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Abstract
Given the computationally intensive nature of heat ex-
changer simulators, utilizing a data-driven surrogate
model for efficiently computing the heat exchanger out-
puts is desirable. This study focuses on developing in-
tegrated surrogate models of heat exchangers for a vapor
compression system in Modelica. The surrogate models
are designed to serve as steady-state equivalents based on
an efficient physics-based model calibrated using refer-
ence data from a more advanced simulation model. Sub-
sequently, the calibrated model was employed to gener-
ate the training and testing data for developing Gaussian
Process (GP) and Multi-Layer Perceptron (MLP) surro-
gates. The findings indicate that GPs exhibit high accu-
racy when applied to the heat exchanger’s outputs with
smooth behavior. GPs also demonstrate excellent data ef-
ficiency compared to MLPs. In cases where the GP strug-
gles to model specific outputs effectively, MLPs are able
to capture the more complex behavior. Moreover, hyper-
parameter optimization is employed to identify optimal
MLP topologies. Finally, the fast and compact surrogate
model was integrated into the Modelica/Dymola environ-
ment. This adaptation allowed the surrogate models to be
directly combined with the physical model of the heat ex-
changer.
Keywords: Heat Exchanger, Surrogate Model, Gaussian
Process, Multi-Layer Perceptron, Hyperparameter Opti-
mization

1 Introduction
In thermal systems, amid the most common components,
heat exchangers are arguably the most challenging units
to simulate from the numerical point of view due to the
complex thermal and fluid-dynamic phenomena involved
(e.g. fluid phase changes). Different approaches exist to
model heat exchangers, but in general, the level of accu-
racy should increase with the level of detail considered in
the model.

This work explores the development of heat exchanger
surrogate models to be used within the Modelica envi-
ronment. In this sense, a flexible heat exchanger model
(Ablanque et al. 2022), adapted to simulate an air-to-

refrigerant condenser, has been used to train and evaluate
surrogate models. The specific condenser studied is part
of a vapor compression system which, in turn, is included
in an aircraft Environmental Control System (ECS).

Various neural networks and deep learning techniques
have been implemented to model different aspects of heat
exchangers. (Abbassi and Bahar 2005) use a shallow neu-
ral network to model the thermodynamics of an evapora-
tive condenser. (Romero-Méndez et al. 2016) model con-
vective heat transfer rate that occurs during the evapora-
tion of a refrigerant flow using a neural network.

In this work, surrogate models have been developed for
each target variable of the heat exchanger. Gaussian Pro-
cess (GP) regression models have been constructed for tar-
get variables exhibiting smooth behavior due to GP’s data
efficiency and strong interpolation abilities for smooth
functions. A Multi-Layer Perceptron (MLP) Neural Net-
work Model has been employed for more challenging tar-
get variables with highly non-linear behavior. To enhance
the performance of the MLP, hyperparameter optimiza-
tion on the network architecture has been conducted. The
performance of the proposed surrogate models has been
demonstrated, and the advantages of hyperparameter tun-
ing have been highlighted in the context of surrogate mod-
eling.

Finally, the fast and compact surrogate model was suc-
cessfully integrated into the Modelica/Dymola environ-
ment. This adaptation enabled the direct integration of
the surrogate models with the physical model of the heat
exchanger.

2 Heat Exchanger Model
2.1 Description
The structure implemented for the heat exchanger model
is aimed to provide high flexibility in terms of geometries,
participating fluids (i.e., liquids, gases, and two-phase re-
frigerants), and phenomenologies such as evaporation and
condensation. The model layout consists of two specific
sub-components for calculating fluid flows which are ther-
mally linked via an additional sub-component that stands
for the solid parts. Figure 1 shows the scheme for an air-
to-refrigerant condenser.



Figure 1. Heat exchanger main structure (air-to-refrigerant con-
denser).

