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Abstract
In power systems, sub-synchronous oscillations associ-
ated with the interaction between a mechanical rotor shaft
and electrical system can lead to equipment damage if
left unmitigated. This paper describes the development
of a scalable, multi-mass torsional shaft model and a syn-
chronous machine model that includes DC offset torque
components using Modelica. When coupled, these mod-
els can be used to perform shaft torsional studies. Two
methods of coupling the shaft with the rest of the turbine-
generator system are devised and analyzed. A single-
machine, infinite-bus test system using the torsional shaft
model and generator model developed in this paper is
proposed to observe the penetration of sub-synchronous
oscillations throughout an electrical system. The test
system is then modified to model sub-synchronous reso-
nance leading to system instability. Analysis of the mod-
els described in this paper highlights the value of the
Modelica_LinearSystems2 library in determining
the torsional mode shapes and frequencies associated with
a turbine-generator system model, which is not feasible
with most power system simulation tools.
Keywords: OpenIPSL, power systems, turbine-generator,
torsional shaft, SHAF25, GENDCO, sub-synchronous
resonance, sub-synchronous oscillations, Model-
ica_LinearSystems2

1 Background
In the power system dynamic performance analysis of a
turbine-generator system, the rotor shaft is generally rep-
resented as a single, lumped mass. While this is sufficient
for many studies, the rotor of a turbine-generator system is
much more complex. A more detailed representation em-
ploys several masses to characterize various components
along the rotor, such as the turbine blades of different pres-
sure stages, connected by shafts of varying cross-sectional
diameters. This representation can aid in understanding
the electromechanical dynamics resulting from torsional
oscillations occurring between rotor shaft segments, with
oscillations below the synchronous frequency translating
to potentially disastrous interactions between the electrical
system and mechanical rotor if unmitigated. These effects
can include sub-synchronous resonance between the gen-

erator and series capacitor compensated lines (“Reader’s
guide to subsynchronous resonance” 1992) or torsional
fatigue and material damage due to accumulated oscilla-
tions.

While the study of sub-synchronous resonance has
been of practical interest following two shaft failures at
the Mohave Generating Station in Nevada in 1970 and
1971 (Walker et al. 1975), challenges associated with
these complex dynamics continue to emerge. For ex-
ample, in July 2015, sub-synchronous oscillations orig-
inating from a wind farm in the Xinjiang Uygur Au-
tonomous Region of China excited torsional vibrations
in the shaft of a synchronous generator 300 km away.
This caused torsional stress relays to trip three large ther-
mal generation units offline and ultimately resulted in a
sudden loss of approximately 1,280 MW of power (Shi,
Nayanasiri, and Li 2020). In November 2015, torsional
vibrations along the rotor shaft of a thermal generation
unit in Ha Tinh province in Vietnam were exacerbated by
sub-synchronous resonance. The unstable oscillations re-
sulted in several cracks throughout the turbine-generator
shaft (Duc Tung, Van Dai, and Cao Quyen 2019). More
recently, in an isolated industrial area of Russia, torsional
oscillations and sub-synchronous resonance have repeat-
edly caused protection systems to shut down all operating
gas turbine generators in the area and led to widespread
outages (Ilyushin and Kulikov 2021).

Incidents such as the ones listed above indicate how im-
portant it is to be able to adequately model the behavior
of a turbine-generator rotor shaft system when investigat-
ing torsional oscillations or sub-synchronous oscillations.
While a complete continuum model of the rotor subdi-
vided into dozens of minute masses and connecting shafts
is needed to capture the entire range of torsional oscilla-
tions, it is generally sufficient to represent the rotor as a
lumped, multi-mass model if the oscillations of interest
are sub-synchronous (Ong 1998). The oscillations associ-
ated with the torsional rotor shaft can also be exacerbated
by the DC braking torque effect of the generator. When a
symmetrical fault occurs in close proximity to a generator,
the sudden disturbance has a tendency to cause the gener-
ator rotor to back swing. This effect could influence the
angular displacement of the rotor and alter the torsional
modes expressed by the rotor shaft (Shackshaft 1970).



