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Abstract
Neural Ordinary Differential Equations (NeuralODEs)
open up the possibility to enhance the modeling of dynam-
ical systems, in terms of prediction quality and computa-
tion time, as well as shortened development time. Port-
ing NeuralODEs, the combination of an artificial neural
network and an ODE solver, to real engineering applica-
tions is still a challenging venture. However, we will show
that Neural Functional Mock-up Units (NeuralFMUs), an
evolved subgroup of NeuralODEs that contain Functional
Mock-up Units (FMUs), are able to cope with these chal-
lenges. This paper briefly introduces to the topics Neu-
ralODE and NeuralFMU and describes the procedure and
considerations to apply this technique to a real engineer-
ing use case. Further, different workflows to apply Neu-
ralFMUs dependent on tool capabilities and use case re-
quirements are discussed. The presented method is illus-
trated with the creation of a Hybrid Twin of an hydraulic
excavator arm, which features various challenges such as
discontinuity, nonlinearity, oscillations and characteristic
maps. Finally, we will show that the Hybrid Twin created
on basis of measurement data from a real system gives
more accurate results compared to a conventional simu-
lation model based on physical equations (first principle
model).
Keywords: NeuralFMU, NeuralODE, PeNODE, FMI,
PhysicsAI, Hybrid Twin, Scientific Machine Learning

1 Introduction
In the following sections, short introductions to the used
techniques are given.

1.1 NeuralODE
Since their introduction in 2018, Neural Ordinary Differ-
ential Equations (NeuralODEs) (Chen et al. 2018) are one
of the key techniques for data driven modeling of physi-
cal systems. NeuralODEs consist of an Artificial Neural
Network (ANN) that functions as the right-hand side of an
Ordinary Differential Equation (ODE), together with an
ODE solver to obtain the solution of the ODE, see Fig-
ure 1. Training such models on the ODE solution xxx re-
quires (efficient) differentiation through the ODE solver
by Automatic Differentiation (AD) or estimating sensitiv-
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Figure 1. The topology of a NeuralODE. On basis of the system
state xxx(t) the ANN computes the system state derivative ẋxx(t),
which is numerically integrated into the next system state xxx(t +
h) by the ODE solver with step size h.

ities with adjoint sensitivity analysis (Bittner 1963). As
almost any other machine learning model for learning
dynamic systems like recurrent neural networks or long
short-term memory networks in (Champaney et al. 2022),
plain NeuralODEs need a significant amount of data and
are only able to learn physical effects that are represented
as part of this data. In real world engineering, there is of-
ten far more system knowledge available, which is only
partially included or not included at all in the NeuralODE
training data set. This knowledge can be used to drasti-
cally improve training, by incorporating it into the Neu-
ralODE model itself, for example in the form of differ-
ential equations. The resulting structure, consisting of
ANNs, differential equations and a numerical ODE solver,
is further referred to as Physics-enhanced Neural Ordi-
nary Differential Equation (PeNODE) or synonymously
hybrid NeuralODE (see Figure 2). In this case, the
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Figure 2. An example topology for a PeNODE. The system
dynamics are determined by an ODE and an ANN, for which a
variety of different interconnection topologies are possible.

ANN needs only to learn the missing physics that is not
part of the system of differential equations. Compared to
plain NeuralODEs, this allows for the use of smaller ANN



topologies with less trainable parameters, which result in
faster training times and often much better convergence.
Further, introducing physical equations opens up to much
better explainability regarding the learned process by the
ANN, because a physical interpretation can be given for
signals between ANN and physical equations. In practice,
this incorporated knowledge might often be the part of the
system that is well understood by the engineer and can
therefore be modeled easily, for example the kinematics
of an industrial robot, whereas the ANN has to learn the
remaining physical effects that are challenging to model,
like e.g. the friction behavior of the robot joints.