The calculation of the fluid flow sub-component is
based on a steady-state approach. The model discretiza-
tion distinguishes three different zones, namely, super-
heated gas, two-phase, and sub-cooled liquid, as shown
in Figure 2 for a condensation case. The aforementioned
model zones can exist or not depending on the fluid inlet
and outlet conditions so that the heat exchanger switches
between different operating modes.

Figure 2. Condenser discretization and operating modes.

The pressure drop for the whole heat exchanger is cal-
culated from a traditional approach (i.e., ṁ=K∆Pα ) where
∆P represents the pressure drop. The parameters K and α

are previously determined from reference data.
The energy conservation equation is solved considering

constant pressure and constant solid temperature. The cal-
culation is conducted sequentially from zone to zone (if

the heat calculated for the current zone is higher than the
maximum heat allowed for this zone, the calculation will
continue to the next zone. Otherwise, the calculation will
terminate in the current zone). For single-phase zones, the
heat flow rate between the fluid and the solid part Q̇single
is calculated based on an ε-NTU method (Incropera and
DeWitt 1996) in order to optimize the calculation speed
and to avoid unrealistic temperature values:

Q̇single = εC(Tsolid −Tf luid,in) (1)

where C stands for the thermal capacity ratio and ε corre-
sponds to the heat exchange effectiveness. For two-phase
zones, the heat flow rate (Q̇two) is calculated from a stan-
dard approach based on a heat transfer coefficient (α), the
temperature difference between the solid and the saturated
fluid, and the heat transfer area (A):

Q̇two = α(Tsolid −Tf luid,sat)A (2)

The calculation of the solid sub-component is based on
a transient approach. It is calculated considering a unique
solid temperature (T ), the solid mass (M), the solid mean
specific heat capacity (cp), and the heat rate transferred
with the two fluids:

Mcp
dT
dt

− Q̇ f luid,1 − Q̇ f luid,2 = 0 (3)

The complete resolution is carried out by means of
the default differential/algebraic system solver of Dy-
mola. The heat exchanger’s overall thermal response is
dynamic as it combines the steady-state approach used for
both flows with the dynamic approach considered for the
solid part. Artificial relaxations can also be applied to
the energy conservation equation of both flows to further
overcome the negative impact of the absence of dynamic
terms. The pressure drop equation is not only used to cal-
culate the mass flow rate but also to approximate the phase
saturation limits needed for the energy conservation equa-
tion.

2.2 Numerical Assessment and Tests
The current model has been developed to simulate differ-
ent types of heat exchangers included in large thermal ar-
chitectures consisting of multiple systems. Therefore, the
need to meet demanding numerical requirements was cru-
cial for its successful use in the aforementioned environ-
ments. The main requirements include robustness at ini-
tialization, robustness to any boundary conditions and/or
signal types, robustness to conduct simulations at any par-
ticular simulation set-up parameter (e.g., interval length),
the capacity of both fluids to handle null mass flow rate
as well as reversed flows, and ability to handle changes of
the expected heat flow direction. The model is a suitable
platform to generate large quantities of training data and
tests for the surrogate models due to its numerical charac-
teristics.



2.2.1 Initialization and steady-state tests

A complete data set of cases has been generated to test
the robustness of the model during initialization and the
correct resolution for steady-state conditions. The data set
has been built-up taking into account different values for
all the boundary conditions (i.e., air and refrigerant inlet
parameters) covering the whole physical range of possi-
bilities and all its possible combinations. The data set also
takes into consideration different fluid boundary condition
types (see Figure 3) and different values for the interval
length.

Figure 3. Boundary condition types: pressure - pressure (left)
and Mass flow rate - pressure (right).

The data set consists of 1296 cases (216 cases for
each combination of boundary condition type and interval
length). The simulation stop time is set at 2000 seconds so
that the steady-state condition can be reached. The results
have shown that the model initialization is successful for
all the cases without being affected by the combination of
boundary values or the interval length value.