While sub-synchronous resonance studies are gen-
erally performed in three-phase, electromagnetic tran-
sient simulation programs, there are still some instances
in which a detailed positive sequence electrical system
model with a simplified model of the interactions be-
tween the shaft and electrical dynamics is desirable. In
these cases, a Modelica-based implementation can pro-
vide several beneficial features that are not available in
other modeling languages or simulation tools. For ex-
ample, the Modelica_LinearSystems2 Library en-
ables linearization and eigenvalue analysis of models to
verify the modal quantities of a shaft without requiring
the development of a separate model for linear analysis.
Additionally, programs such as Dymola include function-
ality to easily compare the performance of different model
implementations.

1.1 Motivation and Objectives
The Open-Instance Power System Library (OpenIPSL)
was developed in part to provide Modelica implementa-
tions of standard phasor-domain power system models for
research and teaching activities with a transparent library
development framework. With the recent release of ver-
sion 3.0.1, several models from the PSS®E Model Library
that were missing from previous versions of OpenIPSL
were added to the library (DeCastro Fernandes 2023).
However, two component models critical to shaft torsional
studies and sub-synchronous oscillation studies that are
widely used in the industry have yet to be added. These
models are a torsional shaft model with up to 25 masses,
SHAF25, and a round rotor generator with a DC offset
torque component, GENDCO. By developing Modelica im-
plementations of these models, OpenIPSL can be used to
develop power system models with richer dynamics suit-
able for investigating the effects of sub-synchronous oscil-
lations and sub-synchronous resonance. After additional
validation and testing, the models proposed in this paper
will be added to a future release of OpenIPSL.

Finally, this work addresses a significant gap in power
system dynamic modeling. According to the PSS®E Pro-
gram Operation Manual, the SHAF25 model is classi-
fied as a turbine-governor model (Siemens 2015a). It is
therefore not possible to model turbine governor dynamics
and the torsional dynamics of the SHAF25 model simul-
taneously. Neglecting the turbine governor of a system
restricts analysis of the impact of sub-synchronous reso-
nance to the rotor shaft of the turbine-generator. By using
components from OpenIPSL, the modeling approach pro-
posed in this work allows for the dynamics of turbines,
boilers, and governors to be modeled alongside the tor-
sional dynamics of the shaft.

To summarize, the objectives of this work were
to:
• Develop and validate a scalable, lumped mass tor-

sional shaft model using the Modelica modeling lan-
guage. This approach will allow for the dynamics of
the shaft to be modeled simultaneously with the the

dynamics of the turbine, boiler, and governor of the
turbine-generator system, which is not possible with
existing domain-specific tools.

• Develop and verify the behavior of a round rotor gen-
erator with quadratic saturation that includes a DC off-
set torque component.

• Demonstrate the functionality of the developed mod-
els by using an illustrative, single-machine infinite-bus
(SMIB) test system to demonstrate the penetration of
sub-synchronous resonance throughout a power grid.

1.2 Contributions and Organization
The primary contributions of this work are:

• The proposal and assessment two methods of coupling
the electrical and mechanical dynamics of a turbine
generator system.

• The development of a flexible implementation for
modeling a torsional shaft with any number of masses
that. The implementation enables the simultaneous
modeling of turbine, boiler, and governor dynamics
alongside the dynamics of the shaft.

• The implementation of a synchronous machine model
with quadratic saturation and DC offset torque com-
ponents for shaft torsional studies.

• A demonstration of the usefulness of the Model-
ica modeling language in developing power system
models capable of simulating the effects of sub-
synchronous resonance.

