
MoPyRegtest: A Python package for continuous
integration-friendly regression testing of Modelica libraries

Philipp Emanuel Stelzig1

1simercator GmbH, Germany, philipp.stelzig@simercator.com

Abstract
Regression testing is a commonly used strategy in con-
tinuous integration workflows to ensure reproduceability
of outputs. It is widely used in software engineering and
model development, including Modelica. In this article we
introduce the open source regression testing framework
MoPyRegtest written in Python. Its primary focus is to
provide Modelica library developers with a simple regres-
sion testing tool that features test automation and can be
integrated with continuous integration toolchains, in par-
ticular for open source developments. In order to simulate
the Modelica models for testing analysis, we provide an
interface to Modelica simulation tools that have a scripting
interface, like e.g. .mos files. Our current implementa-
tion works with OpenModelica. We outline the design and
functionality of MoPyRegtest and show its potential use-
fulness for open source development of Modelica models
and libraries.
Keywords: Modelica, regression testing, Python, open
source, continuous integration

1 Introduction
The development of Modelica libraries and models re-
quires test and validation. It gives indications to model
developers as to the quality and robustness of their de-
velopments. Also users request a variety of quality in-
dicators before they choose a certain library. In particular
test and test automation, besides a number of other indi-
cators like reputation, community size, update cycles, or
response times for support and handling of issues, license
conditions and many more. Testing benefits both Model-
ica library developers and users.

For a user, testing can give an immediate feedback
whether a certain Modelica model or library will run on
the intended target environment, produce the results its de-
velopers intended and which parts of the library have been
systematically studied for quality.

For developers, testing carries additional benefits. Unit
testing means that debugging does not have to be done
with large monolithic models, but rather with smaller in-
dividual elements, which helps in locating and isolating is-
sues. Test automation means that developers can quickly
detect effects of changes by running test suites, instead
of discovering effects manually or, worse, having users
discover bugs after releases. Especially with Modelica

models, developers implicitely always do tests by running
simulations and eventually judging the results as satisfac-
tory. Since Modelica libraries shall feature examples with
certain expected results, library developers usually have
already created natural candidates to be turned into re-
gression tests. Testing can also open up entirely different
development methodologies, like e.g. test-driven devel-
opment (TDD) (Beck (2003)). Indeed, if libraries or li-
brary elements are intended to model a certain product’s
or device’s physical behavior rather than containing only
generic modeling blocks, it is the test data, i.e. measure-
ment data, that is available first. A model has to be created
such that it correctly predicts the reference data. Hence,
TDD can be a valid approach for Modelica library de-
velopment, too. A TDD approach to simulation has been
studied in Onggo and Karatas (2016).

Many test criteria employed during testing of Model-
ica libraries are basically the same as in software devel-
opment, ranging from static code analysis, reproduceabil-
ity to integration testing. The one we will focus on here
is reproduceability of results through the technique of re-
gression testing. Wong et al. (1997) summarizes that “[t]
he purpose of regression testing is to ensure that changes
made to software [...] have not adversely affected features
of the software that should not change”. Regression test-
ing is an established practice in many Modelica library
developments and a number of tools have been proposed
or developed. Basically, regression testing for Modelica
library development means evaluating whether simulating
a certain library element produces a result that is suffi-
ciently close – in a suitable metric – to a reference data
set provided by the developer. As we shall see in sec-
tion 2, a dedicated, lightweight regression test solution
for mostly open source library development can be useful.
Especially, if it focuses on test automation and integra-
tion into continuous integration (CI) or continuous deliv-
ery (CD) toolchains. This is why have developed MoPy-
Regtest1 (from Modelica Python Regression testing) from
a mere helper into an open source solution that can be run
with open source tools only.

The outline of this article is as follows. In section 2
we give a broad overview over the many tools for testing
Modelica models and their use in open source Modelica li-
brary developments. Section 3 summarizes requirements
for a regression testing solution derived from the devel-

1https://github.com/pstelzig/MoPyRegtest

https://github.com/pstelzig/MoPyRegtest

opers’ needs as identified in the previous section. Then,
we outline the design of MoPyRegtest and its functional-
ities. Section 4 covers the currently built-in mathemati-
cal metrics that the user can choose from when comparing
simulation and reference results. It also shows how we
implemented the possibility to provide user-defined met-
rics. We present a showcase for how to use MoPyRegtest
in section 5. Section 6 states conclusions as well as open
points, and gives an outlook on future work.

2 State of the art
We outline the state of the art regarding testing and tools
for Modelica library development starting with a rough
analysis over actual usage of testing solutions. We then
derive indicators as to how testing is primarily used today,
and where we see that MoPyRegtest can be beneficial to
library developers.

2.1 Testing in open source Modelica libraries
In order to have some quantitative indication on the us-
age of testing solutions for Modelica library development,
we did some analysis on the repository collection “Mod-
elica 3rd-party libraries” curated by Dietmar Winkler on
GitHub.2 This collection only covers open source li-
braries. Hence, from its analysis we cannot derive any
insights on testing solutions as they are used in a commer-
cial context. We only considered libraries that had at least
one commit since the beginning of 2019. In these reposi-
tories we looked for

(C1) any automated tests in the repository’s source
folder (syntax checking or build/run automation
or regression),

(C2) whether there are CI-pipelines set up defining au-
tomated tests, e.g. in a .github or .gitlab
folder,

(C3) whether there is an automated regression test.