2.2.2 Transient tests

Similarly to the initialization studies, many tests have been
conducted to assess the model’s numerical robustness for
other crucial transient conditions. Some illustrative exam-
ples are presented. Figure 4 shows the results for a test
where both the null mass flow rate and the reversed flow
capacities are tested. This particular case corresponds to a
transient simulation where the refrigerant is operating at a
particular mode and is forced to experience flow direction
changes and null mass flow rate at different moments.

Figure 4. Null mass flow rate and reversed flow test example.

Figure 5 shows illustrative results for a test where many

boundary conditions are provided as sine signals to force
mode transitions in the heat exchanger (see Figure 1).

Figure 5. Sines signals test example.

2.2.3 Model validation

The accuracy of the condenser model has been compre-
hensively assessed. In this sense, a full set of reference
data of 4766 cases has been provided from an advanced
heat exchanger numerical model and used to compare the
predictions. The parameter used for the comparisons is
the so-called Prediction Error (PE) which characterizes
the difference between the model-predicted value and the
reference value of a particular variable. The local PE is a
percentage value, and for the heat flow, it is evaluated as
follows:

PE =
|Q̇model − Q̇re f erence|

Q̇re f erence
×100 (4)

To assess the accuracy regarding the whole data, an av-
eraged PE is used, the so-called Mean Prediction Error
(MPE), which is defined as follows:

MPE =
1
N

i=N

∑
i=1

PEi (5)

Table 1 shows the mean prediction error for the heat
flow predicted by the condenser model. The results show
good accuracy as the MPE for the whole data is 2.49 (this
value decreases significantly as the less accurate results
are not being considered).

3 Surrogate Modeling
Surrogate modeling aims to develop data-driven regres-
sion models that emulate complex systems or processes.
This compact surrogate can then be used for real-time
analysis, optimization, or prediction without the need for
resource-intensive direct simulation of the system. In
a regression problem, an input set is denoted as X =
[x1,x2, . . . ,xN ], xi ∈ Rd , where d is the dimensionality



Table 1. Condenser model accuracy assessment (heat flow pre-
diction).

Data % MPE MaxPE std
4766 100 2.49 42.0 3.7
4671 98 2.12 15.6 2.6
4528 95 1.78 10.4 1.9
4289 90 1.43 5.8 1.2
4051 85 1.23 4.0 0.8
3575 75 0.99 2.2 0.6

of the input. A corresponding set of continuous obser-
vations is denoted as Y = [ f (x1), f (x2), . . . , f (xN)], with
f (xi) ∈ R. The goal is to construct a model that can pre-
dict the value of y := f (x∗) for an unobserved point x∗.
The prediction is denoted as ŷ. In this study, two tech-
niques are employed to build predictive models of the heat
exchanger system, namely Gaussian Processes and Multi-
Layer Perceptrons.

3.1 Gaussian Process Regression
Gaussian Process (GP) (Rasmussen and Williams 2018)
is a common data-efficient surrogate for regression prob-
lems. A GP is specified by a mean m(x) and covariance
function k(x,x′). Given pair of input sets X and its eval-
uation on the system simulations, GP can be defined as:
f (x)∼ GP(m(x),k(x,x′)).

For the choice of the kernel function, the Matérn 5/2
kernel (Handcock and Stein 1993) is used as it does not
put strong smoothness assumptions on the unknown func-
tion to be approximated (Genton 2002). The Matérn 5/2
kernel is defined as:

k
(
x,x′

)
= γ

(
1+

√
5r+

5
3

r2
)

exp(−
√

5r), (6)

r =

√√√√ d

∑
m=1

(xm − x′m)
2

l2
m

(7)

where γ is a scale parameter, and l is a lengthscale param-
eter for the kernel function.

