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Abstract 
The evaluation and analysis of complex energy supply 

systems with Modelica models is more and more an 

integral part of the building design processes. Dynamic 

system modeling became there especially important 

regarding analyses of the use of storage and the integration 

of volatile renewable resources as well as intelligent 

control. 

However, this still requires extensive engineering work 

and time-consuming modeling efforts, although the basic 

work steps are largely comparable and based on the same 

fundamentals. Therefore, the open interfaces to and from 

Modelica offer extensive possibilities for automation and 

generalization of these processes. 

This paper describes such a new integrative and automated 

optimization framework for energy systems of buildings 

and districts, which uses Modelica models and FMUs 

iteratively for the identification of optimal system 

configurations. 

Keywords: System Optimization, HVAC System Models, 

Python Automation 

1 Introduction 

Energy supply systems in buildings become more and 

more complex. Therefore, huge knowledge and a high 

number of professionals in different trades must be 

coordinated. This adds further challenges for architects, 

engineers and designers especially regarding the increased 

requirements on energy efficiency and availability. 

These extensive engineering tasks can only be solved with 

adequate calculation tools. These tools must be able to 

deal with an increasing variety of solution options and 

degrees of freedom as well as influencing factors. 

For example, the required heat of new buildings is 

nowadays provided by renewable energies and no longer 

by individual boiler systems. Renewable heat sources 

often require heat pumps to provide the necessary 

temperature level. Both the volatile heat sources (such as 

waste heat, solar heat, geothermal heat) and the heat 

pumps must be considered in detail. 

An engineer can now no longer focus on a singular 

balancing of the necessary natural gas consumption of the 

boilers. Design decision now need an influence analysis 

of weather and site conditions as well as the necessary 

power requirements for the heat pumps. These design 

analyses must often include an additional coverage by 

local renewable power production (e.g. by photovoltaics 

or wind power) which is another important boundary 

condition and influencing factor. In case of an additional 

seasonal storage (e.g. ice storage) in a system, engineers 

need to solve a multi-valent and cross-domain design 

problem already only regarding the singular task of 

heating system design. 

Keywords like multi-valent and cross-domain quickly 

bring simulation-savvy engineers to the versatile, multi-

physics modeling language Modelica. Therefore, 

Modelica already provides a large number of well-proven 

library solutions, e.g. Buildings, BuildingSystems, 

IBPSA, AixLib, IDEAS, Green City, etc. (c.f. Wetter 

2009, Müller et.al. 2016). Furthermore, the various 

Modelica simulation environments (like SimulationX, 

Modelon Impact, Dymola, Open Modelica, etc.) offer a 

variety of open interfaces for the simulation automation. 

They can help to automate the necessary extensive variant 

analysis. This saves a significant amount of engineering 

time. Additional export options, especially like the 

Functional Mockup Interface Standard (FMI), enable IP 

protection and tool-independent development of the 

necessary design tools. 

Engineers can design the energy supply for each building 

individually. However, thinking on a district level often 

provides more efficient solutions. It allows to use synergy 

effects between different buildings and surrounding 



energy sources. This is the core topic of the Smood (Smart 

Neighborhood) network (Roselt, and Büttner, 2019). 

The Smood joint project consists of a group of German 

engineering companies and local scientists. It tries to 

develop a holistic value chain of tools and processes for 

the decarbonization of the energy supply of residential 

neighborhoods. Another important research and 

development aspect is the market launch of the developed 

toolsets. 

The whole project considers four core development goals. 

SmoodQIM represents a holistic neighborhood 

information model for data management (i.e. comparable 

to BIM for buildings). Another core piece, i.e. 

SmoodManage, includes automated process steps for the 

building retrofit planning. Besides these software and 

process components, the SmoodHardware part considers 

the development of novel storage systems in both the 

thermal and the electrical domain. For the Smood 

collaborators, all these components are necessary for a 

future sustainable energy supply to residential 

neighborhoods.  

Another key component of the developed tool chains is a 

new methodological simulation approach (i.e. 

SmoodSimulator) that evaluates buildings and HVAC 

systems together in an iterative optimization process. This 

automated process results in a holistic retrofit strategy 

including a therefore optimized HVAC system 

configuration. It includes three main components.  

A building-focused analysis tool (i.e. Caala) provides 

basic retrofit options for the particular building envelope 

with respect to CO2 savings and gray energy demand. 