This approach is entirely manual and as such error-
prone. To our knowledge, there is no universally adopted
practice yet on where to put tests in Modelica libraries and
how to formulate or execute them. We found that tests are
sometimes hidden deeper inside folder structures and that
documentation does not always reveal their existence. As
we shall see, there is also some variety when it comes to
testing tools used, and sometimes ad hoc testing solutions
are implemented that are not obvious to discover. Also,
not all developers use GitHub Actions3 or GitLab CI/CD.4

Moreover, the nonexistence of test automation, i.e. the au-
tomated execution of automated tests, does not imply the
nonexistence of automated tests themselves. Hence, we
might have overlooked or not correctly recognized tests.
At this point, we emphasize once more that the numbers in

2https://github.com/modelica-3rdparty
3https://docs.github.com/en/actions
4https://docs.gitlab.com/ee/ci/

the following Table 1 can at best be interpreted as an indi-
cation. We advise against using these numbers in follow-
up work. Since we expect at least some corrections to
this preliminary and manual analysis, rather than putting
the detailed listing here, we put it in an openly accessible
repository on GitHub.5

Table 1. Estimated relative occurrence of tests in repositories
in the GitHub collection “Modelica 3rd-party libraries” as of 14
August 2023. These numbers might not be accurate.

∃ commit since #(repos) (C1) (C2) (C3)

2019 75 ≈ 28% ≈ 18% ≈ 14%
2021 60 ≈ 32% ≈ 20% ≈ 15%
2022 45 ≈ 40% ≈ 24% ≈ 20%

2.2 Insights
Despite the likely uncertainty in the numbers, we think
that one can at least observe tendencies from Table 1:

1. Repositories with more recent activity use more au-
tomated tests.

2. Developers prefer other testing strategies first before
turning to regression tests.

2.3 Testing tools
In the repositories we looked into, two popular test-
ing tools were BuildingsPy6,7 for regression testing, and
moparser for syntax checking.8

BuildingsPy has been developed as part of the Build-
ings library (Wetter et al. 2014). It supports unit testing
and regression testing, but can also orchestrate simulation
runs using Dymola9, OPTIMICA10 or OpenModelica11.
The documentation also shows it can visualize simulation
results, including regression test results.

moparser is a binary executable by MapleSoft. It is
available at MapleSoft’s homepage for various platforms.
The Modelica Association includes it as the “MapleSim
Standalone Modelica Parser” in its Modelica tools list.
Several projects use moparser to validate correctness of
Modelica syntax as an automated test.

There are also some sophisticated ad hoc regression
testing solutions developed for specific projects using vari-
ous languages. We have found a regression test implemen-
tation written in Python as part of the Modelica-Arduino

5https://github.com/pstelzig/
modelica-oss-lib-testing-analysis

6https://github.com/lbl-srg/BuildingsPy
7https://simulationresearch.lbl.gov/modelica/

buildingspy/development.html
8https://modelica.org/tools.html
9https://www.3ds.com/products-services/catia/

products/dymola/model-design-tools/
10https://help.modelon.com/latest/reference/

oct/
11https://openmodelica.org/

https://github.com/modelica-3rdparty
https://docs.github.com/en/actions
https://docs.gitlab.com/ee/ci/
https://github.com/pstelzig/modelica-oss-lib-testing-analysis
https://github.com/pstelzig/modelica-oss-lib-testing-analysis
https://github.com/lbl-srg/BuildingsPy
https://simulationresearch.lbl.gov/modelica/buildingspy/development.html
https://simulationresearch.lbl.gov/modelica/buildingspy/development.html
https://modelica.org/tools.html
https://www.3ds.com/products-services/catia/products/dymola/model-design-tools/
https://www.3ds.com/products-services/catia/products/dymola/model-design-tools/
https://help.modelon.com/latest/reference/oct/
https://help.modelon.com/latest/reference/oct/
https://openmodelica.org/

project.12 The ModPowerSystems library13 uses a test-
ing solution developed as part of a bigger utility suite at
the RWTH Aachen,14 also in Python. A shell script so-
lution is used for regression test automation in the PNlib
project.15

As far as we understood, BuildingsPy, the solution in
Modelica-Arduino, and various commercial tools use a
sort of maximum deviation metric that checks whether
the actual simulation result stays within a “funnel” (Build-
ingsPy) or a “band” (Modelica-Arduino) around the orig-
inal result. Mathematically speaking, the “band” amounts
to the ∥ ·∥L∞ norm (in the sense of the space of essentially
bounded functions; rather than ∥ · ∥C0 because Modelica
simulation result data is usually not time-continuous) ap-
plied to the difference of the time-varying functions de-
fined through the reference data and the actual simulation
result. Since the timestamps in the reference data and the
actual result do generally not coincide, some sort of inter-
polation technique has to be employed. BuildingsPy uses
the pyfunnel16 module for this; the funnel computation is
more than just an ∥ ·∥L∞-norm, but takes into account also
the difference of the timestamps. It regards the reference
data as a point cloud (t0,y0),(t1,y1), . . . and builds a tol-
erance area around each (ti,yi) datapoint of the reference
data. Then, it checks whether the simulated data points fall
into these tolerance areas. This requires that timestamps
in reference and actual data need to be close, too. As the
pyfunnel documentation states, this can make sense to en-
force control events to occur at similar times.