Training the GP model involves estimating the hyper-
parameters θ̂ . In this case, θ̂ contain the parameters of
k(x,x′). Maximum Likelihood Estimation (MLE) is used
to estimate the hyperparameters:

θ̂ = argmax
θ

log p(f | X ,θ) (8)

= argmax
θ

−1
2
(
log |2πKxx|+ fT K−1

xx f
)

(9)

The predictive mean µ (X⋆) and the predictive variance
σ2 (X⋆) of a new, untested data point X∗ is calculated as:

µ (X⋆) = K⋆xK−1
xx Y (10)

σ
2 (X⋆) = K⋆⋆−K⋆xK−1

xx KT
⋆x (11)

where Kxx = k(xi,x j), K⋆x = k(x⋆i,x j), and K⋆⋆ =
k(x⋆i,x⋆ j). The predictive mean of the GP is used as
the surrogate model prediction ŷ. Moreover, the predic-
tive variance could prove beneficial for quantifying uncer-
tainty, which increases trust in the outcome and enables
decision-making, optimization, or anomaly detection.

For Gaussian process regression, the GPFlow li-
brary (G. Matthews et al. 2017) is used, and the
MLE is optimized using the Limited memory Broy-
den–Fletcher–Goldfarb–Shanno Bounded (LBFGS-B)
optimizer (C. Zhu et al. 1997).

3.2 Multi Layer Perceptron
The Multi Layer Perceptron (MLP) (Hinton 1989) is a
popular class of deep learning neural network architec-
tures used for regression tasks. While it is not as data
efficient as GP, it can capture more complex, non-linear
relationships between input and output variables. It also
scales well to the size of the data set compared to GP w.r.t.
computational complexity. MLP is a versatile choice for
surrogate modeling when a larger data set is available.

An MLP comprises an Input Layer, L Hidden Layers,
and an Output Layer. The Input Layer matches the dimen-
sionality of the input data, while the Output Layer matches
the dimensionality of the target function. Generally, an
MLP (Prince 2023) can be described as:

h1 = a [b0 +W0x]
h2 = a [b1 +W1h1]

h3 = a [b2 +W2h2]

...
hL = a [bL−1 +WL−1hL−1]

ŷ = bL +WLhL. (12)

where bl and Wl are the bias term and weight parameters
of the network at lth layer, and a, is the activation function.
Rectified Linear Unit (ReLU) (Fukushima 1969) is used
for a and defined as a(x) = max(0,x)

To find the optimal parameters (bl and Wl), the ADAM
(Kingma and Ba 2015) optimizer is used. Specifically for
this study, The base architecture of the MLP was set to
150, 100, and 50 neurons for each of the three hidden lay-
ers respectively, as illustrated in Figure 6. The Scikit-learn
machine learning library (Pedregosa et al. 2011) is used to
train the MLP surrogates.

4 Heat Exchanger Surrogate Models
Steady-state equivalent surrogate models for the heat ex-
changer have been developed and tested using data sets
derived from the physical simulator. A heat exchanger
model incorporating mass flow rate and pressure approach
was used in this case. The input-output diagram of the sur-
rogate models is illustrated in Figure 7.



Table 2. Heat exchanger surrogate model inputs domain.

Variable Input Lower Bound Upper Bound Unit

Pa_ref Refrigerant pressure at refrigerant flow port A 150000 1800000 Pa
Pa_air Air pressure at refrigerant flow air port A 20000 110000 Pa
m_ref Refrigerant mass flow rate -0.16 0.16 kg/s
m_air Air mass flow rate -1.8 1.8 kg/s
Tin_air Air inlet temperature -20 60 °C
Hin_ref Ref. inlet enthalpy 210 490 kJ/kg

Figure 6. Architecture of the MLP used in this paper.

Figure 7. Heat exchanger surrogate model Inputs and Outputs.

Table 3. Specification of the heat exchanger surrogate.

Variable Output Unit

Pb_ref Refrigerant pressure at port B Pa
Pb_air Air pressure at port B Pa
Tout_air Air outlet temperature °C
Hout_ref Ref. outlet specific enthalpy kJ/kg
Heat Heat transferred between fluids W

4.1 Generating the data sets
Data collection for the heat exchanger surrogate models
has been performed by evaluating the physical model de-
veloped in the Modelica framework. The data sets are de-
scribed in Table 2 and 3 respectively. In total, four data
sets were prepared. The first two data sets, consisting
of 150 and 80,000 points, were drawn using the Halton
random sequence (Owen 2017). The remaining two data
sets consist of 40,000 and 100,000 random points for hy-
perparameter optimization and validation of the surrogate
model, respectively (Gramacy 2020).