Then, the automated tool chain derives a model matrix 

with different system configurations based on the building 

requirements. This matrix is linked to a huge set of pre-

configured HVAC system models developed in Modelica. 

These models run automatically after an automated setup 

of the necessary components parameters. All automation 

steps are based on the versatile scripting language Python. 

This Python framework also includes an optimization 

algorithm which iteratively adjusts the HVAC system 

parameters depending on the chosen optimization goals. 

Such iterative approaches which connects Python-based 

optimization algorithms and Modelica models are not 

new. Leimeister, 2019 describes in her paper a combined 

optimization framework that uses both components. 

However, this work primarily focuses on the optimization 

of a singular system component, a wind turbine in its 

operating environment. A more general link between 

Python-based machine learning libraries and the 

simulation tool EnergyPlus was introduced by 

Christiaanse et.al. 2021. Eckstädt et.al. 2020 investigated 

extensively the use of simulation-based methods and 

optimization approaches with respect to different 

application scenarios in the context of building design 

process. 

The use of multi-criteria optimization approaches with 

focus on architectural design was introduced by Dan Hou 

et.al. 2019 among others. The BeDOT tool (c.f. Bergel 

et.al. 2019) uses some the scientific approach of holistic 

software tools for energy system optimization. An 

alternative view on building controls with a holistic 

framework is also part of Arroyo et.al. 2021. 

Comparable approaches to Smood regarding a holistic 

view of all these topics on a neighborhood scale is also 

part of the research at the University of Innsbruck, Austria 

(c.f. Dermentzis et.al. 2019). 

2 General Concept 

The entire Smood nucleus includes a variety of companies 

and research groups as well as many advanced 

technologies and tools. One key component of the master 

plan is a novel, holistic simulation environment for the 

automated generation of retrofit strategies and energy 

concepts for larger residential districts, i.e. 

SmoodSimulator. 

This tool needs to take into account the great variety of 

requirements of the building structure and the energy 

supply as far as possible. The identified solutions have to 

look for the local and global optima with regard to the 

joint consideration of life cycle costs (LCC) and life cycle 

assessment (LCA). Therefore, it can consider retrofit 

measures for the building envelope as well as the use of 

novel (renewable) supply technologies. Very often, 

potentials solutions can also be mixed forms of both 

approaches. The main goal of the SmoodSimulator is to 

automatically find exactly these solutions on the basis of 

the existing data. 

Designated users of the tool can also be city and district 

planners as well as architects. High engineering and 

simulation know-how can therefore not be assumed. 

Requirements resulting from the use of Modelica models 

have to be handled as automated as possible by the 

SmoodSimulator itself or corresponding simplifications. 

Figure 1 shows the general structure of the 

SmoodSimulator workflow and its abstract software 

components. This also includes application-specific tools 

from Smood partners (i.e. Caala) and third-party providers 

(i.e. Rhino 3D). 

The Rhino 3D tool enables architects to plan the structure 

of new buildings from the design point of view or to 

optimize existing buildings with the help of a graphical 

interface. It provides only information about the building 

envelope. The tool Caala (via Grasshopper plugin) 

evaluates exactly this structural data of the 2D and 3D 



building representations in order to run a first analysis of 

LCC and LCA based on simple key figures. 

Its strength is primarily in the underlying databases on the 

necessary building material costs and their LCA statistics. 

In this manner, it enables a balanced quantification of the 

so-called "gray energy". This is a measure of necessary 

CO2 emissions regarding the required building materials 

and amounts (i.e. incl. insulation). However, the energy 

supply system in Caala only uses simple and constant 

efficiency factors. This is an essential limit of the HVAC 

and power supply system evaluation in Caala. Especially, 

volatile production of renewables and local storages with 

nonlinear efficiency characteristics and availability are 

thus hard to assess. A more specific modeling was 

necessary for appropriate engineering evaluation. 

The SmoodSimulator was designed to fill this gap using 

the available interfaces of Caala as well as its results and 

outputs. The main idea is to add a seamless automated 

toolset which takes the available information and adds the 

necessary complexity in the HVAC and power supply 

system part of the evaluation strategy. Therefore, 

Modelica models seemed to be most promising in 

accuracy but lacked regarding handling and usability for 

non-professional simulation engineers, like architects and 

designers. Therefore, adequate automation, e.g. via 

Python, was necessary. 