1.2 NeuralFMU
If the concept of a PeNODE shall be applied to real world
engineering problems, another issue has to be faced: Phys-
ical models, designed in dedicated modeling tools, are not
available in a symbolic representation of the equation sys-
tem that can easily be used as parts of a PeNODE. Even
if the symbolic ODE is accessible, large and complex sys-
tems often count thousands of equations, which is cum-
bersome to handle. Therefore, modeling PeNODEs on
basis of large systems of equations, which are common
in industrial applications, is not practicable out of the box.
Fortunately, this can be solved by deploying the model
foundation not by a system of equations, but a handy con-
tainer for such: The Functional Mock-up Unit (FMU)
(Blochwitz et al. 2011). The FMU type Model-Exchange
(ME) provides an interface in analogy to an ODE system:
On basis of the current time t, the system state xxx(t) and
optional inputs uuu(t), the system dynamics ẋxx(t) are calcu-
lated. Comparing to the PeNODE model, instead of com-
bining an ODE with an ODE solver and ANN, a ME-FMU
is used. This topology (see Figure 3) is referred to as Neu-
ral Functional Mock-up Unit (NeuralFMU) and was intro-
duced in (Thummerer, Kircher, and Mikelsons 2021).
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Figure 3. An example topology for a ME NeuralFMU. In this
specific case, the system dynamics are determined by an ME-
FMU and an ANN in parallel. In general, a wide variety of
different interconnection topologies is possible.

Because determination of the loss function gradient for
NeuralFMUs (and NeuralODEs in general) is computa-
tionally expensive compared to gradient determination in
plain ANNs without ODE solvers, efficient differentiation
is a necessity to achieve an economic training (and there-
fore development) time. The Julia programming language

(Bezanson et al. 2014) offers some of the most power-
ful frameworks for AD that implement a variety of dif-
ferent approaches, therefore the first library for building
and training NeuralFMUs called FMIFlux.jl1 was imple-
mented in this language. As a proof of concept for the
applicability of NeuralFMUs in industrial applications, a
vehicle longitudinal dynamics model for the prediction of
an electric vehicle’s energy consumption was enhanced in
terms of result accuracy (Thummerer, Stoljar, and Mikel-
sons 2022). Further, the applicability to medical use cases
was shown at the example of a hybrid simulation model
of the human cardiovascular system (Thummerer, Tinten-
herr, and Mikelsons 2021).

2 Method
Deploying a NeuralFMU for a custom use case can be sub-
divided into three main tasks. First, the transfer of the
First Principle Model (FPM) from modeling environment
to the machine learning environment Julia (discussed in
subsection 2.1). Second, the actual topology design and
training of the NeuralFMU in Julia (subsection 2.2) and
third, the reimport of the trained Hybrid Model (HM) from
Julia into the original (or another) modeling or simulation
environment (subsection 2.3).

2.1 From modeling environment to Julia
Because high performance differentiation is not available
in most modeling tools, the FPM needs to be transferred
from the original modeling tool into Julia (Thummerer,
Stoljar, and Mikelsons 2022). This is achieved by using
the FMU export functionality of the modeling tool to ex-
port an FMU and the Julia library FMI.jl2 to import the
FMU into Julia, see Figure 6 (step 1). After the import
of the FPM FMU into Julia, the HM can be designed and
trained.

2.2 Designing the topology
Basically, a wide range of topologies for NeuralFMUs are
thinkable and designing a suitable one might not be intu-
itive. In the following, different aspects are highlighted
and suggestions for decision-making based on require-
ments are given.

2.2.1 Sequential/Parallel

While the position of the numerical integrator in a Neu-
ralODE is fixed, the positions of the FMU(s) and ANN(s)
are not. Here, two main topologies can be distinguished.
First, the elements can be connected sequentially, so one
element is computing results on basis of intermediate re-
sults from another element, see Figure 4. A common use-
case is an ANN, that corrects the system dynamics re-
trieved from an insufficient FMU model. Second, ele-
ments can be connected in parallel, so multiple elements

1https://github.com/ThummeTo/FMIFlux.jl
(accessed on May 24, 2023)

2https://github.com/ThummeTo/FMI.jl (ac-
cessed on May 24, 2023)

https://github.com/ThummeTo/FMIFlux.jl
https://github.com/ThummeTo/FMI.jl
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Figure 4. An example for a sequential NeuralFMU topology.

are computing results on basis of the same or different in-
puts, whereas the results need to be merged, as shown in
the introduction in Figure 3. This approach is useful for
example if the ANN needs to learn an effect that can be
added to the existing dynamics (like many friction effects)
or only a subpart of the state derivative vector shall be
computed by the ANN, whereas the remaining part is de-
termined by the ODE.