5 Surrogate Modeling Results
The performance of the surrogate models is evaluated in
terms of their predictive accuracy. Furthermore, hyperpa-
rameter optimization was conducted for the Multi-Layer
Perceptron (MLP) to improve the performance of the sur-
rogate models.

5.1 Performance Comparison
Surrogate models have been developed and benchmarked
for all of the outputs of the heat exchanger. In particular,
four different surrogate model scenarios are executed to
select the surrogate model with the best performance. The
considered surrogate model scenarios are:

• MLP trained on 80,000 points (MLP-80K).

• MLP trained on 150 points (MLP-150).

• GP trained on 150 points (GP-150).

• Random Forest (RF) trained on 150 points (RF-150).

RMSE =

√
1
N

N

∑
i=1

(yi − ŷi)2 (13)

The Root Mean Squared Error (RMSE) is used as a
metric to evaluate the surrogate models on testing data
sets of 100,000 points. The RMSE formula is presented
in equation 13. The full result of the benchmark is shown
in Table 4. The surrogate model with the lowest RMSE
is used for each output as the final surrogate mode. Al-
most all MLP-80K models have the best RMSE compared
to the other methods, except for the Pb_air output. In this
case, GP is superior to MLP. Thus, all outputs are modeled
using MLP with 80,000 data points except for Pb_air.



Table 4. Testing Root Mean Squared Error (RMSE) of all com-
pared methods.

Output RMSE
MLP-80K MLP-150 GP-150 RF-150

Pb_ref 8.54e+3 4.55e+5 1.30e+5 5.06e+4
Pb_air 2.33e+2 7.36e+3 4.24e+1 4.14e+2
Tout_air 1.51e+0 1.26e+2 2.27e+1 3.49e+1
Hout_ref 5.20e+3 5.59e+5 8.02e+4 1.07e+5
Heat 4.52e+2 2.56e+4 8.98e+3 7.86e+3

5.2 Neural Network Hyperparameter Opti-
mization

To explore the potential of MLP models in more detail, a
hyperparameter optimization step was performed.

HyperParameter Optimization (HPO) (Yu and H. Zhu
2020; Morales-Hernández, Van Nieuwenhuyse, and Rojas
Gonzalez 2022) for the MLP has been conducted using
the Optuna framework (Akiba et al. 2019). The optimized
hyperparameters are the learning rate and the architecture:
the number of the hidden layer, the number of neurons of
the hidden layers, and the activation function. Full spec-
ification of the MLP hyperparameter search space is pre-
sented in Table 5.

Table 5. Hyperparameter search space for the HPO.

Variable Domain Type

Number of hidden layer [2, 6] Integer
Number of neurons [8, 1024] Integer
Learning rate [0.0001, 0.01] Float
Activation function {identity, tanh, Function

logistic, ReLU}

The HPO was conducted with a budget of 250 itera-
tions. The training data consisted of 80,000 points, while
the cost function was defined as the loss value on a ran-
domly sampled validation data set of 40,000 points. The
optimal hyperparameters identified through the HPO pro-
cess are presented in Table 6.

Finally, the complete comparison of the Base-MLP and
the optimal architecture found by the HPO (i.e., HPO-
MLP) is presented in Table 7. It should be noted that
the same hyperparameter setting from the previous section
(MLP-80K) was used for the Base-MLP.

6 Modelica integration of the surro-
gate models

The resulting surrogate models have been integrated in the
Modelica framework. To accomplish this, the optimal pa-
rameters obtained during training are stored as matrices
on MATLAB (’.mat’) files, as they are compatible with
the Modelica framework. For the GP model, these files
store the training data, kernel parameters, and precom-

puted terms that are independent of newly observed data
(i.e., K−1

XXY ). This speeds up the computation of predic-
tions since the expensive matrix inverse operation does not
need to be recalculated every time a new point needs to be
predicted. Additionally, for the MLP model, the result-
ing Wl and bl terms are saved, along with the activation
functions at each layer for the HPO-MLP.

