
Design proposal of a standardized Base Modelica language

Gerd Kurzbach1 Oliver Lenord2 Hans Olsson3 Martin Sjölund4 Henrik Tidefelt5

1ESI Germany GmbH, Germany, gerd.kurzbach@esi-group.com>
2Robert Bosch GmbH, Germany, oliver.lenord@de.bosch.com

3Dassault Systèmes, Sweden, hans.olsson@3ds.com
4Department of Computer and Information Science (IDA), Linköping University, Sweden,

martin.sjolund@liu.se
5Wolfram MathCore, Sweden, henrikt@wolfram.com

Abstract
This paper is presenting the design proposal of a simplified
version of the Modelica language. Base Modelica is de-
signed to serve as an intermediate representation enabling
a clean separation of front-end and back-end matters when
processing a Modelica model. Furthermore, it is designed
to allow restructuring the Modelica Language Specifica-
tion considering two parts: the basic features and the ad-
vanced language constructs.

After discussing the motivation, solution approach, and
risks, the paper is highlighting a selection of design
choices that have been made for the current pre-release
version of the language. Code examples are given to illus-
trate and highlight various aspects of the language. Open
issues, conclusions, and an outlook finalize the paper.

By attracting more tool vendors and researchers to work
with this intermediate representation the whole Modelica
community is expected to benefit from new utilities to
inspect, analyze, optimize, and process equations-based
models in general and Modelica models in particular.
Keywords: Modelica Language, intermediate representa-
tion, equation-based language, language design

1 Introduction
The Modelica language, published as v1.0 in September
1997, has been widely accepted as modeling language to
describe the behavior of cyber-physical systems. Various
tool vendors have developed and successfully marketed
simulation environments including a Modelica kernel that
is able to translate Modelica models describing mixed
continuous-discrete differential algebraic-equation system
(hybrid DAE) into highly efficient simulation code. From
the very beginning, the development of tools has been ac-
companied by the development of model libraries cover-
ing a wide spectrum of physical domains and fields of ap-
plication. The Modelica Language Specification and the
Modelica Standard Library are maintained by the non-
profit Modelica Association and are licensed under the
open source 3-clause BSD License for the Modelica As-
sociation. An ecosystem of researchers, tool vendors, li-
brary developers and users has evolved over the years and
is continuously growing.

The LLVM compiler infrastructure (Lattner and Adve
2004) has turned out to be a great success over the last
twenty years. A central part of the design is the well spec-
ified LLVM intermediate representation, which has been a
source of inspiration for also introducing a well specified
intermediate format for Modelica translation and tool in-
frastructure. Earlier, the Java Virtual Machine architecture
(Lindholm et al. 2023) has also proven intermediate lan-
guages to play a central role in the development of ecosys-
tems around a language.

1.1 State of the art
The versatile modeling language Modelica is in particu-
lar well-suited to formulate multi-physics problems start-
ing from first principles in an easily comprehensible text-
book style. The combined textual and graphical represen-
tations provide very accessible views on component, sub-
system and system level. A high level of reuse is enabled
through the concept of acausal connectors. Variants can be
managed in a convenient fashion through inheritance and
modifications to avoid code duplication, which leads to
a much-improved maintainability of model libraries and
performing simulation studies of entire system families.
The understandability of domain libraries and larger sys-
tem models hinges on designing a proper model archi-
tecture, which requires a good understanding of Model-
ica’s object-oriented programming model. High-quality
libraries are available that demonstrate how to apply pow-
erful object-oriented language constructs in a meaningful
way, along with graphics, documentation, and other us-
ability enhancements.

Modelica modeling tools support these concepts
through integrated development environments (IDE) pro-
viding multiple views on the model to navigate through
the instance hierarchy and apply modifications on differ-
ent levels of the system structure. In addition, the output
of a "so-called" flattened model is supported by common
Modelica compilers. This textual output gives an unob-
scured view of the effective set of equations as they occur
after instantiation and lowering of hierarchical models, ap-
plying replacements and other modifications. Typically,
the flat Modelica output looks like Modelica code, but it is
not a valid Modelica model that could be further processed

by other tools. The flat Modelica output is not standard-
ized and differs between tools and can even differ between
tool versions.