Apart from the solutions we found, there are of course
other powerful testing solutions available for Modelica li-
brary development.

In the open source world, besides the BuildingsPy li-
brary, there is the OpenModelicaLibraryTesting.17 Open-
Modelica (Fritzson et al. 2020) has extensive library cov-
erage including regression testing for the libraries featured
in its package manager.

The tool CSV Result Compare18 is well known in the
Modelica community. Its main purpose is comparing re-
sult timeseries files in the .csv format. It can also com-
pare .csv files recursively by walking through directory
trees. It does not allow for test formulation or execu-
tion. But it can of course be used to perform result com-
parison as part of regression testing. Not unlike pyfun-
nel, it constructs rectangular or ellipsoidal tolerance areas
around each datapoint (t0,y0),(t1,y1), . . . of the reference

12https://github.com/modelica-3rdparty/
Modelica-Arduino

13https://github.com/ModPowerSystems/
ModPowerSystems

14https://git.rwth-aachen.de/acs/public/
simulation/python-for-modelica

15https://github.com/AMIT-FHBielefeld/PNlib
16https://github.com/lbl-srg/funnel
17https://github.com/OpenModelica/

OpenModelicaLibraryTesting
18https://github.com/modelica-tools/

csv-compare

result, and then constructs a tube around these tolerance
areas defined through an upper and a lower hull curve.
csv-compare is implemented in C#, which can cause ad-
ditional efforts in Linux-based CI toolchains due to its de-
pendencies on .NET or mono.19

PySimulator by Pfeiffer et al. (2012) is a simulation
and analysis environment with a graphical user interface
that can use various different simulators through a plu-
gin infrastructure. Therefore, Asghar et al. (2015) study
the use of PySimulator20 for regression analysis, in par-
ticular across different simulation tools, and outline the
implementation of a dedicted testing plugin for PySimula-
tor. This plugin uses a simple comparison metric, but fea-
tures automatic reporting and parallelization of test execu-
tion. To our knowledge, PySimulator is no longer actively
maintained on GitHub and the last release dates back to
2016. It uses Python 2 which is no longer supported since
2020. Its much broader scope and its plugin dependencies
make it difficult to revive for regression testing only.

Commercial tools for regression testing are available
from a number of tool vendors. They often come with so-
phisticated visualization functionality, sometimes directly
integrated into Modelica simulation tools, sometimes as
standalone products. Generally, except for the case where
regression tests are executed by so-called runners in a
privately managed runtime environment, it is not possi-
ble to use commercial, license-bound tools in open source
CI toolchains. The term runner refers to an application
that executes tests or build tasks for CI applications on re-
sources outside of the CI applications’ own infrastructure,
and propagates results back to the CI application.

3 Design and functionality
We first sum up the design criteria that guided us in the
development of MoPyRegtest. MoPyRegtest shall

(DG1) be a pure testing library,
(DG2) be self-contained,
(DG3) allow for simple formulation of test automation,
(DG4) allow for simple automatic execution with popu-

lar CI toolchains,
(DG5) be platform independent,
(DG6) use a popular programming language,
(DG7) allow for user-defined comparison metrics,
(DG8) allow for use with different Modelica tools,
(DG9) integrate with other test automation tools,

(DG10) be usable within open source projects.

3.1 Rationale
Our first design choice was to implement MoPyRegtest
entirely in Python. Python is easy to learn, already in use
for regression tests in Modelica (BuildingsPy), it is plat-
form independent, easy to automize, and integrates well

19https://github.com/modelica-tools/
csv-compare/blob/master/README.md

20https://github.com/PySimulator/PySimulator

https://github.com/modelica-3rdparty/Modelica-Arduino
https://github.com/modelica-3rdparty/Modelica-Arduino
https://github.com/ModPowerSystems/ModPowerSystems
https://github.com/ModPowerSystems/ModPowerSystems
https://git.rwth-aachen.de/acs/public/simulation/python-for-modelica
https://git.rwth-aachen.de/acs/public/simulation/python-for-modelica
https://github.com/AMIT-FHBielefeld/PNlib
https://github.com/lbl-srg/funnel
https://github.com/OpenModelica/OpenModelicaLibraryTesting
https://github.com/OpenModelica/OpenModelicaLibraryTesting
https://github.com/modelica-tools/csv-compare
https://github.com/modelica-tools/csv-compare
https://github.com/modelica-tools/csv-compare/blob/master/README.md
https://github.com/modelica-tools/csv-compare/blob/master/README.md
https://github.com/PySimulator/PySimulator

with popular CI toolchains like GitHub Actions or GitLab
CI/CD. Furthermore, the official Python distribution in-
cludes the unittest21 framework by default. Hence, it
is available to every Python user, it supports test automa-
tion, reporting as well as test discovery. For this reason,
we use unittest as the basis for MoPyRegtest.

Any regression test for Modelica libraries requires a
software tool that translates Modelica code into executable
simulations that can be run by the testing tool. Since
MoPyRegtest shall be usable in open source projects, the
natural choice is to use OpenModelica, more precisely the
OpenModelica compiler omc. However, we want to be
able to run MoPyRegtest with other solvers, too. There-
fore, we do not call OpenModelica natively from within
Python, e.g. through OMPython22 (Ganeson et al. 2012).
Instead, we use a file interface and create Modelica script
files .mos from templates, which we pass to omc in order
to run simulations. This approach allows for integration
with any other simulation tool that supports a file-based
scripting interface. Also, it does not introduce any source
code dependencies on 3rd party APIs, which could easily
break builds or be incompatible for different API versions.