If no decision can be made on how the final effect will
influence the system, e.g. because of lack of information
regarding the unmodeled system part, both topologies can
be used at once with minimal overhead: A topology using
gates, as introduced in (Thummerer, Stoljar, and Mikel-
sons 2022), allows for continuous fading between a se-
quential and parallel interconnection of the ANN, see Fig-
ure 5. Note, that the gate parameters do not need to sum
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Figure 5. A NeuralFMU using gates. The parameters pANN and
pFMU control how much the ANN dynamics and FMU dynam-
ics contribute to the final system dynamics ˜̇xxx. For vectors of
signals, gate parameters can be used for all signals at once or be
extended to a vector parameter, to control each signal’s contri-
bution individually.

up to 1, but can be treated independently. Dependent on
the status of the gates, different edge cases can be param-
eterized:

• For pANN = 0 and pFMU = 1, the system behaves like
the original FMU without any ANN attached to it.

• For pANN ̸= 0 and pFMU = 0, the system behaves like
a series connection of FMU and ANN.

• For pANN ̸= 0 and pFMU ̸= 0, the system uses the
FMU as well as the ANN dynamics. The ANN is
able to manipulate the FMU dynamics (series) as
well as learning its very own dynamics on given sig-
nals (parallel).

Finally, these gate parameters can be trained together with
the ANN parameters and so bypass the initialization chal-
lenge of (physics-enhanced) NeuralODEs, which was fur-
ther highlighted in (Thummerer, Stoljar, and Mikelsons
2022).

2.2.2 Data processing between FMUs and ANNs

FMUs and ANNs operate in different numerical ranges.
Whereas the signal interface of FMUs is basically only
limited by Float64, ANNs suffer if layer inputs become
too large or too small dependent on the used activation
functions. Small values from the FMU may not suffi-
ciently influence the ANN output, large values lead to
saturation if activation functions with limited output are
used, like tanh, sigmoid or relu. A straight forward
workaround for this is to scale and shift the FMU’s out-
put values to fit the activation function of the ANN, which
is further described in (Thummerer, Stoljar, and Mikel-
sons 2022). To restore signal ranges at the ANN outputs,
a post-processing transformation can be added here. If the
ANN input signals are matching the outputs, this transfor-
mation can be initialized as inverse of the pre-processing
transformation. The parameters of these pre- and post-
processing operations can be initialized to suit known sig-
nal ranges and further be optimized together (as forward
and reverse transformation) or separately (as individual
transformations) with the ANN parameters to adapt well
to changing signal ranges that might occur with further
training convergence.

2.2.3 Signal selection

By design of the Functional Mock-Up Interface (FMI),
different signals can be passed between FMU and ANN.
Using all available FMU signals (in principle, any sys-
tem variable can be retrieved by supported FMUs) results
in suboptimal training performance, because unnecessary
large Jacobian matrices need to be computed during train-
ing and the signal information is highly redundant, if be-
sides system states and inputs further dependent variables
are connected. Further, connecting signals that have no
causal dependency on the physical effects being learned
carries the risk of the ANN learning wrong correlations
or at least delays training convergence. This motivates to
define an efficient and minimal interface. A clever and au-
tomatic signal selection during training is an active topic
of research. For now, choosing a small set of interface
variables is driven by expert knowledge of the system and
only some general instructions can be given. One is, that
for higher order differential equations (mechanical system
are usually modeled as second order ODEs), the order of
differentiation of the ODE should be preserved (Thum-
merer, Stoljar, and Mikelsons 2022). This is achieved by
preventing the ANN to modify the derivatives that are also
states. For example, consider a translational mechanical
system with the states position and velocity and the state
derivatives velocity and acceleration. If the ANN is al-
lowed to modify the entire derivative vector (here the ve-
locity and the acceleration), the second order ODE disin-
tegrates into a first order ODE, because the state veloc-
ity does not match the integrated acceleration anymore.
This can be tackled by allowing the ANN to manipulate
only the highest derivatives of the system, in the consid-
ered example the derivative acceleration, while passing



the derivative velocity directly to the numerical integrator
without modifications.

2.3 From Julia to modeling environment
After training, the HM needs to be reimported from Ju-
lia back into the original (or another) development tool.
For this, three different approaches to integrate the newly
learned dynamic effect into the original modeling envi-
ronment are possible and explained in the following sub
sections.

