
MoCITempGen: Modelica Continuous Integration Template
Generator

David Jansen Fabian Wüllhorst Sven Hinrichs Dirk Müller

Institute for Energy Efficient Buildings and Indoor Climate, E.ON Energy Research Center, RWTH Aachen
University, Germany, {david.jansen, fabian.wuellhorst, sven.hinrichs,

dmueller}@eonerc.rwth-aachen.de

Abstract
Modelica enables an object-oriented approach to model
complex systems in product development and research,
and, thus, the development of various model libraries. Li-
brary development requires collaborative development in
a team of multiple developers. A typical challenge in
collaborative development, especially in the area of open
source, is to create models of uniform quality despite
different levels of knowledge among developers. Tech-
niques, such as Continuous Integration (CI) from the field
of software development, can help to solve these chal-
lenges. However, the adaptation of CI for the area of Mod-
elica model development currently requires the manual
creation of complex templates and a high degree of man-
ual configuration. In this paper we present MoCITemp-
Gen, an open source tool for automated generation of CI
structures for Modelica. The tool is succesfully applied on
two Modelica libraries to demonstrate its functionality.
Keywords: Continuous Integration, Modelica testing

1 Introduction
With the progressive use of modeling and simulation,
both in research and in product development, ensuring
the model quality is becoming increasingly important. As
the complexity of systems continues to increase, so does
the number of model developers contributing to libraries
and individual models. The concept of open source can
partially address this problem, as the increased reach en-
ables cross-institutional and cross-company collaboration.
However, this creates communities of sometimes very dif-
ferent levels of knowledge with regard to modeling, which
further complicates compliance with uniform quality cri-
teria. In the university context, where both research as-
sistants and students work together on models, this ef-
fect is partially amplified. Continuous Integration (CI) is
a technique from software development, more precisely
from DevOps, that was first described by Grady Booch
(Booch 1991) and later defined as one of the 12 princi-
ples of extreme programming (Beck 2000). CI processes
in the context of modeling aim to assure the quality of
models. These processes include testing of the produced
code/models in a designated environment. Vasilescu et al.
reviewed 246 GitHub projects that use CI, finding that the

use of CI increases the quality of repositories in terms of
a higher number of reviewed, merged and rejected pull re-
quests (Vasilescu et al. 2015).
As Modelica models and packages are stored as ASCII-
files, the usage of git platforms like GitHub or GitLab
is strongly recommended when developing Modelica li-
braries anyway (Gall et al. 2021). Thus, the application of
CI to Modelica code is not new. For instance, the well-
known modelica-buildings (Wetter et al. 2014) library has
an extensive CI structure based on the BuildingsPy Python
library (Wetter 2019). Over the past few years, we too
have built a comprehensive CI structure for the AixLib li-
brary that partially reuses functions from BuildingsPy and
combines them with self developed functionality (Maier
et al. 2023). However, these approaches are tailored to
the corresponding libraries and their application to other
Modelica libraries is not straightforward. To overcome
this issues, we developed MoCITempGen, an open source
tool that allows to generate a complete Modelica CI struc-
ture based on a few inputs with various testing stages and
functions. With the release of the tool, we want to lower
the hurdle of applying CI structures to Modelica libraries
and thus increase the quality of open source Modelica
modeling projects in the long run.
Before describing MoCITempGen in Section 3, we review
existing CI solutions in Section 2. To demonstrate the
usage of MoCITempGen, we apply it in Section 4 to the
open-source libraries AixLib and BESMod. Subsequently,
we provide a critical discussion about the limitations of
the created CI-structure in section 5.

2 State of the Art
Following, we give an overview of common CI hosts and
infrastructures (2.1), and show which approaches and so-
lutions for applying CI to Modelica already exist (2.2).