Regression requires the comparison between a refer-
ence result and a simulation result produced by a library
model. MoPyRegtest does not aim at creating superior or
new comparison metrics. Instead of a hard-coded com-
parison metric, for MoPyRegtest we chose to implement
a built-in selection of metrics and give users also the op-
tion to define their own metrics. In this fashion, one could
even reproduce proven algorithms from other regression
or comparison tools like pyfunnel or csv-compare. Call-
ing an external tool for comparison is also possible. For
details on the implementation see section 4.

3.2 Architecture and functionality
Conceptually the architecture is very simple and illus-
trated in Figure 1.

Defining a test in MoPyRegtest is very similar to one in
Python’s unittest module, see Listing 3.1.

In the simplest case, the regression test is a file
starting with the prefix test_<...>.py to allow for
test discovery. It must contain a child class inherit-
ing from unittest.Testcase. Inside this class,
every single regression test is defined as a method
called test_<...>, which in its body instantiates
a mopyregtest.RegresstionTest object like in
Listing 3.1. This object is given information on

• where to find the Modelica package to test
(package_folder),

• which model to test (model_in_package),
• where to put the results (result_folder),
• [optional] which simulation binary to use from PATH

(tool, default="omc")

21https://docs.python.org/3/library/unittest.
html

22https://github.com/OpenModelica/OMPython

• [optional] which Modelica Standard Library
version to use (modelica_version, de-
fault="default"),

• [optional] a list of Modelica library dependencies
loaded before test execution (dependencies, de-
fault=None).

The mopyregtest.RegresstionTest ob-
ject then calls its compare_result method with
information on

• where to find the reference result as a .csv file
(reference_result),

• [optional] a tolerance threshold which the distance
between each individual variable of reference and
actual result may not exceed in order to pass (tol,
default=10−7),

• [optional] a list of variable names for which
the comparison metric shall be evaluated
(validated_cols, default=“all variables
common in both data sets”),

• [optional] which comparison metric to use
(metric, default=∥ · ∥∞ vector norm on the
difference of variable values),

• [optional] which method to use to fill in miss-
ing values for timestamps which are not
present in either reference or actual result
(fill_in_method, default="ffill" from
pandas.DataFrame.fillna).

Remark. 1. In the current implementation, the Model-
ica STL is treated differently from other dependen-
cies. It is always required by MoPyRegtest. This is
just a design choice, because in practice most Mod-
elica models use the STL in one way or the other.

2. The default tolerance has been chosen small for two
reasons. First, MoPyRegtest’s original scope was to
ensure reproduceability during refactorings. Second,
choosing a small default value makes it is unlikely
that results are judged as being close by accident.

3. The user has to specify the variables to be compared
through the validated_cols parameter. Theo-
retically, this could be extended to passing a text
file containing the respective variable names, e.g.
like the comparisonSignals.txt23 proposed
for Modelica STL regression testing.

Note that a single file can contain more that one test
case like it is common with unittest. If a test
case definition like in Listing 3.1 is put in a file like
test_mymodel.py, then all of its test methods are ex-
ecuted by running

$ python3 test_mymodel.py

23https://github.com/modelica/
ModelicaStandardLibrary/files/4270977/
SetupForMSLRegressionTesting_2014-01-13.pdf

https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://github.com/OpenModelica/OMPython
https://github.com/modelica/ModelicaStandardLibrary/files/4270977/SetupForMSLRegressionTesting_2014-01-13.pdf
https://github.com/modelica/ModelicaStandardLibrary/files/4270977/SetupForMSLRegressionTesting_2014-01-13.pdf
https://github.com/modelica/ModelicaStandardLibrary/files/4270977/SetupForMSLRegressionTesting_2014-01-13.pdf

User’s Regression Test Definition

.csv

reference_result.csv

.py

test_modelicamodel.py

MoPyRegtest

class RegresstionTest:

 def compare_result:

 def _import_and_simulate:

 def _unify_timestamps:

mopyregtest

mopyregtest.metrics

 def norm_p_dist:

 def norm_infty_dist:

 def Lp_dist:

 def Linfty_dist:

templates

model_import.mos.mos

model_simulate.mos.mos

Modelica Tool

.mos .csv

1

3 4

5

metric

user defined metric

2

Figure 1. MoPyRegtest architecture with order of test execution steps

Or, if the file is put into a folder structure like required by
unittest for test discovery,24 from the structure’s root
folder one can run

$ python3 -m unittest

to discover and execute all unittest cases. See sec-
tion 5 for a complete example, which is also contained in
the MoPyRegtest implementation.

The call to tester.cleanup() in Listing 3.1 is
optional. The examples in MoPyRegtest do not call the
cleanup method, because automatic deletion must al-
ways be handled with extreme care.

4 Comparison metrics for regression
analysis

Generally speaking, choosing a metric to measure the
closeness, or rather the distance of a simulation result from
a reference data set, is problem specific. Therefore, we
designed MoPyRegtest to give the user full control over
the metric which is used in a regression test. The current
MoPyRegtest implementation also features a set of pre-
defined metrics.