The remainder of the paper is organized as follows.
Sections 2 and 3 detail the process of modeling and as-
sessing two turbine-generator components respectively:
1) a scalable multi-mass torsional shaft; and 2) a round
rotor generator model with a DC offset torque compo-
nent. Section 4 demonstrates the use of these components
to develop an illustrative power system example model
to observe the penetration of sub-synchronous resonance
throughout the grid. Finally, Section 5 summarizes the
contributions of this work with concluding remarks and
outlines planned future work for the models described
throughout the paper.

2 Scalable Multi-Mass Shaft
2.1 SHAF25 Implementation Using Modelica

The SHAF25 model found in the PSS®E Model Library
(Siemens 2015b) is a lumped-mass torsional shaft model
capable of representing up to 25 masses connected by
weightless springs. Using the Modelica Standard
Library, it is straightforward to assemble shaft mod-
els for a set number of masses by connecting an alter-
nating sequence of rotational mechanical inertia and
springDamper components. However, to be able to
represent shafts with up to 25 masses, this approach
would require maintaining a library with 25 separate
shaft models. Alternatively, by using concepts from the



ScalableTestSuite Library (Casella et al. 2015), a
single shaft model can be developed with the number of
masses on that shaft determined by a single integer pa-
rameter.

Listing 1 provides an excerpt of the text layer for the
multi-mass torsional shaft model showing its scalability.
The relevant parameters and components are all instanti-
ated as arrays, and a for loop in the equation section iter-
atively connects the components in the correct order. As
an added benefit, this scalable modeling approach allows
the model to represent a shaft with any number of masses,
effectively bypassing the 25 mass limit of the original
SHAF25 model.
Listing 1. Excerpt of text layer for the scalable multi-mass tor-
sional shaft model illustrating its scalability.

model ScalableShaft;
// Parameter d e c l a r a t i o n
parameter Integer N = 5 "Number of masses";
parameter SIunits.Inertia H[N] "Vector of p

.u. moment of inertia values";
parameter SIunits.Inertia J[N] = H.*(

SysData.S_b/wo^2);
parameter SIunits.RotationalSpringConstant

K[N-1] "Vector of stiffness
coefficients";

parameter SIunits.RotationalSpringConstant
C[N-1] = K.*p^2*(SysData.S_b/(4*wo)) "
Vector of stiffness coefficients in N-m
/rad";

parameter SIunits.RotationalDampingConstant
D[N-1] = fill(Modelica.Constants.small

, N-1) "Vector of damping constant
values in Nms/rad";

// C la s s I n s t a n t i a t i o n
Modelica.Mechanics.Rotational.Components.

Inertia inertia[N](J=J);
Modelica.Mechanics.Rotational.Components.

SpringDamper springdamper[N-1](c=C, d=D
);

Modelica.Mechanics.Rotational.Sensors.
RelAngleSensor relAngle[N];

// Model Equat ions
equation
connect(inertia[1].flange_a, flange_a);
for i in 1:(N-1) loop

connect(inertia[i].flange_b,
springdamper[i].flange_a);

connect(springdamper[i].flange_b,
inertia[i+1].flange_a);

connect(relAngle[i].flange_b, inertia[i
].flange_a);

connect(relAngle[i].flange_a, inertia[i
].flange_b);

end for;
connect(flange_b, inertia[N].flange_b);
connect(relAngle[N].flange_b, inertia[N].

flange_a);
connect(relAngle[N].flange_a, inertia[N].

flange_b);
end ScalableShaft;

In this work, and many other works in the litera-
ture, the damping coefficients of the springDamper
components connecting the masses of the shaft are

assumed to be negligible. It is generally accept-
able to assume that the damped and undamped nat-
ural frequencies of the shaft are within 0.1 Hz of
each other (anderson:1999sub-synchronous). As
such, the damping coefficients for the shaft model
shown here are all set to an arbitrarily small value,
Modelica.Constants.small.