For tool vendors the development of a Modelica com-
piler is a substantial investment, strongly dependent on
the availability of highly educated and knowledgeable ex-
perts in compiler construction. Especially the concept
of replaceable packages – heavily used in the media and
thermo-fluid libraries – are very involved to get perfectly
right. The OpenModelica project estimates 40 person-
years spent in the project, with 15-20 person-years for a
minimal simulation environment (excluding the graphical
user interface). Approximately 7 person-years are esti-
mated for the development of a Modelica front-end capa-
ble of parsing and lowering a Modelica model into a form
that can be printed as flat Modelica code. This lowered
model is the starting point for further model transforma-
tions, typically carried out by the so-called back-end, to-
wards an optimized target-specific simulation code.

As of today, the Modelica Association is listing 10
Modelica simulation environments. Not all of these have
their own Modelica kernel. The test coverage of available
Modelica libraries differs between the Modelica kernels.

The latest version of the Modelica Specification (Mod-
elica Association 2023) reads 300 pages (excluding the
appendix) covering basic language concepts (operators,
expressions, types, classes, arrays, functions, declara-
tions, scoping, name lookup), hybrid DAE modeling-
related aspects (equations, events, synchronous language
elements, state machines) and object-oriented respectively
component-oriented language elements (units, interfaces,
connectors, connections, stream connectors, inheritance,
overloaded operators, packages).

1.2 Problem statement
While Modelica is very powerful and easy to use, it is a
complex language. The high complexity leads to chal-
lenges on different levels.

End-users (modeling and simulation experts) and Mod-
elica library developers are confronted with:

• Compatibility issues between different Modelica
tools in part due to inconsistent interpretations of the
Modelica specification.

• Limited expressiveness of existing flat Modelica out-
puts for debugging unexpected behaviors, e.g., prior-
ity of conflicting start values, or clock partitioning.

• Lack of third-party utilities for operating on the flat
Modelica output due to lack of standard.

• Lock-in effects due to third-party utilities getting tied
to a specific Modelica tool.

Tool vendors are facing:

• High onboarding effort for new employees working
on the Modelica translator to become productive due

to interdependence of front-end and back-end mat-
ters.

• High entry barrier for non-Modelica tools to partici-
pate in the Modelica ecosystem.

• Difficulty to foresee and support all possible usages
of the language.

• Lack of a common format to settle questions about
the interpretation of the Modelica Language Specifi-
cation with other tool vendors.

The design group of the Modelica Language Specifica-
tion (MAP-Lang) is challenged by:

• Need to guarantee the consistency of a large and
complex specification.

• Hard to integrate changes or enhancements due to
many potential side effects to be considered.

• Difficulty to specify the semantics in an unambigu-
ous way.

• Risk of language innovations creating high imple-
mentation efforts.

This leads to the situation that the objective of Modelica
as a widely accepted, free and open modeling language is
threatened:

• The entry barrier for new tool vendors is very high.

• The testing effort of Modelica libraries to guaran-
tee compatibility across different tools is so high that
only a limited number of tools are fully supported.

• It is difficult to use as foundation for other standards
due the high complexity.

• A risk of vendor lock-in persists despite the commit-
ment to Modelica as an open standard.

• Poor ability to respond quickly to innovations in
competing modeling technologies.

1.3 Solution approach
We propose a standardized Base Modelica language that
could become an integral part of the Modelica Specifica-
tion. The translation of a (full) Modelica model would
then be described as a two-step process, where high-level
language constructs are first removed by lowering the
model to Base Modelica, after which the Base Modelica
semantics define the dynamic simulation behavior.

The Modelica and Base Modelica languages have a
large overlap in the syntax of expressions, functions, equa-
tions, and algorithms. These parts should be defined in
a common part of the Modelica Specification, where any
differences in requirements or semantics between (full)

Modelica and Base Modelica are clearly marked. In ad-
dition to the common part, the high-level language con-
structs of Modelica would be described in one part, while
lower-level constructs specific to Base Modelica are de-
scribed in another.

This is similar to the approach being taken by Sys-
tem Modeling Language (SysML), which is being restruc-
tured to be an extension to the Kernel Modeling Language
(KerML) instead of a UML profile (The Object Manage-
ment Group 2023). The difference between Modelica
and SysML is that SysML will add support for domain-
specific applications through language extensions whereas
these are still included in the (full) Modelica language.

1.4 Benefits
From the perspective of the MAP-Lang, the separation of
basic language constructs (Base Modelica) from the more
high-level constructions will facilitate more efficient work
and rapid development of the two aspects of the Modelica
language and generally improve the readability and main-
tainability of the specification. Examples of how high-
level constructs are lowered to Base Modelica will help
to avoid misinterpretations. Changes applicable to Base
Modelica can be discussed and evaluated before decid-
ing how to integrate them in Modelica. A working group
with focus on the equation model and simulation seman-
tics could play a very important role in future develop-
ments of new language features such as varying-structure
systems, or integration with PDE solvers.