2.3.1 Export the HM as FMU
The entire HM, including the FPM as FMU, can be ex-
ported as FMU, see Figure 6 (step 2a). This approach is
useful if model development has (almost) finished and no
other modifications to the structure needs to be done or
if the HM is being used in a different modeling tool that
features another modeling language (but support for FMI).
From software side, this can be accomplished using the Ju-
lia library FMI.jl or the related sub-library FMIExport.jl3

directly. An example on how to export NeuralFMUs as
FMUs is part of the FMIExport.jl repository.

From a technical perspective, the FPM FMU (the FMU
exported from the original simulation model) is copied
to the resources folder of the HM FMU (the FMU be-
ing exported from Julia) and most of the FMI functions
of the HM FMU are directly connected to the embed-
ded FPM FMU. Because these connections are imple-
mented by redirecting function pointers, the execution per-
formance of the hybrid FMU is only influenced by the
ANN dynamics without overhead. To induce the modi-
fied dynamics to the HM FMU, some functions need to be
extended, which is discussed in the following paragraphs
at the example of model-exchange FMUs.

Getting system state derivative
The functions fmi2GetDerivatives (FMI2) and
fmi3GetContinuousStateDerivatives (FMI3)
need to return the dynamics of the entire HM instead of
the FPM FMU. This can be simply achieved by obtaining
the FPM FMU state derivative and passing it through
the part of the HM topology, that modifies the system
state derivative. Finally, the modified state derivatives are
returned instead of the derivatives of the FPM FMU.

Setting system state
The functions fmi2SetContinuousStates (FMI2) and
fmi3SetContinuousStates (FMI3) set a new state for
the FPM FMU. If the system state is manipulated by the
HM topology before being passed to the FPM FMU, the
HM FMU state is not matching the FPM FMU state. As
a consequence, a new state for the FPM FMU needs to
be retrieved by optimization through the topology (Thum-
merer, Stoljar, and Mikelsons 2022).

Getting/Setting ANN parameters
Before overwriting the corresponding functions, the

3https://github.com/ThummeTo/FMIExport.
jl (accessed on May 24, 2023)

model description needs to be extended by new parame-
ter identifiers for the ANN parameters. After that, to be
able to read and change the ANN parameterization, the
functions fmi2GetReal and fmi2SetReal (FMI2) and
fmi3GetFloat64 and fmi3SetFloat64 (FMI3) need
to be overwritten to get and set corresponding ANN pa-
rameters.

Finally, further functions can be overwrit-
ten to add additional functionalities but are not
highlighted at this point, for example function
calls to fmi2GetDirectionalDerivatives
(FMI2), fmi3GetDirectionalDerivatives and
fmi3GetAdjointDerivatives (FMI3) can easily be
chained to the Julia AD framework to efficiently retrieve
partial derivatives.

2.3.2 Export the ANN only

Export as FMU
By exporting only the trained ANN as FMU, the FPM
can further be used in its original format, maintaining the
white-box structure that is known by the modeling engi-
neer, see Figure 6 (step 2b). Exporting ANNs as FMUs
is supported by FMIExport.jl, an example is part of the
library repository.

Export in a dedicated format
Further, the ANN can be exported in a dedicated format
instead of being compiled into an FMU, see Figure 6 (step
2c). Two different formats are discussed in the following.

From a linguistic point of view, the Modelica language
is capable of describing any operation that is performed
by an ANN layer. Even more uncommon layers, like the
gates layer used in the presented use case, can be ex-
pressed with simple mathematical operations and there-
fore with Modelica. Currently, the ANN is exported as
Modelica model by hand, but an automated export is part
of an upcoming research project. The Modelica ANN can
easily be imported into tools that support the Modelica
language.

Further, also the Open Neural Network Exchange4

(ONNX) can be used to export the ANN separately.
ONNX is capable of describing conventional as well as
custom layers, as long as they are subdivisible into prim-
itive mathematical operations (like e.g. the gates layer).
For Julia, an ONNX library is available, called ONNX-
NaiveNASflux.jl5, that is able to import and export ONNX
models including custom layers.

Instead of exporting the ANN structure alongside with
the identified parameters, it is also possible to export both
elements separately. This can be achieved by importing
the ANN topology in the original modeling environment
and transferring the parameters separately via an arbitrary
file format (like CSV, MAT or TXT).