Figure 8. Surrogate model adaption in Open Modelica.

The integration process utilizes OpenModelica (Fritz-
son et al. 2005) and can also be adapted to Dymola.
The command ’readRealMatrix’ imports the matrix, and
’readMatrixSize’ is used to retrieve the dimensions of the
matrices. The surrogate model prediction routine was then
implemented in Modelica using equations 10 and 12 for
GP and MLP, respectively. The adapted Modelica surro-
gate prediction function block is shown in Fig. 8 where the
six inputs required by the function are shown. The only in-
put that this function block requires is the path where the
’.mat’ file can be found.
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Figure 9. Testing the Open Modelica (OM)/Dymola adaptation.

2,500 test data points have been evaluated using the
physical model for validating the Modelica implementa-
tion. We compared the resulting Modelica outputs with



Table 6. Multi-layer perceptron hyperparameter optimization result.

Variable N hidden layer Number of neurons Learning rate Activation function

Pb_ref 4 (1012, 252, 470, 392) 0.00119 ReLU
Tout_air 4 (410, 607, 906, 280) 0.00010 ReLU
Hout_ref 5 (752, 862, 122, 226, 221) 0.00098 ReLU
Heat 4 (895, 501, 667, 670) 0.00054 ReLU

Table 7. Root Mean Squared Error (RMSE) of Base-MLP and HPO-MLP. Ten repetitions have been conducted to validate the
robustness of the optimized model.

Surrogate Name RMSE ± Standard Deviation Improvement (%)Base-MLP HPO-MLP
Pb_ref 9.380e+03 ± 5.608e+02 7.767e+03 ± 6.671e+02 17%
Tout_air 1.518e+00 ± 1.039e-01 1.266e+00 ± 1.016e-01 16%
Hout_ref 4.977e+03 ± 3.388e+02 4.374e+03 ± 5.778e+01 12%
Heat 4.685e+02 ± 4.408e+00 4.094E+02 ± 4.741E+01 13%

the original Python code for the surrogate model predic-
tion. The results of this test are presented in Fig. 9, and
it can be seen that the outputs are exactly matching. This
generates trust to integrate the surrogate model in future
applications where the heat exchanger will be used.

7 Conclusion
A heat exchanger model implemented in Modelica and
adapted to simulate an air-to-refrigerant condenser has
been validated and used to train and evaluate different sur-
rogate models to mimic their steady-state behavior. The
surrogate models are developed using Gaussian Process
(GP) and Multi-Layer Perceptron (MLP) models. GPs are
employed to capture the linear behavior of some heat ex-
changer outputs, while MLPs are utilized to handle other
outputs with more complex, non-linear behavior. Addi-
tionally, hyperparameter optimization for the MLP archi-
tecture has been conducted, which led to significant im-
provements compared to the standard architecture. As
a proof of concept, the surrogate models were also in-
tegrated in the Modelica/Dymola environment such that
they can be directly augmented with physical models.

In this specific study, the surrogate model does not ex-
hibit a substantial improvement in calculation time com-
pared to the physical model. This limitation can be at-
tributed to the fast nature of the physical model employed
here. However, in cases with more complex physical mod-
els such as the distributed method, it will provide a large
reduction in calculation time. Nonetheless, the surrogate
model played a crucial role in ensuring calculation stabil-
ity. Some of the factors that contribute to instability in-
clude operating modes transitions, empirical and correc-
tor factor transitions, as well as thermophysical properties
near the saturation dome, among others.

Future research will concentrate on constructing tran-
sient surrogate models to represent the transient behavior
of the heat exchanger model explicitly. This can be ac-

complished by employing more suitable surrogate model-
ing techniques, such as non-stationary Gaussian Processes
or Autoregressive Models like Long Short-Term Memory
Neural Networks.
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