2.1 Common CI hosts
In order to take advantage of CI, an appropriate infra-
structure must be used. In the following, we provide a
brief overview about three often used systems, how they
can be deployed, and what costs they generate.
Travis-CI1 offers a standalone CI/CD service, that can be

1https://www.travis-ci.com/

https://www.travis-ci.com/


connected to multiple platforms like GitHub. In the end
of 2020, Travis-CI stopped offering free CI-minutes and
is now only available via priced plans. Even if Travis-
CI is completely open source, there is currently no option
to self-host the service, so using it will always generate
costs.
GitHub Actions2 is a service that was launched in 2018.
It is directly integrated into GitHub and offers 2000 free
minutes of usage per month. There is also the option to
add a self-hosted runner to a repository.
GitLab-CI/CD3 was first released in 2012 and is the inbuilt
CI/CD feature of GitLab. GitLab itself can be self-hosted
without costs, and the GitLab runner can be self-hosted as
well. If self-hosting is not an option for the application,
multiple paid plans for GitLab and its runners exist.
With all self-hosted variants, the costs for providing the re-
spective hardware must, of course, be taken into account.

2.2 Available CI for Modelica
Following, we want to give a short overview about uses of
CI in context of Modelica and the tools that are developed
around it.
Rabuzin et al. introduced a CI workflow for testing Mod-
elica models via OpenModelica and Travis-CI for their
power system library OpenIPSL (Rabuzin, Baudette, and
Vanfretti 2017). Their workflow includes a checking stage
that checks the compliance with the Modelica syntax and
a model validation stage that runs the most current model
implementation against existing simulation results of the
model to verify that results have not changed.
Schoelzel et al. implemented a fine-grained unit and re-
gression test setup to solve the problem of reproducibility
in the context of Modelica models for biology using a CI
pipeline based on GitHub Actions(Schölzel et al. 2021).
Hugues et al. perform not only testing but also integrate
Continuous Deployment (CD) in their pipelines to cre-
ate digital twins in form of Modelica functional mock
ups (FMU) for cyber-physical systems in their project
TwinOps (Hugues et al. 2022).
The Buildings4 library uses an extensive approach with
a combination of Travis CI and GitHub Actions (Wetter
2019). GitHub Actions is used to run different scripts
which check HTML syntax, model order, experiment
setup, existing documentation and much more. As the
job’s runtime is short, developers get direct feedback on
their contributions. Travis CI is used to run regression
tests for different software (Dymola, OpenModelica, and
Optimica). Furthermore, library specific developments
such as the control description language or spawn of en-
ergy plus are tested. Some of these scripts are used in the
IBPSA5 and IDEAS as well. The regression results have
to be generated manually.

2https://github.com/actions
3https://docs.gitlab.com/ee/ci/
4https://github.com/lbl-srg/

modelica-buildings
5https://github.com/ibpsa/modelica-ibpsa

The Open Source Modelica Consortium (OSMC) built an
open source pipeline to test all Modelica libraries included
in their package manager6. For this purpose, all mod-
els that have an experiment stop time are simulated with
OpenModelica and the different process steps are docu-
mented and published in an HTML report.
Furthermore, the Modelica Standard Library also uses CI
processes to ensure the quality of the models.
Additionally, there are several tools that can be used in
a Modelica CI environment. These include, among oth-
ers, the BuildingsPy python package7 library, the model-
ica formating tool modelica-fmt8, the ModelicaPy python
package9, and the regression test package MoPyRegtest10.
Although these tools and their applications already
demonstrate a certain potential of CI in the context of
model development, their use is often limited to the re-
spective libraries. Even if some approaches can be reused,
this often means a manual adaptation to the own library.
From our point of view, this creates a gap that can be filled
with the development of tools that generate CI structures
adapted to one’s own library on the basis of a few input
parameters. Therefore, we present this new tool, which
we call MoCITempGen, in the following section.

3 Methodology
In the following sections, we first provide a nomenclature
about common terms in the context of CI and Modelica
for better understanding (section 3.1). After that, we pro-
vide a brief explanation about the general structure of CI
setup (section 3.2) and then describe the template creation
process (section 3.3). Finally, in section 3.4 we describe
how the developed CI processes work in detail.