2.2 Model Validation
To verify the behavior of the multi-mass shaft model,
eigenvalue analysis was used to observe the relative an-
gular displacement between the segments of a five mass
implementation of the component. The five mass shaft
was parameterized using data from a four pole nuclear
unit found in Section 15.1 of Prabaha Kundur’s textbook,
Power System Stability and Control (Kundur 1994). This
procedure is aided and simplified through the use of the
Modelica_LinearSystems2 library to generate a
linearized electromechanical state-space model of the tor-
sional shaft system. This library is also used to determine
the frequencies of the modes exhibited by the system.
From this model, it is straightforward to obtain an eigen-
vector matrix that describes the magnitude of the mode
shapes. The resulting mode shapes are shown in Fig-
ure 1a. For comparison and validation, Figure 1b shows
the mode shapes obtained in Power System Stability and
Control(Kundur 1994).

Figure 1. Mode shapes and frequencies obtained from a) the
Modelica implementation of a five-mass torsional shaft, and b)
the implementation found in Power System Stability and Control
(Kundur 1994).



After normalizing each of the eigenvectors such that the
magnitude of the largest element is 1.0, the overall trajec-
tory of the mode shapes and modal frequencies of the two
implementations are nearly identical, indicating that the
Modelica multi-mass shaft implementation exhibits the
expected behavior. While there are some minor discrepan-
cies in the modal frequencies of the two implementations,
this can likely be attributed to initialization differences in
the Modelica implementation, as the states’ precise initial
values of the model from Power System Stability and Con-
trol are not known.

2.3 Coupling Mechanical Shaft Dynamics
with Electrical System Dynamics

As a purely rotational mechanical model in Modelica,
the multi-mass shaft has mechanical torque flange inputs
and outputs. The PSS®E generator models in OpenIPSL
through their extension of a baseMachine class, how-
ever, only accept real inputs for mechanical power and
field voltage. Therefore, two methods were devised to in-
terface the shaft model with the electrical system.

2.3.1 Modified Base Machine Class

The first approach to couple the mechanical and electrical
dynamics of the system involved creating a variant of the
baseMachine class included in OpenIPSL. Each of the
PSS®E generator models in OpenIPSL extends the same
baseMachine class. By altering this class to replace the
mechanical power input with a mechanical torque flange
input, the torsional shaft model can be simply connected
to the rest of the electrical system through the electrical
pin of the generator. For comparison, the icon layer of the
original base machine and the modified base machine are
shown in Figure 2.

Figure 2. Comparison of the icon layer of a) the original base
machine model from OpenIPSL, and b) the modified base ma-
chine model to accept a torque input from a torsional shaft
model.

To facilitate this connection, two mathematical equa-
tions to explicitly calculate the mechanical power input to
the generator from the mechanical torque input had to be
added to the text layer of the model.

The first equation, shown in Equation 1, converts the
per unit speed deviation of the rotor into mechanical
speed:

ωm = ωb(1+ω) (1)

where ωm is the mechanical speed of the rotor in radians
per second, ωb is the synchronous speed of the system in
radians per second, and ω is the per unit mechanical speed
deviation of the generator rotor.

The second equation, shown in Equation 2 uses this me-
chanical speed to convert the input mechanical torque into
mechanical power:

Pm =
ωmTm

Mb
, (2)

where Pm is the per unit mechanical power input to the
generator, Tm is the mechanical torque input to the gener-
ator from the torsional shaft in Newton-meters, and Mb is
the system base power in volt-amperes.

By redefining the variable for mechanical power, the
swing equation of the original baseMachine model can
be left unaltered:

2H
dω

dt
=

ωm −Dω

ω +1
−Te (3)

2.3.2 Torque-to-Mechanical Power Interface
While the previous method to couple the electrical and
mechanical dynamics of the turbine-generator system
is relatively straightforward, it would require pervasive
changes to OpenIPSL to implement, as individual models
for each generator extending the new multi-domain base
machine class would have to be developed. This would ef-
fectively require two of each generator model to be main-
tained.