From a tool vendor perspective, organizing the devel-
opment work of a Modelica tool will be easier thanks to
a natural separation into front-end and back-end matters,
with the front-end taking care of the lowering the Model-
ica model to Base Modelica and the back-end transform-
ing the Base Modelica model into an executable form, e.g.,
a simulator. A standardized Base Modelica output will al-
low a much easier identification of compatibility issues
between different tools. The much simplified Base Mod-
elica language will provide an entry point for new tools to
enter the Modelica ecosystem.

These types of new tools and services could be:

• Other high-level languages or modeling tools using
Base Modelica as a target language, e.g., dedicated
control engineering tools, or symbolic math pack-
ages.

• Advanced model transformation techniques applied
on the equation level.

• Specialized tools providing advanced analysis (e.g.,
occurrence of algebraic loops, model-based fault de-
tection and isolation) and/or visualizations of equa-
tion systems (e.g., bipartite graphs).

• Extraction and injection of equations to simplify or
reduce the model for simulation speed-up.

• Platform for academic research on dynamic systems,
e.g., symbolic or numeric methods.

In the context of the publicly funded ITEA3 project
15016 EMPHYSIS (Sep. 2017 – Feb. 2021), an early pro-
totype for the exchange of equation-based models between
Modelica and non-Modelica tools has been developed.
Based on this prototype two use cases have been evalu-
ated and documented as demonstrators (EMPHYSIS Con-
sortium 2021, D7.3 and D7.4) to illustrate the benefit of
having an equation-based representation in a model-based
development workflow for embedded control and diagno-
sis functions.

The end-users and Modelica library developers will
benefit from a improved portability of their models and
libraries due to identified and resolved inconsistencies be-
tween Modelica implementations and Modelica Specifica-
tion. This will allow a more flexible usage of the available
tools. Comparison of different compiler back-ends will
be possible. In combination with the obfuscation of Base
Modelica outputs, sharing of IP-protected models will be
simplified.

Furthermore, other model exchange standards could
also benefit from a standardized Base Modelica. This is in
accordance with the Equation Code proposed as an addi-
tional model representation within the eFMI container ar-
chitecture (Lenord et al. 2021). This additional represen-
tation has been proposed for future versions of the eFMI
standard aiming to share an acausal representation of the
equation system that has served as the basis for the de-
rived algorithmic and target-specific representations. The
proposed Base Modelica with some additional restrictions
could be directly referenced by the eFMI standard to spec-
ify the additional Equation Code model representation that
would provide more flexibility and transparency in the
generation of code for embedded applications.

1.5 Potential risks
However, we also recognize that there are potential risks
that may reduce some of the benefits.

In particular:

• Modelica translators rely on heuristics for symbolic
transformations based on the structure of the Model-
ica code. Some of this structure, e.g., start-value pri-
ority, has been given a standardized representation in
Base Modelica. However there also exists structure
that will require the use of vendor-specific annota-
tions, leading to portability issues of the Base Model-
ica code. For example the alias elimination selection
may depend on whether a variable is conditional.

• Base Modelica has not been designed with interme-
diate stages of symbolic transformations in mind.
Thus its usefulness for representing those stages is
not clear.

• Despite the significant effort behind the current state
of the Base Modelica design work there is a consider-

able remaining investment in separating the Model-
ica Specification along these lines. This could detract
from other evolution of the Modelica language.

Understanding the risks should make it easier to avoid the
bad consequences.

2 Selected design choices
From the intended usages of Base Modelica the following
design goals are derived:

• Simple enough to be attractive for applications that
essentially just want a simple description of variables
and equations, meaning that many of the complicated
high level constructs of Modelica are removed.

• Expressive enough to allow the high level constructs
of Modelica to be reduced to Base Modelica without
loss of semantics.

• When Base Modelica serves as an intermediate rep-
resentation of the translation of a higher level lan-
guage (such as Modelica), errors detected in Base
Modelica code shall be traceable to the original code.

• Human readable and writable, since not all usages
assume Base Modelica being produced from a higher
level language by a tool.

A selection of design choices to achieve these goals is
presented in the following subsections.

2.1 Variable naming scheme
Identifiers in Base Modelica fall into three namespaces:

• Space of mangled class names and component ref-
erences that allow mapping back to a hierarchically
structured class tree and simulation result.