4https://github.com/onnx/onnx (accessed on
May 30, 2023)

5https://github.com/DrChainsaw/
ONNXNaiveNASflux.jl (accessed on May 31, 2023)

https://github.com/ThummeTo/FMIExport.jl
https://github.com/ThummeTo/FMIExport.jl
https://github.com/onnx/onnx
https://github.com/DrChainsaw/ONNXNaiveNASflux.jl
https://github.com/DrChainsaw/ONNXNaiveNASflux.jl


Figure 6. Comparison of different ways on how to deploy NeuralFMUs. Step (1) shows the export of the FPM as FMU from
modeling environment and the import of the FMU into Julia. After hybrid modeling and training inside Julia, the entire HM can
be exported as FMU (2a), only the ANN as FMU (2b) or a dedicated ANN format like Modelica or ONNX can be used for ANN
export (2c). Dependent on the chosen exporting step, the further usability of the HM varies.

Reintegration of the exported ANN in the original
modeling environment
The exported formats (FMU, ONNX, Modelica) share the
input and output structure. When reintegrating them into
the original modeling environment they all behave like
data driven sub-models such as characteristic maps. The
connection to the original FPM depends on the modeling
tool’s specifics. If the targeted modeling environment is
a Modelica tool, the following has to be considered: The
inclusion of the modified dynamics into the original FPM
is not straight forward since the original Modelica system
is acausal. The definition of variables as states or state
derivatives only takes place during compilation. To mod-
ify a variable’s derivative prior to compilation means to
modify/replace equations in the Modelica system. This
becomes a limitation, since ...

• . . . component models could be protected,

• . . . there are multiple equations to replace or modify,
so the solution is not unique,

• . . . sometimes variables/equations do not even exist
(but are only created during compilation).

Hence, in general the integration of a causal ANN into
the acausal Modelica model is not straightforward, and re-
mains a future research topic.

3 Experiments
In the experimental part, the NeuralFMU approach is ap-
plied to a subsystem of an excavator model. Figure 7
sketches the excavator arm and the considered subsystem.

3.1 Motivation
The model of the excavator was developed in Simula-
tionX6 during the real excavator’s setup period, in which
the model was used to test an automatic steering con-
troller. Now, during the operation of the excavator, the
model shall be extended and used with measurement data
as a Hybrid Twin to detect and predict faults (i.e. devia-
tions, leaks in hydraulic components, etc.) (Gundermann
et al. 2018). The Hybrid Twin concept enhances physics-
based models with real data from physical sensors to in-
crease the model’s accuracy and prediction capabilities
(Chinesta et al. 2019). The advantage of the applied Hy-
brid Twin of the excavator - a condition monitoring system
of the latter - is that the real system requires less sched-
uled maintenance while at the same time can be repaired
in time before serious faults occur. One major prerequi-
site for detecting deviations using Hybrid Twins is that the
simulated nominal behavior must match the measured data
very accurately during operation. This can be acchieved
by applying the NeuralFMU method to the system. The
results for the bucket cylinder subsystem of the excava-
tor (including reimport to the original model) are outlined
below.

3.2 Model selection for NeuralFMU
The complete, comprehensive model of the excavator con-
tains components of various domains of the SimulationX
libraries, such as Multi Body Systems (MBS, i.e. 3D) and
1D mechanics, hydraulics and control signals. The real
excavator is equipped with pressure and cylinder position

6www.SimulationX.com (accessed on May 24, 2023)

www.SimulationX.com


Figure 7. Sketch of the full excavator arm with all three cylin-
ders. For the NeuralFMU approach, the subsystem controlled by
the bucket cylinder (red box) is used.

Figure 8. The submodel of the bucket cylinder and mechan-
ics in SimulationX. The model shows different domains (color
marked): MBS mechanics (blue), 1D mechanics (green), hy-
draulics (red), signal blocks for measured pressures and initial
position values (orange). The original FPM is shaded with the
colors of the domains. The extension of the model to a Hybrid
Model (cf. subsection 3.4) is highlighted by the red boxes.

sensors, the signals of which can be recorded together with
the control signals. This allows to collect data of the mo-
tion of a single cylinder as well as of the full motion of
the excavator arm. Comparing model with data, one will
find that there are deviations, e.g. between simulated and
measured cylinder positions.