An alternative approach is to create a standalone inter-
face model that accepts a mechanical torque flange input
and produces a real mechanical power output as shown in
Figure 3 (F. J. Gómez et al. 2018; Aguilera, Vanfretti, Bo-
godorova, et al. 2019; Aguilera, Vanfretti, and F. Gómez
2018).

Figure 3. Icon layer of an interface to couple the mechanical
dynamics of a torsional shaft with the electrical dynamics of a
turbine-generator system.

Using this method, the per unit speed deviation of the
rotor must be explicitly calculated by taking the derivative
of the angular position of the shaft connected to the input
of the interface:

ω =
dφ

dt
1

ωb
(4)

where ω is the per unit mechanical speed deviation of the
rotor, φ is the relative angular position of the rotor in ra-
dians, and ωb is the synchronous speed of the system in
radians per second.



The per unit mechanical speed deviation can then be
used to calculate the mechanical speed of the rotor:

ωm = ωb(1+ω) (5)

where ωm is the mechanical speed of the rotor in radians
per second.

Finally, the mechanical speed of the rotor and torque
input to the interface can be used to determine the me-
chanical power input to the generator:

Pm =
ωmTm

Mb
(6)

where Pm is the per unit mechanical power output from the
interface, Tm is the mechanical torque input to the gener-
ator from the torsional shaft in Newton-meters, and Mb is
the system base power in volt-amperes.

2.3.3 Comparison of Implementations

For comparison, Figure 4 shows the graphical layers for
both methods of coupling the mechanical and electrical
dynamics of a turbine-generator system. Both implemen-
tations include a representation of the boiler, turbine, and
speed-governor modeled by an IEEEG1 component; an
IEEE Type 1 excitation system modeled using an IEEET1
component; and a round rotor synchronous generator with
quadratic saturation represented by a GENROU model.

To compare the efficacy of the two methods of inter-
facing the shaft model with the remainder of the turbine-
generator model, the two models were initially simulated
with an identical simulation configuration for 30 seconds
using DASSL, a variable time-step solver. As shown in
Figure 5, the error of the mechanical power input to the
generator calculated between the two implementations ap-
pears to accumulate throughout the simulation. Using
Rkfix4, a fixed step, fourth-order Runge-Kutta method
solver, however, the mechanical power plotted for both
implementations were identical, as shown in Figure 6.

Figure 4. Comparison of the graphics layer of two methods
to interface a torsional shaft model with an electrical system:
a) A modified base machine directly accepts mechanical torque
from the shaft and internally calculates mechanical power, b)
An interface accepts a mechanical torque input from the shaft
and produces a mechanical power output for the generator. Both
approaches notably allow for a turbine-governor model, repre-
sented by the IEEEG1 model, to be simulated in conjunction
with the shaft model, which is not possible with many power
system simulation tools.

Figure 5. Plot of mechanical power input to the generator for
both methods of interfacing the shaft model with the remain-
der of the turbine-generator model when simulated using the
DASSL solver in Dymola and the error between the two.



Figure 6. Plot of mechanical power input to the generator for
both methods of interfacing the shaft model with the remainder
of the turbine-generator model when simulated using the Rkfix4
solver with an integration step size of 0.00001 s in Dymola and
the error between the two.

Generally, solutions obtained from variable-step solvers
are more accurate, as the solver dynamically adjusts the
size of the integration step size to match the speed at which
the states of the model change. Fixed-step solvers, how-
ever, maintain the same integration step-size throughout
the simulation. With a large step size, the simulation time
can be greatly reduced, however, the accuracy of solutions
may suffer as the solver cannot adjust its step size to match
the stiffness of the system.