This process starts with the building-specific data, such as 

thermal and electrical energy requirements, as well as the 

initial results of the LCA/LCC analyzes in Caala. The 

SmoodSimulator reads them via a specific interface API 

using the Data Importer. This process defines the 

caalaConfig. Furthermore, it reads additional information 

regarding optimization process parameters and the stored 

simulation models from other configuration files (i.e. 

userConfig, optiConfig). In the future, a graphical user 

interface will be available for this specific import task. 

The core piece of the Python framework is the Model 

Assembler and the Optimization Initialization. It has a 

variety of tasks, especially in the area of automatic 

selection, preparation and instantiation of the required 

models. 

The Modelica models have to represent as accurately as 

possible the interdependencies of any dynamic energy 

system with its variety on possible details. The building(s) 

are considered as static load profiles. Their optimization 

with respect to possible retrofit steps for the building 

envelope was part of the prior optimization loop in the 

Caala tool. However, these Modelica models of HVAC 

systems require consumption curves with high temporal 

resolution that go beyond the available outputs of the 

Caala tool (i.e., monthly balances only). Therefore, the 

Model Assembler has to generate automatically suitable 

input data sets for the models, i.e. heating and power 

loads, weather data. 

The Model Assembler has access to an extensive model 

library of predefined energy supply system 

configurations. The variants choice for the optimization 

process is based on a dynamic requirements matrix. This 

is matched with the requirements of the building(s) under 

consideration (e.g. temperature conditions). 

Furthermore, the Model Assembler prepares the required 

set of model configurations for the optimization process. 

This is a working step which has been optimized regarding 

the total optimization speed for several times. One of these 
steps included the execution of exported FMUs 

(Functional Mockup Units) via Python instead of running 

Modelica models via remote control. This provides a very 

Figure 1: Overview of smoodSimulator workflow and abstract software components incl. the integration of Modelica models and FMUs 
(sources of figures: Constantino and Pepe 2021) 



performant solution which enable a parallel execution of 

models with different configurations on different 

platforms (i.e. using PyFMI or FMPy interface in Python 

platform). In order to perform appropriate parameter 

optimization (i.e., equipment technology performance 

data) for each configuration, each FMU provides 

appropriate variable parameters. 

Another important initialization step is the initial 

parameterization of all system variants which is based on 

the requirements of the generated building loads. The 

Model Assembler checks all generated load profiles 

regarding potential critical values, such as peak power 

(e.g. dynamic heating load). Then, it derives the necessary 

preset parameters of each FMU with respect to the 

requirements of the variant matrix and some specific 

heuristics. 

The optimization process runs iteratively and parallelized. 

Each model configuration and parameter variant runs an 

annual simulation as an executable FMU in Python. 

Because of the necessary high number of system 

configurations and suitable parameter numbers, the 

requirements on the model performance are very high. 

Section 3 therefore shows the most relevant steps of model 

performance optimization. 

Each system configuration is first simulated as a baseline 

with its initial parameter set. LCC and LCA are then 

calculated based on the energetic results of the executed 

FMUs in post-processing. With the Python 

hyperparameter optimization framework Optuna, the 

variable parameters (i.e., power classes) of all system 

variants are then optimized in parallel using an iterative 

loop and a high number of year simulations. Special 

attention is given to bivalent equipment configurations 

such as district heating grid and heat pump etc. during 

optimization. 

If the optimizer reaches the previously defined termination 

conditions, the optimization process ends. The results of 

the analysis, i.e. a selection of the different optimized 

system configurations and the presentation of the best 

result, are displayed. This includes an export of suitable 

graphics and necessary data for post-processing. 

3 Model Concept 

The developed framework focuses on Modelica-based 

simulation models of technical equipment for heat and 

power supply of (residential) buildings. The building itself 

is only a simple look-up table based load profile because 

of highly accurate tool sets (i.e. Caala, Rhino 3D) before 

the Modelica models in the tool chain. However, these 

simple models also require suitable interfaces to the still 

necessary dynamic model components. 

The Modelica-based Green City library in SimulationX 

therefore provides some relevant interfaces and a suitable 

data integration (c.f. Schwan et.al. 2017). 

 

Figure 2: Simple modelling approach of building load curves with 
Green City (i.e. Modelica-based library) components 

Regarding the co-simulation of HVAC systems with 

independent building models, Nicolai and Paepcke 2017 

have already shown a first adequate solution with the 

Green City library. The presented framework uses the 

same premises as model base. 