One source of deviation is the friction in the hydraulic
cylinders, which is hard to model. Simple models are not
able to describe the process accurately enough, sophis-
ticated models are hard to parameterize, and the model-
ing task is even more complex since different parts in the
cylinder system contribute to the effective friction force.
To avoid the influence of interaction with connected com-
ponents, the model is considered for each cylinder sepa-

rately. Therefore, the bucket cylinder subsystem and at-
tached mechanics are cut out of the full model and are
used with the measured pressure signals in the cylinder
chambers as inputs, to focus on the movement of the con-
sidered cylinder only. Figure 8 shows the submodel of
the bucket cylinder and mechanics, which will be used
in experiments, and be referred to as the First Principle
Model (FPM). The model already includes some generic
friction components - a pressure based force FR_CTL and
a damper F_CTL_b, which prevents oscillations. The ne-
cessity of including or excluding such components will be
examined below.

It shall be mentioned that similar submodels can be
created for the other cylinders of the excavator arm, in
which case there are more components on the lower end
of the kinematic tree which affect the mass and momen-
tum distribution. Note, that the system model is unstable
if the center of mass of the rotated components lies above
the joint around which the mechanical components rotate
when extending or retracting the cylinder. This can lead to
difficulties, e.g. when trying to fit the friction force for the
boom cylinder. Even with submodels in a stable state, the
fitting method is time-consuming and requires knowledge
of engineers with system specific experience.

The cylinder chambers in Figure 8 are fed with non-
constant pressure signals, taken from real measurements
shown in Figure 9. These pressure signals cause the piston
in the cylinder to move. As mentioned, the simulated po-
sition deviates from the measurement, which can be seen
in Figure 14 which spans the same time sequence. The
position of the bucket cylinder will be used as training ob-
jective in the NeuralFMU optimization. Further, the mea-
surement data is noisy and contains irregular deviations
(e.g. position measurement around 470s), which cannot
be removed by standard filters.

Figure 9. Measured pressure signals pA and pB of the two cylin-
der chambers (normalized, units removed).

3.3 NeuralFMU setup and validation

3.3.1 The FMU of the Bucket model

For applying the NeuralFMU method, an FMU of the
FPM is generated, with the top bucket cylinder position
CTL.dx as the output y. Figure 10 shows two extraction-
retraction-cycles of the time segment used to train and test
the NeuralFMU. For the NeuralFMU training, a single



extraction-retraction-cycle ranging from 148s to 205s is
selected from the data since it covers most of the possible
dynamics of the measured series. A second cycle ranging
from 205s to 262s is used for testing. Please note, that
the amount of data for training is very small in terms of
machine learning applications and should be increased to
contain every aspect of the effect to be learned. Here how-
ever, it is shown that even small and incomplete data sets
can be used to significantly improve the simulation model.

Table 1. FMU states xxx and output y.

Symbol Name Description
x1 der(fourBar.q[2]) Angular velocity
x2 connection12.x Position
x3 fourBar.q[2] Angle
y CTL.dx Position

As shown in Table 1, the FMU has three states,
which seems not intuitive, since the mechanical system
(cf. Figure 8) has only one degree of freedom: the mo-
tion around the revolute joint in the four bar. The re-
lated states are the angle fourBar.q[2] and the corre-
sponding angular velocity der(fourBar.q[2]). The
third state connection12.x is the position of the 1D
mechanical connection between force interface (CTL)
and hydraulic cylinder port B, which is equivalent to
the length of the bucket cylinder. This state is intro-
duced since the 3D-1D force interface creates a con-
straint on the 1D velocity. Hence a differential equa-
tion for the 1D position (connection12.x) exists. Fur-
ther, the bucket cylinder position CTL.dx is identical
to the state connection12.x in the considered simu-
lation range. Because of the zero-crossing behavior in
der(fourBar.q[2]), the FMU has state events that
must be handled during simulation to obtain correct simu-
lation results (Blochwitz et al. 2011).

Figure 10. FMU states xxx (normalized, units removed) during
training and testing. State events (discontinuities) are triggered
whenever the cylinder reaches or leaves one of the end stops. In
the graph, they are shown as gray-dashed horizontal lines.