3.1 CI-Nomenclature
Before we describe the template generation and the
functionality of the templates, we want to give a short
definition of the common terms for CI in the context of
Modelica for better understanding. Since MoCITempGen
is currently based on GitLab-CI, we use the names and
terms based on the definition of GitLab11. However, most
functionalities and terms of CI pipelines are similar across
the different services. Table 1 provides an overview of the
most important terms for applying CI to Modelica.

Figure 1 shows the CI-setup based on MoCITemp-
Gen12 that can be adapted to any Modelica library. The
MoCITempGen repository holds the template generation

6https://github.com/OpenModelica/
OpenModelicaLibraryTesting

7https://github.com/lbl-srg/BuildingsPy
8https://github.com/modelica-tools/

modelica-fmt
9https://github.com/ORNL-Modelica/ModelicaPy/

10https://github.com/modelica-tools/
MoPyRegtest

11https://docs.gitlab.com/ee/ci/pipelines/
12https://github.com/RWTH-EBC/MoCITempGen

https://github.com/actions
https://docs.gitlab.com/ee/ci/
https://github.com/lbl-srg/modelica-buildings
https://github.com/lbl-srg/modelica-buildings
https://github.com/ibpsa/modelica-ibpsa
https://github.com/OpenModelica/OpenModelicaLibraryTesting
https://github.com/OpenModelica/OpenModelicaLibraryTesting
https://github.com/lbl-srg/BuildingsPy
https://github.com/modelica-tools/modelica-fmt
https://github.com/modelica-tools/modelica-fmt
https://github.com/ORNL-Modelica/ModelicaPy/
https://github.com/modelica-tools/MoPyRegtest
https://github.com/modelica-tools/MoPyRegtest
https://docs.gitlab.com/ee/ci/pipelines/
https://github.com/RWTH-EBC/MoCITempGen


Table 1. Nomenclature for CI and Modelica terms.

Term Explanation

job Smallest part that holds definition of what to do
script Section in a job definition with actual commands to execute in a job
stage Bundles jobs for specific use case (e.g. testing) and defines the order to execute them
pipeline Top-level definition of a CI workflow
runner Receives the jobs jobs from the CI structure and executes them
variables Central definition of values to use throughout stages and jobs
artifacts Store results of jobs throughout a pipeline and after the pipeline finished
rules Define if a job should be executed or not
extends Reuse a job definition and only overwrite certain parts of it
include Command that allows to reuse the definition of a job in different pipelines
library Collection of reusable modeling components, such as models, classes and functions
package Hierarchical grouping of related components within a Modelica library
whitelist List of models that should be excluded from specific stages

tool that needs to be cloned locally and copied to the
directory of the users Modelica library once for setup.
Subsequently, the template generation will be performed.
The generation process itself will be explained in more
detail later.

3.2 Setup description

The resulting library related CI-structure of templates can
then either be placed directly inside the target Modelica
library (dashed lines) or placed outside in a separate
repository using the include command of GitLab-CI.
The way to store the templates mostly influences how
easy updates of the templates can be deployed. Storing
the templates in a separate repository is recommended
for repositories with intensive development, multiple
developers and therefore multiple branches. In such
repositories, a deployment or update of the CI templates
would otherwise require a merge of the updated templates
back into every branch, because every branch has its own
version of the templates. For smaller repositories with a
small amount of developers, storing the templates directly
with the Modelica code is acceptable as well.
The GitLab runner executes the stages and jobs defined in
the library related CI-structure using the ModelicaPyCI
package we released. This package holds the functionali-
ties which will be described in the following sections.

If the target Modelica Library repository is hosted in
GitLab, the GitLab runner directly interacts with the main
repository and the process is completed. However, any
other Git provider, like GitHub, BitBucket or AWS Code-
Commit can be used by taking advantage of the GitLab
mirroring feature. This way, the target Modelica library
is mirrored into a separate GitLab repository (dotted
objects). For GitHub and BitBucket it is also possible to
display the pipeline status in the target Modelica library
repository.