 

Figure 3: Detailed HVAC system model component 

The chosen modeling concept is based on the main task to 

enable simulations of each possible system configuration 

of the model matrix (cf. section 2). A first approach used 

detailed single Modelica models. There were saved in 

specific library as a model template for the Model 

Assembler. In these templates all model-internal 

parameters (e.g., pump parameters, storage tank sizes, 

etc.) depend on a reduced set of relevant parameters, like 

performance categories. If these performance values are 

changed during the optimization process, the model 

internally adapts automatically. This is important for both 

Heat pump with heat storage and heating circuit 

Connected domestic 
hot water supply 



numerical stability and a realistic representation of real-

world behavior. 

Figure 3 shows an example model of a simple heat pump 

system with geothermal collectors as renewable heat 

source based on Green City components. The model only 

has a unified interface to the heating circuits and the local 

power grid which are compatible to the general load 

profile model (c.f. Figure 2). However, there are strong 

mathematical dependencies between the different 

temperature levels of both heating circuits (i.e. heating 

and domestic hot water) due to the availability of only one 

heat supply component (i.e. one heat pump). This model 

is comparatively accurate as individual controls define the 

heat pump output depending on individual storage 

temperatures and the respective dynamic loads. However, 

this significantly lowers the simulation performance. 

Simulation of one entire year thus requires about 10 to 15 

min for each variant and system configuration. 

In an optimization process with 10++ different system 

configurations and various options of discrete system 

parameterization (especially in bivalent system 

configuration), 1,000s to 10,000s simulation runs may be 

necessary. However, the optimization period should not 

exceed a frame of hours to a few days. 

The first important performance optimization step 

considered the decoupling of dependencies between the 

two heat supply tasks (i.e. heating and hot water 

production). This approach required to focus on each 

template model of SmoodSimulator’s system matrix. 

Obviously, it results in a higher deviation between the 

simulated system behavior and exact simulation results or 

real-world measurements. However, this loss of accuracy 

is acceptable because the intended field of toolset 

application are preliminary design phases of existing 

neighborhood districts. The level of detail of all 

assumptions is there quantified with +/-40% and higher 

(c.f. Kochendörfer et.al. 2010). Deviations from different 

efficiencies of the simulated systems (e.g. temperature-

related COP of heat pumps) or limited availability due to 

simultaneity will be significantly lower. 

The presented approach already reduced the average 

simulation times of an entire year to 2 to 3 min. However, 

this was still not fast enough. Further optimization steps 

were necessary. The model concept update still 

considered a coupled forward-backward modelling 

approach. Heat and power load characteristics defined a 

backward model of the considered building(s). The energy 

system template models still represented a forward model 

which operated depending on internal control on 

temperature levels of the decoupling storage tanks (i.e. 

internal system capacities). 

The next optimization step consisted of a complete 

conversion of the Modelica model approach to a backward 

model. This required a redesign of the individual system 

components of the HVAC system models in the templates. 

Now, these models only represent a nonlinear, dynamic 

efficiency characteristic and are thus only conversion 

models (e.g. heat pump - heat/electric energy). 

 

Figure 4: Simplified HVAC system model component 

Model dependencies on external control functions were 

removed as far as possible. However, since the interfaces 

of the model templates stay the same, reuse of the more 

detailed model options for detailed analyses within the 

framework will be possible at any time. 

In this way, the average simulation time for a year 

simulation per system model template could be reduced to 

less than 30 s (i.e. using CVODE solver with common 

settings). 

Now an acceptable performance range was reached. 

Further simplifications in the models themselves were 

almost no longer possible. However, further performance 

potential could still be identified during model execution. 

On the one hand, the direct execution of Modelica models 

requires the use of a suitable simulation environment (in 

this case SimulationX). Communication with and 

automatic execution of models in this environment also 

requires a certain time period. The faster the models, the 

higher is the share of these communication time periods 

on execution total time. On the other hand, the execution 

of simulation models in the simulation environment takes 

place exclusively on one computational core of the 

respective computer/server. Parallelization is difficult to 

realize and also requires extended licensing costs, 

especially in the area of optimization for the simultaneous 

execution of a large number of models. 

Therefore, the use of FMUs in Python with the help of the 

PyFMI framework provides an alternative solution. This 
allows the execution of parameterizable FMUs directly in 

Python without an additional running simulation 

Simple inverse heat 
pump model with 
heating circuit 

Decoupled domestic 
hot water supply with 
inverse heat pump 
model 



environment. By exporting the models with solvers (FMI 

4 co-simulation), similar or even better performance can 

be expected without the communication overhead. 