3.3.2 The definition of the ANN

The definition of the ANN topology bases on past experi-
ence and empirical hyper parameter tuning, and is consid-
ered as large enough to cover the dynamics, while being
trainable in reasonable time. In addition to a core of two
dense layers, pre- and post-processing layers are included,
as shown in Figure 11. These shift and scale the value of
all inputs to a distribution with mean 0 and standard devi-
ation 1 to suit the applied activation function tanh of the
first dense layer. The figure further shows the additional
gates layer introduced in subsubsection 2.2.1 which allows
efficient training of the unknown friction effect and a solv-
able initialization for the system. The final ANN topology
with 91 parameters is shown in Table 2.

Table 2. Parameters of the NeuralFMU topology.

Type Inputs Outputs Bias Num.

Pre-process 3 3 0 6
Dense 3 16 16 64
Dense 16 1 1 17

Post-process 1 1 0 2
Gates 2 1 0 2

Total: 91

3.3.3 Solver details and loss function

To solve the NeuralFMU in FMIFlux.jl, the explicit
Runge-Kutta method Tsit5 (Tsitouras 2011) is used as nu-
merical ODE solver. Using the gradient-based optimiza-
tion algorithm Adam (Kingma and Ba 2017) with step size
10−3, the following loss function of the mean absolute er-
ror (mae) is minimized during training:

mae(xxx2, x̂xx2) =
1
n

n

∑
i=1

∣∣xi
2 − x̂i

2
∣∣ , (1)

where xi
2 is the simulated bucket cylinder position

connection12.x at time instant i, x̂i
2 the corresponding

measured position, and n the number of compared mea-
surement points.

3.3.4 Training and testing in Julia

After defining the ANN topology and its training param-
eters, the NeuralFMU is trained in Julia for 2000 epochs
on the first extraction-retraction-cycle of the selected time
interval ranging from 148s to 205s in 0.1s second incre-
ments. Two experiments are considered: The training of
a Hybrid Model (HM) on basis of the FPM with a simple
friction model and on basis of the FPM without friction
(undamped system).

FPM with friction model
The results after training of the NeuralFMU are very close
to the measurement data, which is confirmed by the small
value of the loss function from Equation 1 of 0.0094m.
After training is complete, the NeuralFMU is simulated
the second extraction-retraction-cycle in the time interval
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Figure 11. The topology of the used NeuralFMU using gates adapted from (Thummerer, Stoljar, and Mikelsons 2022). The current
system state xxx and time t are passed to the FMU, which computes the system state derivative ẋxx. On basis of the state derivatives
from FMU, only the revolute joint acceleration ˜̇x1 is computed by the ANN (featuring pre- and post-processing layers) and linearly
combined with the corresponding derivative from the FMU ẋ1 in the gates layer. The remaining FMU derivatives ẋxx2,3 only enter
the ANN as inputs and are bypassed directly to the final derivative vector ˜̇xxx, to preserve a second order ODE.

Figure 12. Comparison of bucket cylinder position to data (top)
and absolute deviation from data (bottom). The HM is modeled
on basis of the FPM with simple friction.

Figure 13. Comparison of bucket cylinder position to data (top)
and absolute deviation from data (bottom). The HM is modeled
on basis of the FPM without friction.

from 205s to 262s, shown in Figure 12. The test re-
sult shows that the loss function value of 0.0228m dou-
bled compared to the training sequence, but it is still three
times smaller than the loss function value of 0.0696m in

the original FPM FMU simulation (cf. in Table 3).

FPM without friction model
As introduced, another NeuralFMU is built using an FPM
without friction components. Training and testing results
for the same sequence are shown in Figure 13. These con-
firm the fact, that the NeuralFMU can be trained com-
pletely without friction components and the ANN can
compensate the oscillations of the border-stable system.
The loss function value of the NeuralFMU featuring the
FPM without friction is 0.0327m and therefore about 30%
higher than the one trained on basis of the FPM with fric-
tion for the same sequence (cf. in Table 3). The accuracy
of the case without friction under the same training condi-
tions is lower than the one implementing viscous damping,
therefore the model with friction is used for the outlined
application.

Table 3. Loss function values.

Model FPM friction Training [m] Testing [m]
FPM yes 0.0616 0.0696
HM yes 0.0094 0.0228
FPM no 0.0543 0.0497
HM no 0.0157 0.0327

3.4 Hybrid Model in SimulationX
As described in section 2.3.2, one way to reimport the
NeuralFMU to the original modeling environment is to ex-
port the ANN in a dedicated format and to couple it with
the FPM (or an FMU containing the FPM) inside the mod-
eling tool. Thereby after training and testing in Julia, the
ANN parameters are exported as a TXT file and a Modelica
model with an equivalent network topology (cf. Figure 11)
and the parameter values loaded from this text file is cre-
ated. Listing 1 shows the equation section of the ANN
type implemented in SimulationX.