• Space of reserved names for current or future use in
the Base Modelica specification.

• Space reserved for tools producing Base Modelica
code, without mapping to names in a simulation re-
sult.

For example, the following Base Modelica parameter
would appear as const.k in the simulation result:

parameter Real ’const.k’ = 1.0;

In general, the mangling scheme is more involved than just
wrapping in single quotes, but the details are omitted for
brevity.

The mangled names are always quoted identifiers
(Q-IDENT in the grammar), and since quoted identifiers
are rarely used in Modelica code, it is often easy to guess
whether a code fragment is Modelica or Base Modelica by
just looking at the names of classes and components.

2.2 Simplified grammar
Base Modelica has a grammar which has been simplified
in many ways compared to Modelica, by removing high-
level language constructs. A clear sign of this is the many
Modelica keywords that are not keywords in Base Mod-
elica, including: block, class, connect, connector
, constrainedby, each, expandable, extends, final
, flow, import, inner, operator, outer, protected,
public, redeclare, and stream. However, Base Mod-
elica also comes with syntax for lowered constructs that
do not exist in Modelica.

The top-level structure of a Base Modelica program is
given by the following piece of grammar:
base-modelica :

VERSION-HEADER
package IDENT

(decoration? class-definition ";"
| decoration? global-constant ";"
)*
decoration? model

long-class-specifier ";"
(annotation-comment ";")?

end IDENT ";"

A very small Base Modelica model generated from full
Modelica could look like this:

Listing 1. A minimal (non-empty) Base Modelica model.

// ! base 0 . 1 . 0
package ’M’
model ’M’
parameter Real ’const.k’ = 1.0;

end ’M’;
end ’M’;

The mandatory Base Modelica version header comment
is technically necessary to tell with certainty that this is a
Base Modelica listing, and not a Modelica listing. It is
included here for completeness, but is generally omitted
in examples where it is clear from context or content that
the language is Base Modelica.

A class-definition in Base Modelica can only be
either a record definition, a function definition, or a short
class definition, and cannot contain nested class defini-
tions. Similarly, the model defined at the end cannot
contain nested class definitions, meaning that all classes
are defined in a flat structure under the top-level package
(which shall have the same name as the model inside it).

The decoration is a source location decoration for
use when the Base Modelica code has been generated from
another source, such as a Modelica model.

A notable example of syntax added for describing low-
ered constructs is the modeling of clock partitions, see sec-
tion 2.13.

2.3 Restricted modification
For any Base Modelica component declaration, modifica-
tions are required to be expressed in a way that avoids
the need for conflict resolution and complicated merging
strategies:

• Hierarchical names are not allowed in modifiers,
meaning that all modifiers must use the nested form
with just a single identifier at each level.

• At each level, all identifiers must be unique, so that
conflicting modifications are trivially detected.

Lookup restrictions ensure that modifications in short
class definitions, record definitions, and function defini-
tions can only make use of constant expressions. Fur-
ther, these modifications are not allowed to specify differ-
ent values for different elements of an array. As a result,
a named type in Base Modelica can be represented very
compactly compared to a named type in Modelica.

When lowering a Modelica array component with a
heterogeneous modification, the modification needs to be
placed inside the Base Modelica model part, as model
component declarations is the only place where heteroge-
neous modification is allowed.

Base Modelica does not have the final keyword to in-
dicate that further modification is not allowed. For most
uses of final in Modelica, this just means that violations
of final must be detected during lowering. However, the
special case of a final modification of the start-attribute
also requires preventing that the start-attribute can be
modified at the time of simulation initialization, and will
be described in subsection 2.11.

2.4 No connect equations
Connect equations in Modelica play an important role to
enable reuse of components and build-up a component hi-
erarchy, as illustrated by the very simple example in Fig-
ure 1. The Modelica semantics already describes how
to transform connect equations into basic mathematical
equations. Hence, there is no need in Base Modelica
to keep connect equations. Furthermore it would have
been difficult to preserve the concept of connect equations,
as the lowering process to Base Modelica is removing
the hierarchy of components in terms of which the con-
nect equations are defined. This is a significant language
simplification compared to Modelica, especially when it
comes to expandable connectors.

An example of how the previously mentioned train
model is translated from Modelica, see Listing 2, to Base
Modelica is shown in Listing 3

wagon

m=1e5 kg

wagon1

m=2e5 kg

Figure 1. Diagram view of a Modelica model of a train.
The connect-equations are represented graphically as lines be-
tween the components.