However, the biggest potential advantage is the 

parallelizability of model execution. By using multi-

threading approaches, the Python framework supports 

parallel execution of models within an optimization loops. 

This last optimization step again provided another 

significant reduction of the necessary simulation time 

periods per model (FMU). With about 10 to 20 s per 

annual simulation to be performed, the framework now 

has a sufficient computing speed even for large problems. 

Common optimization tasks with about 5,000 model 

iterations can usually be performed in 2 to 3 hours. 

The developed approach now represents a powerful 

simulation and optimization framework. However, due to 

the necessary simplifications, the model accuracy is now 

somewhat reduced. However, it is still in an acceptable 

range regarding the available degree of accuracy of 

necessary assumptions in an early building design phase 

(i.e. +/-40%). 

Furthermore, the developed model concept represents 

another huge advantage regarding its upward 

compatibility. Because of the consistent interface 

definition, the models are always available in different 

accuracy levels (c.f. Figure 3).  

If a more detailed consideration of some system variants 

with the help of the optimization framework is required in 

a later design phase (e.g. detailed planning), a more 

accurate simulation model with the same interfaces can 

simply be generated and analyzed with the help of the 

identified system configurations. These adapted models 

can then also be edited manually, refined and developed 

during the entire design period. 

4 Examples of Optimization and 

Validation Results 

The developed SmoodSimulator approach is predestinated 

for all scalable tasks of an automated design regarding 

retrofit and energy concepts of buildings up to urban 

quarters. However, the current version focuses primarily 

on residential quarters and thus on the use of buildings as 

living space. 

The toolset is currently used in a comparatively limited 

field. The required input data sets for the simulations of 

buildings are thus often similar. 

As a starting point of any optimization run, the Caala tool 

performs a simplified energy analysis of a given building 
structure and type. The results are monthly energy demand 

characteristics of the considered building. However, this 

is only the basis of input data set generation for the HVAC 

and power supply system models. 

 

Figure 5: Example power consumption characteristic (1-week 
detail) of H0 standard load profile 

Because of the similarity of energy consumption patterns 

in all potential households, generalized time series (i.e. 

standard load profiles – c.f. Figure 5) are the base to create 

load curves with higher temporal resolution. The Caala 

results only provide scaling factors, such as the 

cumulative energy demand values. This approach is used 

in the smoodSimulator for both electricity consumption 

and hot water demand. 

 

Figure 6: Example heat consumption profile based on TRY weather 
data 

In addition to primarily occupancy-related energy 

consumption, buildings also consume climate-based heat. 

In order to be able to provide these with a higher temporal 

resolution, weather data (e.g. test reference year - TRY) 

with an hourly resolution are used as scaling base. The 

cumulative heat demands, again a result of the Caala tool, 

are weighted and distributed to a corresponding year 

profile with respect to the outdoor temperature and 

corresponding generic heat demands. 



However, the optimization framework does not only 

consider energy aspects. The goal of optimization is 

always a holistic system analysis, also in the direction of 

life cycle costs (LCC) and life cycle assessment (LCA). In 

this regard, adequate estimated values for the necessary 

investments are required in addition to suitable assessment 

factors. 

 

Figure 8: Cascading of heat supply systems depending on 
available system sizes and total power demands 

The investment costs always depend primarily on the 

component size. However, not every system/unit size is 

available on the market as standard. Typically, the 

availability of the individual size follows a series 

development by power classes (e.g. 10 - 20 - 50 kW). 

Therefore, certain capacities can be achieved either with 

one unit or by cascading several units. Oversized units 

will cause additional costs. A cascade of several units is 

more expensive than one unit with the same total power. 

From this static optimization problem, an optimal 
component configuration can always be found for each 

(discrete) power class prior to any simulation run. 

Figure 8 therefore shows an example configuration matrix 

of air-to-water heat pumps with different total (discrete) 

system sizes and individual optimal cascade solutions (i.e. 

blue / red / green – individual maximum power output of 

heat pumps). 

The Model Assembler also organizes the optimal 

cascading of each analyzed system configuration 

automatically during the initial simulation period and the 

later iterative optimization process. 

This also results in a necessary requirement for the 

parameterization of the models. No matter which models 

base is used, i.e. Modelica model or FMU, before the start 

of each simulation run all components parameters must be 

editable regarding new power categories and 

characteristics of the individual system configurations. 