Listing 1. Equation section of Modelica type of ANN

preProcess = (dxIn+prePShift).*prePScale;



dense1 = tanh(preProcess*w1 + b1);
dense2 = dense1*w2 + b2;
postProcess = dense2*postPScale+postPShift;
dxOut={

gates[1]*dxIn[1]+ gates[2]*postProcess,
dxIn[2],
dxIn[3]};

Here, dxIn and dxOut are the state derivatives as cal-
culated by the FPM and modified by the ANN, respec-
tively. prePShift, prePScale, w1, b1, w2, b2,
postPScale, postPShift and gates are the opti-
mized parameters of the different layers. To include
the ANN in the FPM, equations have to be modified
(cf. Sec. 2.3.2). In the bucket system (see Figure 8), this
affects only the equation which defines the angular accel-
eration in the four bar. The variables defining the FMU
state derivatives (cf. Table 1) are read from the model
components (derS), and are passed as input into the ANN.
The modified der(fourBar.q[2]) enters the FourBar
component as an input (named derS1mod) and is used in-
stead of the original variable. The equation section in the
four bar is modified as written below:

Listing 2. Modification of FourBar equation section

der(q[2]) = om[2]; //−> input 3 to ANN
alp[2] = ... //−> input 1 to ANN
// der (om[ 2 ] ) = a lp [ 2 ] ; r e p l a c ed by :
der(om[2]) = derS1mod; //<− output 1 o f ANN

In Figure 8, the extension and modifications of FPM
by the ANN are highlighted with red boxes. The bottom
right box shows state derivatives (derS), ANN, and modi-
fied state derivative of state x1 (derS1mod). This modified
derivative is fed into the modified fourBar component
(also highlighted with red box).

The output of the HM with a simple friction model sim-
ulated in SimulationX in the interval from 50s to 500s is
shown in Figure 14. The figure also shows that the bucket
cylinder position can be reliably predicted in SimulationX
for a measurement sequence that was not used to train and
test the NeuralFMU. Comparing the results in the time in-
terval for training and testing, the NeuralFMU shows the
same cylinder position in Julia as well as in SimulationX
for the original FPM and HM without friction, as can be
seen when comparing results in SimulationX (Figure 14
and 15) with results in Julia (Figure 12 and 13). Figure 15

Figure 14. Measured data and simulation results of FPM and HM for the bucket cylinder position for the entire measurement. The
HM is modeled on basis of the FPM with simple friction.

Figure 15. Measured data and simulation results FPM and HM for the bucket cylinder position, for the entire measurement. The
HM is modeled on basis of the FPM without friction.



also confirms that the HM without friction is able to damp
oscillations for the full measurement sequence.

4 Conclusion
We started by introducing the concept of a NeuralODE
and adapted this machine learning model step by step to
suit the requirements of industrial engineering applica-
tions, resulting in a so called NeuralFMU. We highlighted
a generic workflow, that allows for NeuralFMU develop-
ment in custom applications, dependent on tool capabil-
ities and further model use. Finally, we exemplified the
presented theory at a real engineering use-case: The mod-
eling of a Hybrid Twin of a hydraulic bucket cylinder to be
used for process and failure monitoring.

Next, additional features of the FMIFlux.jl package
shall be investigated - input values to NeuralFMUs for in-
teraction with other excavator components and the batch-
ing method for more effective training on a broader data
base. Besides, we plan to apply the workflow to larger
submodels and other examples, and to automate parts of
the workflow where possible. For the excavator model,
the final goal is the creation of the Hybrid Twin for the
detection of malfuntions in the system.

Besides physical equations, further system knowledge
in the form of ODE properties like stability, oscillation ca-
pability, stiffness as well as frequency and damping infor-
mation can be integrated into the PeNODE training pro-
cess in form of Eigen-informed NeuralODEs (Thummerer
and Mikelsons 2023). All listed properties depend on the
eigenvalue positions of the system model over time. By
computing eigenvalues and rating their positions as part
of the (or an additional) loss function, the desired ODE
properties can be enforced for the considered Hybrid Twin
and may further improve training and prediction.
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