Listing 2. Shortened Modelica listing of train model.

model Train
Locomotive locomotive;

Modelica.Mechanics.Translational.
Components.Mass wagon(L=50, m=1e5)

annotation (Placement(transformation(
extent={{-16,-12},{4,8}})));

Modelica.Mechanics.Translational.
Components.Mass wagon1(L=40, m=2e5);

equation
connect(waggon.flange_b, wagon1.flange_a)

annotation (Line(points
={{4,-2},{18,-2}}, color={0,127,0})
);

connect(locomotive.flange_b, wagon.
flange_a);

end Train;

Listing 3. Train model lowered to Base Modelica.

// ! base 0 . 1 . 0
package ’Train’
model ’Train’
parameter Real ’wagon.m’ = 100000.0 "Mass

of the sliding mass";
parameter Real ’wagon.L’ = 50 "Length of

component";
parameter Real ’wagon1.m’ = 200000.0 "

Mass of the sliding mass";
parameter Real ’wagon1.L’ = 40 "Length of

component";
Real ’wagon.s’ "Absolute position of

center of component...";
Real ’wagon.flange_a.s’ "Absolute

position of flange";
Real ’wagon.flange_a.f’ "Cut force

directed into flange";
Real ’wagon.flange_b.s’ "Absolute

position of flange";
Real ’wagon.flange_b.f’ "Cut force

directed into flange";
Real ’wagon1.s’ "Absolute position of

center of component...";
parameter Real ’locomotive.mass.m’;
parameter Real ’locomotive.m’ = 100000.0

"Mass of the sliding mass";
initial equation
’locomotive.mass.m’ = ’locomotive.m’;

equation
’wagon.flange_a.s’ = ’wagon.s’-’wagon.L’

/2;
’wagon.flange_b.s’ = ’wagon.s’+’wagon.L’

/2;
. . .
// From connec t i on s :
’locomotive.flange_b.f’+’wagon.flange_a.f

’ = 0.0;
’wagon.flange_a.s’ = ’locomotive.flange_b

.s’;
’wagon.flange_b.f’+’wagon1.flange_a.f’ =

0.0;
’wagon1.flange_a.s’ = ’wagon.flange_b.s’;

end ’Train’;
end ’Train’;

2.5 No conditional components or deselection
Conditional components in Modelica allow a limited
structural variation that complements the more flexible re-

placeable concept. Base Modelica does not have condi-
tional components.

When lowering to Base Modelica we must thus evaluate
the condition of a conditional component, and if the con-
dition is false remove the component and any correspond-
ing connections. The reason for this is that conditional
components go together with the connection handling in
Modelica. Additionally expressions (excluding arguments
to connect) should be checked to ensure that they do not
use any conditional component before lowering, since that
check is not possible in Base Modelica.

Component and connect deselections introduced in
Modelica 3.6 are handled similarly.

2.6 No evaluation of (Base Modelica) parame-
ters

Constant and parameter variabilities are well separated in
Base Modelica. Expressions that are deemed necessary to
evaluate during Base Modelica translation are required to
be constant, implying that lowering a Modelica model of-
ten involves evaluating parameters in order to comply with
Base Modelica variability requirements. Further, Base
Modelica semantics of constant components and expres-
sions ensure that such expressions can be evaluated dur-
ing translation when needed. In particular, a pure constant
function concept is introduced to restrict the functions that
can be used in constant expressions.

As an example of not having semantics relying on the
ability to evaluate parameters during translation, a natu-
ral simplification compared to full Modelica is that a Base
Modelica if-equation is required to have the same equa-
tion count in every branch. That is, whenever a Model-
ica if-equation has unbalanced branches, lowering of the
equation must cause the if-equation conditions to be eval-
uated, so that branches breaking the balance can be elimi-
nated.

2.7 Types are constant
Types created in Base Modelica can only hold constant
properties. Since a constant property can always be eval-
uated in Base Modelica, this ensures that the internal rep-
resentation of a type in a Base Modelica tool does not re-
quire the complexity of expressions and component ref-
erences. This makes Base Modelica types much more
similar to types found in other popular programming lan-
guages, compared to (full) Modelica types. It also signif-
icantly reduces the implementation effort for a pure Base
Modelica tool compared to a full Modelica tool.