Figure 1. CI setup, scattered objects are optional, dotted objects
are only needed if not using GitLab as main repository.



3.3 Templates Generation Process
The template generation is performed via Python using
the Python templating package Mako13. This allows the
dynamic creation of templates based on the respective
Modelica library. The generation process needs informa-
tion about the repository, whether a mirroring process is
required, whether certain models should be excluded from
the CI process, what steps and tasks should be performed,
and whether and how to include manual interaction with
the CI.
To get this information, the setup process is possible
in two ways. The first option is an interactive way,
where the setup process uses command line interaction
and checks the file structure and existing Modelica
packages based on the library structure first and cre-
ates the setup subsequently based on user inputs. The
second option is a configuration based way, where the
user fills out a .toml configuration file in advance.
The latter is more suited to apply adjustments to an
already generated CI-structure as the interactive process
creates the .toml configuration file for later adjustments.

3.4 Template Structure and Functionality
Figure 2 shows a simplified structure of the templates gen-
erated by MoCITempGen. The created template structure
consists of single template file for each stage, which are
combined in a top level gitlab-ci.yml file. Some
jobs are performed separately for every Modelica package
of the library, which can lead to redundant and duplicated
jobs and statements in the CI-structure. These redundan-
cies can be reduced by using a combination of Python to
create the GitLab templates and the extends command
in GitLab-CI/CD. Basic jobs, such as the Modelica check
of a package, only have to be defined once as a base job

13https://www.makotemplates.org/

in the Mako templates. Using for-loops, variables and the
extends command, when exporting the GitLab templates,
the individual jobs are then created for each package and
adjusted by variables for the respective package.
Using the artifact functionality, the results and outputs of
the various tasks and phases can be made available for
download or later publication to provide a more structured
view.
The complete CI-structure, if all stages are selected, is
shown in Figure 3. The script section of each job is com-
parably short, as the functionality itself is outsourced into
an additional Python library that currently comes with the
template generation repository.
Since not all phases should be executed in all scenarios,
we use the implementation of rules in GitLab-CI/CD
to set different triggers for each job. In the current CI-
structure, we use rules in three ways.

1. Trigger specific jobs based on specific commit mes-
sages. E.g. to allow the creation of reference results
through a specific commit.

2. Identify commits on special branches like develop-
ment and main. This allows to handle main and de-
velopment branches different than feature branches.

3. Identify commits on branches with existing pull re-
quest. Same as for special branches.

To exclude specific models from certain stages, we
integrated a whitelist functionality. This is useful, if the
library author is aware that some already existing models
are failing, but this should not impede the development
or integration of new models. In addition, the whitelist
functionality is necessary if the existing library contains
models from other libraries, but does not manage these
itself. In this case, errors in the source library models
should be detected and fixed within this source library
and not lead to failed tests in the extended library. If

Figure 2. Excerpt of the exported templates (simplified).

https://www.makotemplates.org/


these models are not tested, the CI runtime will also be
reduced. This is particularly relevant since the IBPSA
library represents such a library, on which four libraries
are based.
Additionally, an option exists, to allow certain stages to
fail. This may be useful if, for example, the library’s
current status with respect to style checking does not meet
the requirements, but insights into style quality are still of
interest.

3.4.1 Description of Stages

Figure 3 presents the stages of the created CI-structure.
The scattered stages hold jobs which are only executed
under special conditions, while the other jobs are executed
every time. As some jobs currently require a Dymola
installation, we added information about the compatibility
with Dymola and OpenModelica to the figure. Following,
we give a detailed description of each job and stage, its
functionality and its output.
The Regression Result stage is conditional and only
executed if a pull request is opened for this branch. The
executed jobs in this stage will create missingreference
results. This stage is beneficial because manually
creating reference results requires a Python installation
on Linux with BuildingsPy, which raises the hurdle
for creating examples with reference results, especially
for inexperienced developers. To create the reference
results, the developer only needs to add the .mos script
for the simulation model that holds information about
the model to simulate, the experiment settings, and the
variables of the models that should be taken into account