4.1 Motivation
In section 2 we have outlined strategies that in some way
or the other (“funnel” or “band”) require the values of ref-
erence and actual simulation result to be close. This might
not always fit. Both data sets are in fact time-discrete rep-
resentations of functions depending on time, which are

24https://docs.python.org/3/library/unittest.
html#unittest-test-discovery

known to us only through their values at the timestamps
in the respective datasets. In our case, .csv files for ref-
erence result and the actual simulation run.

Mathematically speaking, there is a wide variety of
norms and metrics to measure “closeness” for such time-
dependent functions. Two functions may be close in one
metric, but not in another one.

A classic example is Gibb’s phenomenon in Fourier se-
ries approximations for discontinuous functions,25 most
prominently the approximation of a Heaviside step-
function h : [0,2π] 7→ R (step at π) with partial sums of
its Fourier series. It will overshoot at the jump discontinu-
ity. However, with the basis functions {t 7→ eint : n ∈ Z}
forming an orthonormal basis of L2([0,2π]) equipped with

the canonical norm ∥ f∥L2([0,2π]) :=
(∫ 2π

0 | f (t)|2dt
) 1

2 , the
partial sums of the Fourier expansion will converge in that
norm (and for a suitable subsequence also pointwise al-
most everywhere). Hence, in this case it is more meaning-
ful to use the ∥ ·∥L2([0,2π]) norm as a measure for closeness
instead of the common “band” notion.

Another example are events for state-discrete variables,
which might occur at slightly different times in reference
and actual simulation result. See section 2 and how py-
funnel and csv-compare address this issue.

In order to give users full flexibility in choosing the
right metric for the regression test formulation, we allow
users to define their own metrics (subsection 4.2) or choos-
ing from a set of predefined metrics (subsection 4.3).

25https://en.wikipedia.org/wiki/Gibbs_
phenomenon

https://docs.python.org/3/library/unittest.html#unittest-test-discovery
https://docs.python.org/3/library/unittest.html#unittest-test-discovery
https://en.wikipedia.org/wiki/Gibbs_phenomenon
https://en.wikipedia.org/wiki/Gibbs_phenomenon

Listing 3.1. Test case definition with MoPyRegtest and pre-defined comparison metric

import unittest
import mopyregtest

class TestUserDefinedMetrics(unittest.TestCase):
def test_modelicamodel(self):
tester = mopyregtest.RegressionTest(
package_folder="/path/to/mylibrary",
model_in_package="MyModel",
result_folder="/path/to/result/folder/MyModel",
tool="omc", modelica_version="4.0.0", dependencies=None)

tester.compare_result(
reference_result=str("/path/to/reference/result/MyModel_res.csv"),
metric=mopyregtest.metrics.Lp_dist,
validated_cols=["myvar1", "myvar2"], tol=1e-8, fill_in_method="interpolate")

tester.cleanup()

return

if __name__ == ’__main__’:
unittest.main()

4.2 Implementation
In our situation, both the reference data and the actual sim-
ulation data that a user compares in a regression test are
given as .csv files. They contain columns of data for in-
dividual variables at time-discrete timestamps. The times-
tamps are identical for all variables within one .csv file.
In general, the timestamps in different .csv files do not
coincide. A .csv file from a simulation run26 might look
like in Table 2.

As it can be seen, timestamps might have multiple oc-
currences, depending on whether events occurred at that
time (in one or more variables).

Metric definition We require a user-defined metric to
be a function d that

• takes two numpy.ndarray27 arrays of identical
shape (Ntstamps,2), say rref and ract with

• both rref and ract having the timestamps as the first
column and the values of one result variable in the
second column, and then

• returns a nonnegative real number d(rref,ract).

Then, a user can simply define metrics by passing a func-
tion handle, or even in situ using lambda functions. In
software development, a lambda function refers to an
anonymous, i.e. an unnamed function that can be defined
ad hoc and in place. For example,
metric=lambda r_ref, r_act: numpy.linalg.

norm(r_ref[:, 1] - r_act[:, 1], ord=1)

26https://github.com/pstelzig/MoPyRegtest/
blob/master/examples/test_user_defined_metrics/
references/SineNoisy_res.csv

27https://numpy.org/

which amounts to taking the ∥ · ∥1 vector norm in RNtstamps

on the difference in values for all timestamps. Then, the
distance according to this metric is computed for every
variable (defined through the validated_cols param-
eter in RegressionTest.compare_result).

Note that in this fashion it is entirely up to the user if
he wants to employ absolute or relative error measures in
a comparison metric. One could also write

metric=lambda r_ref, r_act: mopyregtest.
metrics.Lp_dist(r_ref, r_act)/
mopyregtest.metrics.Lp_norm(r_ref)

to compute a relative error in the L2-norm (Lebesgue
space norm) weighted by the L2-norm of the reference re-
sult. Here, p = 2 is the default value in Lp_dist and
Lp_norm.

Despite being very convenient for the user, we require
the data rref and ract to have identical shape and, in or-
der for computations to make sense, have identical times-
tamps. Which is generally not the case. For instance,
when data sampling rates in reference result and actual
result are different.

Timestamp unification One possibility would be to
leave it to the user to provide meaningful interpolation
for data at missing timestamps. To make it eas-
ier for the user, we have implemented the method
RegressionTest._unify_timestamps.
This function is always called in
RegressionTest.compare_result before
the metric is evaluated.