While the two implementations are modeled using the
same equations and should therefore, in theory, produce
identical solutions. However, the integration step size
when using the DASSL solver does not vary identically for
the implementations. As such, the solutions acquired by
both implementations are not identical, as observed in Fig-
ure 5. When the same step size is enforced for both mod-
els, however, the solutions become identical, as shown in
Figure 6. While the solution results may be identical for
the two implementations, the accuracy of this solution is
not guaranteed. Figure 7 shows a plot of the mechanical
power for both implementations using an integration step
size of 0.01 seconds.

While the plots of mechanical power from implementa-
tions agree with each other, it can be inferred that they are
both inaccurate with respect to the actual result by com-
paring the resulting plot with the plots acquired from a
variable-step solver or a fixed-step solver with a very small
step size.

By enabling the Generate block timers flag in
the simulation setup dialog of Dymola, the simulation

Figure 7. Plot of mechanical power input to the generator for
both methods of interfacing the shaft model with the remainder
of the turbine-generator model when simulated using the Rkfix4
solver with an integration step size of 0.01 s in Dymola and the
error between the two.

time of the two implementations can be compared as
shown in Table 1. Using the Rkfix4 solver, the range
of time steps that both implementations could successfully
complete simulation for was between 0 seconds and 0.01
seconds. For each time step, it can be observed that the
modified base machine implementation is slightly more
computationally efficient. Using the variable time-step
DASSL solver results in an even greater discrepancy be-
tween the computational cost of the two implementations,
with the modified base machine method remaining the
more efficient option.

The discrepancy in simulation time between the two im-
plementations can be explained by examining the statistics
of the translation log in Dymola, shown in Figure 8.

When translating a model, Dymola uses its state vari-
ables to create differential, linear, and non-linear sys-
tems to solve. As such, models with more states gen-
erally will take longer to simulate (Fish and Harrison
2017). The number of states can be approximated by ex-
amining the Time-varying variables and Alias
variables entries of the translation statistics log (Horn
2020). Also of interest is the Continuous time
states entry of the log which indicates the overall size



Table 1. Comparison of simulation time for two methods of cou-
pling mechanical and electrical dynamics of a turbine-governor
system using the Rkfix4 solver with various time steps and the
DASSL solver.

Solver Step Size
(s)

Coupling
Method

Simulation
Time (s)

Rkfix4

0
Base

Machine 328.835

Interface 341.871

0.0001
Base

Machine 134.925

Interface 135.096

0.01
Base

Machine 1.391

Interface 1.638

DASSL –
Base

Machine 75.946

Interface 80.161

of the model. From Figure 8 it can be observed that
the modified base machine implementation contains fewer
alias variables and continuous time states than the torque-
to-power interface implementation, corresponding with
the former’s faster simulation time.

Figure 8. Comparison of excerpts from the translation statis-
tics logs in Dymola for a) the modified base machine imple-
mentation, and b) the torque-to-power interface implementation.
Highlighted statistics affect the simulation time of the imple-
mentations.

3 GENDCO
When performing power system studies involving shaft
torsional dynamics in PSS®E, the SHAF25 torsional shaft
model must be coupled with a GENDCO generator model
(Siemens 2015c). The GENDCO model is a round rotor
generator model with quadratic saturation and DC off-
set torque components included. To model the effect of
these DC offset components, the direct- and quadrature-
axis armature-winding voltage equations of the genera-
tor were modified. The original equations used in the
GENROU model are shown in Equation 9 and Equation 10

(Baudette et al. 2018):

vd =−Raid −Ψq (7)

vq =−Raiq +Ψd (8)

where Ra is the machine armature resistance, i is the
direct- or quadrature-axis current, and Ψ is the direct- or
quadrature-axis stator flux linkage. The modified equa-
tions for the GENDCO model include the rate of change
of stator flux linkages as shown in Equation 9 and Equa-
tion 10 (Dandeno et al. 2003):

vd =−Raid −Ψq +
1

ω0

dΨd

dt
(9)

vq =−Raiq +Ψd +
1

ω0

dΨq

dt
(10)

where ω0 is the synchronous electrical speed. These equa-
tions assume that the rotor speed never deviates from the
synchronous rotor speed.