As an example of Base Modelica types being constant,
each dimension of a Base Modelica array type has a size
that is either constant or flexible, where the latter only in-
dicates the absence of a constant expression for the size
of an Integer dimension. Outside functions, component
declarations may only specify constant array sizes. In an
array equation, the array type must have constant sizes.

The constsize-expression allows expressing constant
assertions on array dimensions. In the listing below, the

OK assignment in ’h’ shows a way to assign the result of
’f’() to ’z’. The assignment below it is an error because
size(’z’) has non-constant variability due to the flexible
size of the first dimension.

Listing 4. Using the constsize-expression.

function ’f’
output Real[:, ’MyEnumType’, :] ’y’;
. . .

end ’f’;

function ’h’
protected
Real[:, ’MyEnumType’, 3] ’z’;

algorithm
’z’ := constsize(’f’(), :, size(’z’, 2),

3); /∗ OK. ∗/
’z’ := constsize(’f’(), size(’z’)); /∗

Er ro r . ∗/
end ’h’;

2.8 Variability-constrained types
Similar to Modelica, a record definition may have vari-
ability prefixes parameter or constant on the compo-
nent declarations of the record members. In Base Mod-
elica, such a type is denoted a variability-constrained
type, and needs to obey additional rules that ensure more
clarity in the semantics compared to Modelica. For ex-
ample, a function component may not be of variability-
constrained type, but is allowed to receive an argument
of variability-constrained type. A model component of
variability-constrained type is also allowed to be in solved
position of an equation or assignment, in which case the
variability-constrained members shall be disregarded as
needed to match the type of the other side of the equation
or assignment.

2.9 Short class definitions
Short class definitions in Base Modelica may not include
array dimensions. Hence, all named types in Base Model-
ica are scalar types, and when a component has array di-
mensions, all array dimensions will be present at the com-
ponent declaration.

It should be noted, however, that a record type may
contain members of array type (where the sizes must be
constant, as the component declarations are not inside a
function):

record ’R’
Real ’x’[3];

end ’R’;

2.10 Array subscripting of general expres-
sions

While Modelica only allows array subscripts as part of
the component reference syntax, Base Modelica allows
applying array subscripts to general expressions. The
only requirement is that the array subscripts are applied

to a parenthesized expression, for instance, (x.y)[1, 2]

. The ambition is to introduce the new syntax for Model-
ica, thereby avoiding the need to introduce new expression
syntax in Base Modelica, while also making the generally
useful feature available on both language levels.

2.11 More explicit initialization
Model initialization is very explicit in Base Modelica
compared to Modelica. A notable difference compared
to Modelica is that both fixed and final in Modelica
are modeled using more elementary mechanisms in Base
Modelica.

A parameter with a declaration equation in Base Mod-
elica corresponds to a non-final fixed parameter in Mod-
elica, and it is required that the declaration equation is
solved with respect to the parameter so that it is possi-
ble to override the equation during initialization. For vari-
ables of higher variability, fixed initialization in Model-
ica is lowered to an explicit initialization equation, and
non-fixed initialization is lowered to an explicit represen-
tation of guess-values. For example, consider the follow-
ing Modelica parameter:

final parameter Real p = 4.2;

In Base Modelica, this can be represented as:
parameter Real ’p’;

initial equation
’p’ = 4.2;

To make handling of guess values explicit, there is an
implicitly declared guess value parameter guess(’x’) to
represent the guess value for ’x’. The guess value pa-
rameter may be defined by an initial equation in case it
should not be possible to override during initialization, or
using a Base Modelica parameter equation. A parame-
ter equation is a special construct that is only allowed for
guess value parameters, and in addition to expressing that
the guess value may be overridden during initialization, it
allows the guess value to be conveniently located next to
the declaration of the variable to which it belongs (without
leaving the variable declaration section of the model):
Real ’x’;
parameter equation guess(’x’) = 1.5;
Real ’y’;
parameter equation guess(’y’) = 2.5;

Guess value prioritization is made explicit in the form
of a special kind of initial equation:
initial equation
prioritize(’x’, 2);

Further, when-equations impose no constraints on the
initialization problem. Lowering a Modelica when-
equation may therefore result in explicit equations in the
initial equation section of the Base Modelica model.

One notable thing which is not explicit in Base Mod-
elica is the selection of which guess values should come
into play, or how. This requires an analysis of the initial-
ization problem equation structure that goes beyond what
the lowering of Modelica is expected to deliver.