for regression testing. By comparing the existing .mos
scripts with existing regression results, the CI identifies
not existing regression results and creates them. The
resulting reference results are directly pushed to the
branch and a new CI pipeline is triggered that is based on
the updated reference results.
This automated process only creates reference results
that do not yet exist in order to avoid unwanted changes
to reference results. However, the process can also be
used to update existing reference results. To do this, the
developer can delete existing reference results. This way,
new updated reference results are generated throughout
the explained process. This semi-automatic procedure
leaves the sovereignty over the reference results with the
developers and yet simplifies the process.
The Create Whitelists stage creates whitelists if the used
library extends models of another library (e.g. AixLib
extending IBPSA). The stage is only executed, if one of
the listed commit messages in 3 is used.
Modelica uses HTML code for model documentation.
The HTML-Check stage checks the HTML code in
all Modelica files against valid HTML syntax using the
python package PyTidyLib14 and is always executed.
If the check is not successful, due to invalid HTML
syntax, a new branch will be created using an API and
an automatic repair process is performed on the existing
HTML code to fix common errors in the HTML section.
Subsequently, the check is performed again and if the
check succeeds, a merge request is created on the target
Modelica repository with the fixed HTML code. This way
there is still a manual review process, but the Modelica

14http://countergram.github.io/pytidylib/

Figure 3. Stages of the invented CI-structure, scattered stages are conditional.

http://countergram.github.io/pytidylib/


user itself does not have to deal with common issues like
unclosed HTML tags.
Next, a Style-Check stage is performed using the Model
Management library of Dymola and runs its inbuilt style
check against the whole library. The checking process
includes three types of checks: class checks, component
checks and general checks. These checks among other
things evaluate if the existing model code holds correct
documentation, descriptions and class names, but does
not perform any checks regarding model functionality. As
the Model Management can only be used by Dymola this
stage is currently limited to the usage of Dymola. The
result of the stage is a HTML-report about the quality of
the checked library that gives detailed insights about the
quality. The report is stored as an artifact which is
available for download.
Subsequently, the Modelica-Check gives detailed in-
sights about the syntactic and logical correctness of the
model code by using the check functionality of Dymola
or OpenModelica. If errors arise, these will be saved to
a log file, which is available via artifacts. The stage is
implemented for both, OpenModelica and Dymola.
The Simulate stage runs all models inside the library
which extend the Modelica.Icons.Example model. This is
useful, because a model might pass the previous checks,
but won’t simulate successful. The stage is available for
OpenModelica and Dymola.
Regression testing stage runs simulation for all models
against their existing regression results using the Build-
ingsPy.
In case of a failure in the regression tests, plots of the sim-
ulation results are created. This stage should allow a fast
identification of which model failed and why by creating
plots of the expected and the new result trajectory using
Google Charts15. The plots will be deployed directly via
an GitLab page and be posted to the GitHub pull request,
see Section 3.4.3
As some jobs, like simulation of the models or regression
testing, are computationally and time intensive, we
implemented the option to only run these jobs for models,
where the source code of the model changed throughout a
commit. By using the git diff feature, we can check
the differences between the target branch and the current
branch and identify the changed models. This function
currently does not consider inheritance and integration
of submodels in other models. This means that if a
single component that is part of multiple models changes,
only the component itself is checked, but not all models
in which it is integrated. For certain events, like the
assignment of a reviewer in a pull request, this option is
disabled and all models, even if not changed, are checked.