For GENROU and other generator models that ignore the
effects of DC offset components, the air-gap torque of the
generator following a disturbance will consist primarily
of a unidirectional step change caused by stator resistance
losses (Kundur 1994). For the GENDCO model, however,
an additional decaying oscillatory component represent-
ing the DC offset component of current induced in the sta-
tor by the disturbance will be present. Figure 9 illustrates
the difference in the air-gap torque response of a GENROU
generator model from OpenIPSL that neglects the rate of
change of stator flux linkages in the armature-winding
voltage equations and the GENDCO generator model that
includes them.

Figure 9. Plot comparing air-gap torque over time for identi-
cally parameterized GENROU and GENDCO models. A fault
is applied at t = 2 s for 0.15 s.

The additional oscillatory component in the air-gap
torque response of the GENDCO generator model can
also be confirmed through linear eigenvalue analy-
sis. Table 2 shows the pole pair and modal fre-
quency obtained through linear analysis using the



Modelica_LinearSystems2 library in Dymola for
a simple test system including the GENROU generator
model. Table 3 shows the pole pairs and modal frequen-
cies for the same test system when the generator model
was changed to the GENDCO model. In comparing the two
tables, it can be observed that as a result of the DC offset
components, the GENDCO model contains an additional,
higher frequency pole while retaining the same 0.814 Hz
pole exhibited by the GENROU model.

While the GENDCO model and the inclusion of DC off-
set components is critical in obtaining the correct dynamic
characterization of any sudden changes in the electromag-
netic torque of the generator, it is important to note that
DC offset approximation effects are only valid when an-
alyzing the effects of symmetrical faults and imbalances.
Consequently, the model should only be used for studies
involving shaft torsional dynamics (Siemens 2015c).

Table 2. Pole and Modal Frequency of GENROU generator
model

Eigenvalue Frequency (Hz)

−0.26835± j5.1092 0.8143

Table 3. Poles and Modal Frequencies of GENDCO generator
model

Eigenvalue Frequency (Hz)

−0.2684± j5.1087 0.8142

−0.021085± j5605.7 892.7985

4 Example of Subsynchronus Reso-
nance Analysis

The interaction between the sub-synchronous oscillations
created by the torsional shaft of a turbine-generator system
and the rest of the electrical system can lead to equipment
failure and damage due to torsional fatigue if improperly
damped (Walker et al. 1975). As such, it is important to
be able to analyze how the resonance resulting from these
interactions can penetrate into the power system.

As a preliminary investigation into how the models de-
veloped in this paper can be applied to sub-synchronous
resonance studies, a single-machine, infinite-bus (SMIB)
test system was developed as shown in Figure 10.

The generator unit on the left hand side of the test sys-
tem in Figure 10 models a turbine-generator consisting of
a six-mass implementation of the torsional shaft model de-
scribed in Section 2 and the GENDCO model described in

Figure 10. Single-machine, infinite-bus test system used to ana-
lyze the penetration of sub-synchronous oscillations throughout
an electrical system.

Section 3. The GENCLS generator model at the far-right
of the test system is parameterized as an infinite bus, rep-
resenting the reminder of the power grid. A fault was con-
figured to be applied to the system at t = 2 seconds and
cleared at t = 2.15 seconds. The turbine-generator sys-
tem and lines were parameterized using parameters from
the IEEE first benchmark model for computer simulation
of sub-synchronous resonance (Farmer 1977). With these
parameters, the turbine-generator system is able to return
to a stable state following a disturbance. Figure 11 shows
the air-gap torque response of the GENDCO model in the
test system when the torsional shaft model is included in
the turbine-generator system and when it is omitted.

Figure 11. Plot of the air-gap torque of the test system turbine-
generator model when the torsional shaft model is omitted and
included.