2.12 Records and function default arguments
Function input components are allowed to have declara-
tion equations, but these are ignored. Hence, Base Model-
ica functions cannot have function default arguments. In
the same spirit, declaration equations in record types do
not define defaults of an implicit record constructor func-
tion (as they do in Modelica). Instead, the declaration
equations (which can only have constant expressions by
design) only define default modifications when the type is
used in component declarations, and then get meaning de-
pending on what modifications mean for different kinds of
component declarations. For example, a modification on
a model component declaration is equivalent to an equa-
tion in the model, whereas a modification on a function
local or output component declaration equation is used to
give initial values for the evaluation of the function body.
A modification on a function input component is ignored
similar to declaration equations, as argument values must
always be passed for all function inputs.

2.13 Explicit clock partitioning
The implicit clock partitioning carried out by tools for full
Modelica is made explicit in Base Modelica. The equa-
tions solved in a clocked sub-partition are placed in a ded-
icated subpartition construct, and the variables being
determined by the sub-partition can be determined by a
simple inspection of the equations. Listing 5 shows an
example of a Base Modelica model with clock partitions.

Listing 5. Explicit representation of clock partitions.

package ’M’
model ’M’
Real ’x’;
Real ’baseVar’, ’cVar1’, ’cVar2’, ’cVar3’

;
Real ’mixedVar1’;

equation
der(’x’) = 1;

partition
Clock ’myClock’ = Clock(1);
Clock _subClock0 =

subSample(’myClock’, 2);
Clock _subClock1 =

superSample(subSample(’myClock’, 2), 8)
;

subpartition (clock = ’myClock’)
equation

’baseVar’ = sample(’x’);

subpartition (clock = _subClock0,
solverMethod = "ImplicitEuler")

equation
der(’cVar1’) = noClock(’baseVar’);

subpartition (clock = _subClock1)
equation

’cVar2’ = noClock(’baseVar’);
’cVar3’ = noClock(’cVar1’);

algorithm
’mixedVar1’ := ’cVar2’ + ’cVar3’;

partition
Clock _baseClock0 = Clock(1.1);
. . .

end ’M’;
end ’M’;

2.14 Source locations
The Base Modelica grammar allows code to be decorated
with source location information to enable reporting er-
rors pointing back to another source (typically, a Model-
ica model) from which the Base Modelica was produced.
Each decoration consists of the @ sign followed by an in-
teger that references some external, tool-specific, table of
source location details. As illustrated by the listing below,
decorations can be attached to expressions as well as many
other constructs.

Listing 6. Source location decorations.

package ’Decorations’
@101 model ’Decorations’
@202 Real x(@203 min = 0.0 @204);

equation
@301 if x > 0.5 then
@302 w = 1;

else
6 + w @304 = atan2(1 @305, 1);

end if;
algorithm
@306 w := 1 + (2 @303) @304;

end ’Decorations’;
end ’Decorations’;

3 Base Modelica open issues
The design of the proposed Base Modelica language is
an ongoing effort documented and discussed on GitHub
under the Modelica Change Proposal (MCP) 0031. This
paper is presenting the results after reaching the first mile-
stone of a design proposal version 0.1 including resolu-
tions of all collected issues considered crucial for a first
complete Base Modelica language. The design proposal
has been specified as a modified Modelica grammar file
along with a separate textual description of the seman-
tic differences between Base Modelica against Modelica.
This design proposal has been developed by representa-
tives from four different Modelica tool vendors and is con-
sidered mature enough for being implemented and tested
by Modelica tools.

Based on forthcoming test implementations it will be
possible to reveal and collect issues needing further atten-
tion. Some potential issues are in need of gaining expe-
rience with test implementations to pinpoint the problems
in order to decide if there really are any.

The following issues are already known:

• Reject or add support for non-constant nominal-
attribute.

• Handling of ModelicaServices.

• Handling of external functions.

• Reuse of common components.

4 Conclusions & Outlook
The selection of designs proposed in section 2 illustrate
how the complexity of the Modelica language can be sig-
nificantly reduced by removing keywords from the gram-
mar related to higher level constructs, enforcing implicit
declarations to be expressed more explicitly, and being
generally more restrictive. All this leads to a language
that is still expressive enough to capture the semantics of
a Modelica model being lowered to Base Modelica, but
much more accessible for non-Modelica tool vendors and
researchers seeking a standardized form of equation-based
mathematical models. This will enable new parties to
participate and enrich the Modelica ecosystem with new
applications and methods producing or consuming Base
Modelica.

