s;

model DAE_Example
Real x(start = 1.0);
Real y;
Real a;

equation
der(x) = y;
der(y) = -0.1*a - 0.4*y;
der(a) = (10*x - s(a));

end DAE_Example;

model DAE_Example2
Real x(start = 1.0);
Real y;
Real a;

equation
der(x) = y;
der(y) = -0.1*a - 0.4*y;
0 = (10*x - s(a));

end DAE_Example2;

model DAE_Example_THETA
Real a;
Real x(start = 1);
Real y;
parameter Real THETA = 1.0;

equation
der(x) = y;
der(y) = -0.1*a - 0.4*y;
der(a)*THETA = (10*x - s(a));

end DAE_Example_THETA;
end DAE_Examples;

Listing 5. The DAE Example models.

package CircuitTests
//Details and annotations are omitted
model Circuit1Static
extends Modelica.Icons.Example;
Ground ground;
StepCurrent stepCurrent(I = 1);
Capacitor C1(C(displayUnit = "uF") =

0.0001000000000000001);↪→
Resistor R1(R = 1000);
Diode D1(Ids = 1e-9, Maxexp = 40);
Diode D2(Ids = 1e-9, Maxexp = 40);
Diode D3(Ids = 1e-9, Maxexp = 40);
Diode diode(Ids = 1e-9, Maxexp = 40);

equation
connect(C1.n, ground.p);
connect(stepCurrent.p, ground.p);
connect(R1.n, ground.p);
connect(stepCurrent.n, C1.p);
connect(C1.p, D1.p);
connect(C1.p, D2.n);
connect(D2.p, D3.p);
connect(D1.n, D3.p);
connect(D3.n, diode.p);
connect(diode.n, R1.p);

end Circuit1Static;

model Circuit1Dynamic
extends Circuit1Static;
Capacitor Cnl(C (displayUnit = "F")=

1e-12);↪→
equation
connect(Cnl.n, ground.p)
connect(diode.n, Cnl.p)

end Circuit1Dynamic;

model ThetaCapacitator
extends OnePort(v(start=0));
parameter Capacitance C(start=1)

"Capacitance";↪→
parameter Real THETA;

equation
i = C*THETA*der(v);

end ThetaCapacitator;

model ThetaCircuit1Dynamic
extends Circuit1Static;
TestThetaMethod.ThetaCapacitator Cnl(C =

1e-12);↪→
equation
connect(Cnl.n, ground.p);
connect(diode.n, Cnl.p);

end ThetaCircuit1Dynamic;

model ThetaCircuit2Dynamic
parameter Real THETA = 1.0;
extends Circuit1Static;
Capacitor Cp(C = 1e-12 * THETA);

equation
connect(Cp.n, ground.p);
connect(diode.n, Cp.p);

end ThetaCircuit2Dynamic;

end CircuitTests;

Listing 6. The Circuit models discussing in Section 2.


	Introduction
	Motivation
	Organization

	Handling infinitely fast processes in continuous system modeling
	Example 1: A Differential Algebraic Equation System
	Example 2: Nonlinear Circuit

	Implementation
	OpenModelica.jl
	Extending Modelica with 
	Preparing Code For Simulation
	Generating code for state variables depending on .

	Simulation Results
	Simulating the DAE_Example
	Simulating the Dynamic circuit using 

	Related Work
	Conclusions and Future Work
	Models