It takes both the reference result rref and the actual re-
sult ract with their timestamps Tref = [tref,0, . . . , tref,Nref] and
Tact = [tact,0, . . . , tact,Nact] and creates a union Tunified that

https://github.com/pstelzig/MoPyRegtest/blob/master/examples/test_user_defined_metrics/references/SineNoisy_res.csv
https://github.com/pstelzig/MoPyRegtest/blob/master/examples/test_user_defined_metrics/references/SineNoisy_res.csv
https://github.com/pstelzig/MoPyRegtest/blob/master/examples/test_user_defined_metrics/references/SineNoisy_res.csv
https://numpy.org/

Table 2. Example for a .csv result from a Modelica tool run.

time sine.y uniformNoise.y y uniformNoise.state[1]
0 0 0.289372473723095 2.89372473723095E-05 363258270
0 0 0.289372473723095 2.89372473723095E-05 363258270
0 0 0.289372473723095 2.89372473723095E-05 -2054081690
0.02 0.125333233564304 0.289372473723095 0.125362170811677 -2054081690
0.04 0.248689887164855 0.289372473723095 0.248718824412227 -2054081690
0.05 0.309016994374947 0.289372473723095 0.30904593162232 -2054081690
0.05 0.309016994374947 0.837498257278269 0.309100744200675 14228464
0.06 0.368124552684678 0.837498257278269 0.368208302510406 14228464

• contains every timestamp from the union of both Tref
and Tact interpreted as sets (i.e. no multiplicities) and

• repeats each timestamp as often as the maximum of
its occurrences in Tref and Tact.

For both rref and ract, data rows are repeatedly added for
every timestamp from Tunified until in the such extended
rref and ract each timestamp’s multiplicity matches the one
in Tunified. The newly added values are initalized with
NaN. Then, both rref and ract are sorted along the times-
tamp axis, using a stable sorting algorithm that preserves
the original order of timestamps.

This leaves the question of interpolating the such added
NaN values. To this end, we simply use the strate-
gies offered by pandas.DataFrame.fillna28 and
pandas.DataFrame.interpolate.29 The user
can choose between these strategies, see the options in
subsection 3.2.

Remark. A valid question is whether, instead of unify-
ing the timestamps, it would be easier to define the metric
d(· , ·) for results rref and ract of different shapes (Nref,2)
and (Nact,2), respectively. And then, if needed, require
interpolation as part of the metric implementation. E.g.
for integral based metrics, timestamp unification is not
needed. Only at the numerical integration points both rref
and ract need to be evaluated. Also, there is some risk as
to the interpolation error introduced by the timestamp uni-
fication. We opted for the timestamp unification for three
reasons:

1. It is more convenient for the user and allows for
shorter metric definitions.

2. Users can still use any interpolation they want inside
the metric implementation.

3. It has the benefit of being able to write out both rref
and ract into a single .csv result for visual compar-
ison.

In the future, we might make the now always executed
call to RegressionTest._unify_timestamps

28https://pandas.pydata.org/docs/reference/
api/pandas.DataFrame.fillna.html

29https://pandas.pydata.org/docs/reference/
api/pandas.DataFrame.interpolate.html

optional, putting such users who want back in control of
handling different timestamps in their metric definitions
themselves.

4.3 Built-in metrics
MoPyRegtest comes with the following built-in metrics
in the module mopyregtest.metrics. With some
slight abuse of notation:

mopyregtest.metrics.norm_p_dist

d(rref,ract) :=
∥∥∥rref[:,1]− ract[:,1]

∥∥∥
p

for some p ∈ {1,2, . . .} where ∥v∥p = (∑N−1
i=0 |vi|p)

1
p is the

canonical p-norm in RN .

mopyregtest.metrics.norm_infty_dist

d(rref,ract) :=
∥∥∥rref[:,1]− ract[:,1]

∥∥∥
∞

where ∥v∥∞ = max{|v0|, . . . , |vN−1|} is the canonical max-
imum norm in RN .

mopyregtest.metrics.Lp_dist

d(rref,ract)

:=
(Ntstamps−1

∑
i=0

(ti+1 − ti) ·
∣∣∣rref[i,1]− ract[i,1]

∣∣∣p) 1
p

for some p ∈ {1,2, . . .} where

[t0, . . . , tNtstamps] = rref[:,0] = ract[:,0]

are the unified timestamps of rref and ract. This is the

common Lp-norm ∥ f∥Lp =
(∫ tNtStamps

t0 | f |pdt
) 1

p (Lebesgue
space norm) when viewing rref and ract as piecewise con-
tinuous functions.

mopyregtest.metrics.Linfty_dist When
again viewing rref and ract as piecewise continuous
functions, the L∞-norm (norm of essentially bounded
functions) reduces to the canonical ∥ · ∥∞ maximum norm
on the function’s values. Hence, it returns the same value
as mopyregtest.metrics.norm_infty_dist.
This metric has been included for notational consistency.

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.fillna.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.fillna.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.interpolate.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.interpolate.html

Remark. The values of p are chosen as integers
other than the usual real p ∈ [1,∞) because we use
numpy.linalg.norm which requires the order p to be
of type int rather than float.

5 Showcase
As a showcase we present the example
test_user_defined_metrics that is included
MoPyRegtest’s sources.30

5.1 Test definition
In this example we want to formulate a regression test
that validates during library development, whether a
certain Modelica library model stays close to a refer-
ence data set. For the showcase, the reference data
set is [0,1] ∋ t 7→ sin(2πt) + 10−4 · noise(t). A Mod-
elica model31 has been created and run with Open-
Modelica to create the .csv reference result.32 This
model uses Modelica.Blocks.Sources.Sine and
Modelica.Blocks.Noise.UniformNoise. The
Modelica library model to be tested is the original
Modelica.Blocks.Sources.Sine itself (without
the noise).