It is clearly outlined how Base Modelica is derived by
lowering Modelica. This indicates that Base Modelica is
consistent with existing Modelica tools and applicable as
a standardized intermediate format. Only limited devel-
opment effort is expected to enhance existing Modelica
front-ends to produce a Base Modelica output and Model-
ica back-ends to consume it. This will improve the abil-
ities of tool vendors and library developers to understand
and eliminate incompatibilities between tools to the bene-
fit of the entire Modelica community.

This paper is aiming to lay the foundation for future
discussions within the Modelica community and with the
MAP-Lang in order to collect feedback to further improve
this design proposal.

In future work, we are aiming to work closely together
with tool vendors to develop prototypes to generate as well
as consume Base Modelica representations. These pro-
totypes will be an important proof of concept to reveal
shortcomings of the current design and to give realistic
estimates of the development efforts to be expected.

If this evaluation phase can be concluded with posi-
tive feedback a revised definition of the Base Modelica
language shall then be defined. Based on this version a
change proposal to refactor the Modelica Language Spec-
ification, considering Base Modelica as an integral part,
shall be worked out and submitted to the MAP-Lang.

In the long run, we are aiming to convince Modelica
and non-Modelica tool vendors to embrace Base Modelica
as a widely used standardized language for equation-based
models for many more tools and other standards to build
upon.

Acknowledgements
This work has been funded in the context of the ITEA3
project 15016 EMPHYSIS by the Swedish Vinnova un-
der grant number 2017-05121 and the German Federal

Ministry of Education and Research (BMBF) under the
grant number FKZ 01|S17023. It has also been funded in
the context of the German PHyMoS project by the Fed-
eral Ministry for Economic Affairs and Climate Action
(BMWK) under grant number FKZ 19|20022A. The au-
thors would also like to thank Kai Werther, Michael Tiller,
Francesco Casella, and others for their inputs to the many
discussions.

References
EMPHYSIS Consortium (2021). EMPHYSIS – D7.9 eFMI for

physics-based ECU controllers. Tech. rep. ITEA3. URL:
https://itea4.org/project/workpackage/document/download/
7675/D7.9_Public_DemonstratorSummary.pdf.

Lattner, Chris and Vikram Adve (2004-03). “LLVM: A Compi-
lation Framework for Lifelong Program Analysis and Trans-
formation”. In: CGO. San Jose, CA, USA, pp. 75–88. DOI:
10.1109/CGO.2004.1281665.

Lenord, Oliver et al. (2021). “eFMI: An open standard for phys-
ical models in embedded software”. In: Proceedings of the
14th International Modelica Conference 2021. Linköping,
Sweden. DOI: 10.3384/ecp2118157.

Lindholm, Tim et al. (2023-03). The Java Virtual Machine Spec-
ification, Java SE 20 Edition. Tech. rep. ORACLE. URL:
https://docs.oracle.com/javase/specs/jvms/se20/html/index.
html.

Modelica Association (2023-03). Modelica – A Unified Object-
Oriented Language for Systems Modeling. Language Specifi-
cation Version 3.6. Tech. rep. Linköping: Modelica Associa-
tion. URL: https://specification.modelica.org/maint/3.6/MLS.
html.

The Object Management Group (2023). OMG System Modeling
Language version 2.0 Beta 1. URL: https: / /www.omg.org/
spec/SysML/2.0/Beta1.

https://itea4.org/project/workpackage/document/download/7675/D7.9_Public_DemonstratorSummary.pdf
https://itea4.org/project/workpackage/document/download/7675/D7.9_Public_DemonstratorSummary.pdf
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.3384/ecp2118157
https://docs.oracle.com/javase/specs/jvms/se20/html/index.html
https://docs.oracle.com/javase/specs/jvms/se20/html/index.html
https://specification.modelica.org/maint/3.6/MLS.html
https://specification.modelica.org/maint/3.6/MLS.html
https://www.omg.org/spec/SysML/2.0/Beta1
https://www.omg.org/spec/SysML/2.0/Beta1

	Introduction
	State of the art
	Problem statement
	Solution approach
	Benefits
	Potential risks

	Selected design choices
	Variable naming scheme
	Simplified grammar
	Restricted modification
	No connect equations
	No conditional components or deselection
	No evaluation of (Base Modelica) parameters
	Types are constant
	Variability-constrained types
	Short class definitions
	Array subscripting of general expressions
	More explicit initialization
	Records and function default arguments
	Explicit clock partitioning
	Source locations

	Base Modelica open issues
	Conclusions & Outlook