The response of the two model variants of the system
are similar, with a slight discrepancy in the frequency of
the oscillations preceding and following the fault being
the primary difference. To further illustrate this differ-
ence, Figure 12 shows a detailed view of the air-gap torque
response of the test system after the turbine-generator
system has returned to a steady state after the fault was
cleared. The turbine-generator system with the shaft omit-
ted exhibits an approximately 60 Hz oscillation, corre-



sponding with the expected behavior due to the effect of
the DC offset components. The turbine-generator system
with the shaft included contains a sum of several other os-
cillations, representing the torsional modes of the shaft.

Figure 12. Detailed view of the steady-state portion of the air-
gap torque response of the test system following a fault when
the torsional shaft is included and omitted from the turbine-
generator system.

The time constant controlling the decay of the DC off-
set torque components roughly corresponds to the net-
work resistance-to-reactance ratio as seen by the gener-
ator (Siemens 2015c). As such, if this ratio is excessively
large, the effects of sub-synchronous resonance may cause
the system to become unstable. Figure 13 compares the
bus voltage at the location of the fault in the test system
for the line parameters used in the IEEE first benchmark
model (Farmer 1977) and for arbitrary line parameters that
greatly increased the ratio of resistance-to-reactance seen
by the generator. The bus voltage response is similar for
the two sets of line parameters before and during the fault,
however, following the fault, if the resistance-to-reactance
ratio is excessively large, the oscillations following the
fault will persist as shown by the unstable case in Fig-
ure 13.

5 Conclusions and Future Work
The scalable, multi-mass torsional shaft model and the
GENDCO synchronous machine model with DC offset
torque components developed in this paper enable a flex-
ible method for performing shaft torsional studies using
Modelica. The torsional shaft model enables the ability
to model the mechanical dynamics of any number of boil-
ers, turbine pressure stages, and governor simultaneously.
Two methods for coupling the shaft model to the rest of
the turbine-generator system were explored. While mod-
ifying the OpenIPSL base machine class of the generator
model to accept a mechanical torque input was shown to
be more computationally efficient, an interface to convert
the mechanical torque from the shaft to mechanical power
input to the generator model would require less pervasive
changes to the library to maintain. When coupled with
the torsional shaft model, the GENDCO generator model

Figure 13. Plot of the bus voltage at the location the fault was
applied to when the test system was parameterized with two dif-
ferent sets of transmission line parameters.

with DC offset torque components enables modeling sud-
den changes in the electromagenetic torque of the gener-
ator more accurately for studies involving shaft torsional
dynamics. By employing these models in an SMIB power
system model, the effects of sub-synchronous oscillations
can be observed. Consequently, adequate line parameters
and lenient operating conditions for the modeled system
can be determined to limit the impact of sub-synchronous
resonance.

Future work includes validating the behavior of the
GENDCO model developed in this paper. There is cur-
rently no openly accessible PSS®E dynamic model pa-
rameter data for an existing GENDCO unit. However, if this
data was obtained, software-to-software validation could
easily be performed to confirm that the Modelica imple-
mentation of the model behaves identically to the equiva-
lent model in PSS®E. Additionally, while the IEEE first
benchmark model for the computer simulation of sub-
synchronous resonance was used to parameterize the test
system developed in Section 4, implementing the first and
second benchmark models in Modelica to further explore
the effects of sub-synchronous resonance on an electrical
system remains the subject of future work (Farmer 1977;
Farmer 1995). Finally, the torsional shaft model devel-
oped in this paper assumes negligible damping throughout
the shaft. The damping of torsional oscillations is gener-
ally very small, but difficult to predict without performing
field tests on a specific shaft (Kundur 1994). By obtain-
ing PSS®E dynamic data for an existing SHAF25 unit, the
viscous damping of each mass with respect to the rotor and
the damping between each mass could be accurately mod-
eled in the equivalent Modelica implementation. Upon the
completion of these tasks, the integration of the torsional
shaft model and GENDCO model into OpenIPSL will be
pursued.
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