However, this represents a huge challenge for the 

instantiation of the models, especially in the optimized 

FMU mode. 

FMUs are not structurally changeable after export. Only 

constant parameters (unchangeable during simulation) 

can be adjusted. The modeling approach used in Green 

City is thus advantageous. It maps the cascadability of the 

individual component models by internal integer 

parameters. 

Figure 8 shows exemplary results of one of the first test 

analyses. It considered a small urban living quarter in mid-

Germany. 

On the one hand, the analysis took into account the 

possible retrofit of the building envelope with different 

building materials (i.e. use of different U-values). On the 

other hand, different system configurations were analyzed 

Figure 7: Example results of a holistic LCC/LCA analysis of an urban living quarter 



and their performance parameters were optimized with the 

help of the framework: 

 District heating grid plus solar collectors 

 Monovalent water-to-water heat pump and 

photovoltaics 

 Bivalent heat pump system (air-to-water) for 

heating and domestic water supply 

The existing system is district heating, which currently 

supplies heat monovalently only to buildings with simple 

insulation. In a simple optimization strategy, this is 

supplemented exclusively by thermal solar collectors. The 

retrofit carried out in this way generates the lowest 

investment costs. Over the lifetime, however, both the life 

cycle assessment (LCA) and the life cycle costs (LCC) are 

disproportionate to comparable heat pump systems. 

Through iterative parameter optimization in the optimizer, 

the respective optimal system configuration with regard to 

LCAs and LCCs is found for all alternative supply 

concepts. The respective retrofit conditions of the building 

(i.e. the selected insulation standard) are also included in 

this optimization. 

The example in Figure 8 shows the three best options, all 

describing different heat pump configurations. Depending 

on the efficiency and necessary costs of the selected 

technical systems, the energy standard of the building 

envelope can or must be adapted. Therefore, all variants 

describe slightly different insulation standards (i.e. U-
values). The same applies to the use of local renewable 

generators (e.g. photovoltaics). Depending on the 

efficiency of the used heat pumps, slightly smaller or 

larger generator sets must be installed. 

Figure 8 only shows the final results of the optimization 

process. It compares the baseline, i.e. the existing 

energetic standard and HVAC system, with the three best 

retrofit options of the optimization process.   

Figure 9 adds to this plot a dot plot showing all parameter 

configurations simulated by the framework with the 

results of the LCC/LCA analysis for all evaluated system 

configurations. 

It also shows different clusters of efficiencies and costs for 

different system configurations. The influence of 

parameter optimization is presented very precisely for 

each configuration from the deviations of the points of the 

same color. It is noticeable that the change of the HVAC 

system configuration has a significantly higher influence 

on efficiency and costs in each case than an optimal 

identification of the respective component parameters 

(e.g. power categories). 

5 Conclusions 

The presented approach of a holistic, automated 

optimization framework for energy systems of buildings 

and districts shows again the versatility of Modelica 

models. 

On the one hand, multiphysical, noncausal modeling with 

Modelica is also widely used in the fields of energy supply 

and building services engineering. On the other hand, both 

the models themselves and their derivatives (especially 

Figure 9: Full results of LCC/LCA optimization process of an urban living quarter 



FMUs) can be integrated into automated software 

applications independently of tools. 

Multiphysics simulation of power systems using Modelica 

allows very detailed evaluation of system behavior, 

especially in the presence of volatile generation and 

storage. However, these models are still very complex for 

use in optimization loops. Simplification to a minimum of 

necessary complexity is still required to ensure a 

reasonable time frame for optimization. 

Further developments in the field of solver technologies 

are still necessary. This relates primarily to the 

computational speed of the models. In addition, 

knowledge-based potentials for increasing speed must 

continue to be tested and implemented. This mainly refers 

to the simplification of model equations by application-

specific information. In this way, solvers can be relieved 

and high speed increases can be achieved. These 

approaches can be supported by the use of artificial 

intelligence and automated expert systems. 

Another important next step is to extend the approach to 

non-residential buildings. These entail a significantly 

higher complexity and new dependencies for the 

optimization procedure and especially for the integrated 

simulation models. These arise primarily in the area of 

ventilation and air conditioning systems as well as 

refrigeration technology. 

Since the approach of decoupling dependencies has 

already led to a significant acceleration of the existing 

optimization framework, this also seems to be a promising 

solution in this case. However, even such a solution can 

quickly reach its limits, especially due to increased 

complexity and deeper dependencies. 
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