The test has the folder structure

examples
test_user_defined_metrics

__init__.py
test_user_defined_metrics.py
references

SineNoisy_res.csv

The __init__.py turns the folder
test_user_defined_metrics into a
Python package for test discovery. That is, if
python3 -m unittest would be called from
the parent directory examples, all unittest test
definitions in test_user_defined_metrics
would be executed. The entire test definition in shown in
Listing 5.1.

5.2 Test automation
The test is automated “for free” because unittest fea-
tures automated test execution and test discovery. The out-
put is shown in Listing 5.2.

5.3 Automated test execution
Modern continuous integration toolchains like GitHub
Actions or GitLab CI/CD allow the automated ex-

30https://github.com/pstelzig/MoPyRegtest/
tree/master/examples/test_user_defined_metrics

31https://github.com/pstelzig/MoPyRegtest/
blob/master/examples/test_user_defined_metrics/
SineNoisy.mo

32https://github.com/pstelzig/MoPyRegtest/
blob/master/examples/test_user_defined_metrics/
references/SineNoisy_res.csv

ecution of tests triggered by certain events. With
GitHub Actions for instance, one can automate test
execution of Python code on push events to a
GitHub repository. In that case, the respective user-
defined job, say python-test.yml, in the reposi-
tory’s .github/workflows/ folder is executed. The
GitHub Actions documentation33 explains how.

In our case, the execution of a regression test definition
using MoPyRegtest, e.g. the one above, requires a suitable
Modelica simulation tool. There is the option to install
the OpenModelica compiler omc and the Modelica Stan-
dard Library as a step in the job definition, as well as the
other dependencies of MoPyRegtest. This however would
require significant computational resources and consume
valuable usage time for GitHub Actions. The same goes
for other continuous integration pipelines.

Another option is to execute the tests based on a
Docker34 image. Here, one could use the OpenMod-
elica docker image tagged v1.21.0-minimal from
dockerhub35 (or respective newer versions) with the pre-
installed omc. For instance, a GitHub Action that ex-
ecutes the same test definition as in Listing 5.1, but
runs it in a docker container based on the OpenModelica
v1.21.0-minimal image is shown in Listing 5.3.

In this fashion, one can easily implement test automa-
tion in an open source Modelica library development on
GitHub. All that is needed are test definitions in MoPy-
Regtest like in Listing 5.1 and a GitHub Action like in
Listing 5.3 that executes the test definitions. Either au-
tomatically, e.g. following push events, or manually trig-
gered. Both developers and users can then review the test
results in the repository’s Actions tab.

6 Conclusions
We have outlined why regression testing is important in
Modelica library development. Then we gave a rough
overview over how test and test automation is being used
with open source Modelica library development and iden-
tified some potential trends. We have also identified con-
crete tools used for regression testing in the open source
Modelica library community. We then formulated the ra-
tionale why a continuous integration-friendly testing solu-
tion like MoPyRegtest could be of value for the commu-
nity and described its design and functionality. We high-
lighted in detail how we implemented the possibility for
users to define their own comparison metrics for regres-
sion tests. Then we presented a showcase that is included
in MoPyRegtest.

MoPyRegtest is work in progress and still under devel-
opment. It has not been investigated yet how it could inte-
grate with Modelica simulation software other than Open-

33https://docs.github.com/en/
actions/automating-builds-and-tests/
building-and-testing-python

34https://www.docker.com/
35https://hub.docker.com/r/openmodelica/

openmodelica/tags

https://github.com/pstelzig/MoPyRegtest/tree/master/examples/test_user_defined_metrics
https://github.com/pstelzig/MoPyRegtest/tree/master/examples/test_user_defined_metrics
https://github.com/pstelzig/MoPyRegtest/blob/master/examples/test_user_defined_metrics/SineNoisy.mo
https://github.com/pstelzig/MoPyRegtest/blob/master/examples/test_user_defined_metrics/SineNoisy.mo
https://github.com/pstelzig/MoPyRegtest/blob/master/examples/test_user_defined_metrics/SineNoisy.mo
https://github.com/pstelzig/MoPyRegtest/blob/master/examples/test_user_defined_metrics/references/SineNoisy_res.csv
https://github.com/pstelzig/MoPyRegtest/blob/master/examples/test_user_defined_metrics/references/SineNoisy_res.csv
https://github.com/pstelzig/MoPyRegtest/blob/master/examples/test_user_defined_metrics/references/SineNoisy_res.csv
https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python
https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python
https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python
https://www.docker.com/
https://hub.docker.com/r/openmodelica/openmodelica/tags
https://hub.docker.com/r/openmodelica/openmodelica/tags

Listing 5.1. Showcase test_user_defined_metrics.py

Prepar ing the dependenc i e s
import unittest
import pathlib
import mopyregtest
import functools

Def ine the t e s t
Example here f o r a Ubuntu env i ronment with OpenModelica

class TestUserDefinedMetrics(unittest.TestCase):

Test ing use r d e f i n ed met r i c s on a Model ica s imu l a t i o n r e s u l t a g a i n s t a no i s y
r e f e r e n c e r e s u l t

def test_Sine(self):
tester = mopyregtest.RegressionTest(

package_folder=pathlib.Path.home() / \
".openmodelica/libraries/Modelica 4.0.0+maint.om/",

model_in_package="Modelica.Blocks.Sources.Sine",
result_folder=pathlib.Path(__file__).absolute().parent / \

"Modelica.Blocks.Sources.Sine",
modelica_version="4.0.0",
dependencies=None)

Comparing r e s u l t s
tester.compare_result(

reference_result=str(pathlib.Path(__file__).absolute().parent / \
"references/SineNoisy_res.csv"),

metric=functools.partial(mopyregtest.metrics.Lp_dist, p=2),
validated_cols=["y"], tol=2e-3, fill_in_method="interpolate")

return

if __name__ == ’__main__’:
unittest.main()

Listing 5.2. Output of test_user_defined_metrics.py

$ python3 -m unittest

Testing model Modelica.Blocks.Sources.Sine
Simulating model Modelica.Blocks.Sources.Sine using the simulation tools: omc
Using simulation tool omc
Comparing simulation result /home/user/mopyregtest/examples/test_user_defined_metrics/

Modelica.Blocks.Sources.Sine/Modelica.Blocks.Sources.Sine_res.csv and reference /home/
user/mopyregtest/examples/test_user_defined_metrics/references/SineNoisy_res.csv

Comparing column "y"
.
--
Ran 1 test in 2.679s

OK

Listing 5.3. GitHub Action to execute test_user_defined_metrics.py as part of MoPyRegtest’s GitHub repo

name : Example job for Modelica library regression testing
on: [workflow_dispatch]
jobs:
examples-test:
runs-on: ubuntu-latest
container: openmodelica/openmodelica:v1.21.0-minimal
steps:
- name: Install dependencies

run: |
apt-get -qq update
apt-get -qq --no-install-recommends install python3 python3-pip git
pip install numpy pandas

- name: Install Modelica STL 4.0.0
run: |

echo "installPackage(Modelica, \"4.0.0+maint.om\", exactMatch=true);" >
installModelicaStl.mos && omc installModelicaStl.mos

- name: Install MoPyRegtest with tag v0.2.1
run: |

git clone https://github.com/pstelzig/MoPyRegtest.git mopyregtest
cd mopyregtest
git checkout v0.2.1
pip3 install --user .

- name: Run examples
run: |

cd mopyregtest/examples/test_user_defined_metrics
python3 test_user_defined_metrics.py

Modelica. Also, it has no inherent reporting functionality
except what is provided by Python’s unittest. Further-
more, reference results need to be given as .csv files,
whereas in the Modelica community result files are usu-
ally .mat, making reference result files bigger than they
need to be. The timestamp unification has proven reliable
in our use so far, but other interpolation techniques, as out-
lined in the respective remark in section 4, could perform
better in certain scenarios. Multiple tests within a single
test class are executed sequentially at the moment, despite
being independent. Execution time could be saved by run-
ning tests in parallel. Finally, we have shown the feasibil-
ity of integrating MoPyRegtest with popular continuous
integration toolchains like GitHub Actions.

Acknowledgements
MoPyRegtest is developed by Philipp Emanuel Stelzig as
a private project. At simercator it is used for automating
regression tests of inhouse Modelica libraries. The author
would like to thank the reviewers for their helpful com-
ments regarding the state of the art overview.

References
Asghar, Adeel et al. (2015). “Automatic regression testing of

simulation models and concept for simulation of connected
FMUs in PySimulator”. In: 11th International Modelica Con-
ference. 118. Linköping University Electronic Press, pp. 671–
679.

Beck, Kent (2003). Test-driven development: by example.
Addison-Wesley Professional.

Fritzson, Peter et al. (2020). “The OpenModelica integrated en-
vironment for modeling, simulation, and model-based de-
velopment”. In: Modeling, Identification and Control 41.4,
pp. 241–295.

Ganeson, Anand Kalaiarasi et al. (2012). “An OpenModelica
Python Interface and its use in PySimulator”. In: 9th Interna-
tional Modelica Conference. Linköping University Electronic
Press, pp. 537–548.

Onggo, Bhakti Stephan and Mumtaz Karatas (2016). “Test-
driven simulation modelling: A case study using agent-based
maritime search-operation simulation”. In: European Journal
of Operational Research 254.2, pp. 517–531.

Pfeiffer, Andreas et al. (2012). “PySimulator – A simulation and
analysis environment in Python with plugin infrastructure”.
In: 9th International Modelica Conference. Linköping Uni-
versity Electronic Press, pp. 523–536.

Wetter, Michael et al. (2014). “Modelica Buildings library”. In:
Journal of Building Performance Simulation 7.4, pp. 253–
270. DOI: 10.1080/19401493.2013.765506.

Wong, W Eric et al. (1997). “A study of effective regression
testing in practice”. In: PROCEEDINGS The Eighth Inter-
national Symposium On Software Reliability Engineering.
IEEE, pp. 264–274.

https://doi.org/10.1080/19401493.2013.765506

	Introduction
	State of the art
	Testing in open source Modelica libraries
	Insights
	Testing tools

	Design and functionality
	Rationale
	Architecture and functionality

	Comparison metrics for regression analysis
	Motivation
	Implementation
	Built-in metrics

	Showcase
	Test definition
	Test automation
	Automated test execution

	Conclusions