15https://developers.google.com/chart

3.4.2 IBPSA Library Specific

In addition to the stages shown and described, there is also
the IBPSA-Merge. This is very tailored to the existing
setup of IBPSA library and extending libraries and
therefore not shown in the general process schema. This
stage allows performing an automatic merge of the source
library IBPSA into the extending libraries like AixLib.
Therefore, the merge script delivered by BuildingsPy is
used. After the automatic merge, a conversion script is
created based on the existing conversion script of IBPSA
and the latest conversion script of the extending library.
Additionally, we add the annotation
__Dymola_LockedEditing to all IBPSA mod-
els, which allows displaying these models as locked
inside Dymola as shown in Figure 4. This is very useful
to prevent changes to Modelica models that are not part of
the extending library, which would lead to merge conflicts
when performing the next IBPSA merge.

3.4.3 Interfacing and Communication

Automating tasks like the IBPSA merge, or the creation of
reference results, can save a lot of time when maintaining
a Modelica library. But not all tasks can be completely
automated and even if a complete automation is possible,
the results need to be communicated with the library users.
To fulfill the need for communication, we use the GitHub
REST API. If using GitHub as the main repository, the
GitHub REST API allows writing messages via a bot ac-
count which give feedback and instructions. E.g. in case
of failed regression tests, the GitLab page with plots of
the simulation results will be linked to the corresponding
pull request, so that the user can directly see which mod-
els are failing and might also be able to identify why the
simulation results differ from the regression results.

4 Exemplary Application on Two Li-
braries: AixLib and BESMod

In the following sections, we provide insights into how
we implemented a working CI infrastructure at our insti-
tute (4.1) and show the application of the developed CI
infrastructure to two libraries: AixLib (4.2) and BESMod
(4.3).

Figure 4. Locked IBPSA components in AixLib library.

https://developers.google.com/chart


Figure 5. CI-infrastructure at RWTH in Aachen.

4.1 Setup at RWTH in Aachen
The used setup at our institute in Aachen is shown in Fig-
ure 5. We have a public available GitHub organization that
hosts both later described libraries AixLib and BESMod.
Both libraries are mirrored to our university GitLab in-
stance, where we have a specific subgroup for mirrored
projects. The jobs are executed by a scalable GitLab run-
ner, provided through the GitLab runner docker image and
Kubernetes. The Runner setup is hosted on our internal
cloud service OpenStack. Both AixLib and BESMod hold
a gitlab.ci-yml file. In case of AixLib this links to
another GitLab repository, where the template structure,
created by MoCITempGen is stored in a separated branch.
This way, we can easily implement changes to the CI, by
simply updating the external repository branch of the tem-
plates. For BESMod the created templates are stored di-
rectly in the repository in the bin folder.

4.2 AixLib
The development of MoCITempGen took place on the ba-
sis of AixLib (Maier et al. 2023). A brief explanation of the
application of MoCITempGen at AixLib has already been
given in this previous paper. The template generator was
developed based on the existing CI of AixLib and general-
ized so that it can be applied to other Modelica libraries.

To show that the concept of MoCITempGen works, we
opened a demonstration pull request16 in the AixLib and
provoked the CI to perform to give two examples of how

16https://github.com/RWTH-EBC/AixLib/pull/1389

the CI works and interacts with the modeler.
The second example is a failing regression test,
that was provoked by changing the scaling fac-
tor for the heat pump model in the example
AixLib.Fluid.HeatPumps.Examples.-
HeatPump. Due to the changes to the model, the
regression test stage fails and the ebc-aixlib-bot posts a
comment into the pull request and links the GitLab page
with the plots showing the differences between existing
regression results and new results. A screenshot is shown
in Figure 6a. The second example is the creation of
new reference results. Therefore, we deleted the existing
results and pushed them to the branch. The CI notices
a missing reference result for an existing simulate and
plot .mos script and creates new results, pushes them
to the branch, and informs about the new created results
inside the pull request with a link to the GitLab page with
plots of the new reference results (see Figure 6b). Further
information about the usage of AixLibs CI can be found
in the AixLib-Wiki17.

4.3 BESMod
Contrary to the AixLib, the library BESMod is not an ex-
tension to the library IBPSA. Rather, it uses currently ex-
isting libraries, such as the IBPSA, Buildings or AixLib.
Thus, to load the BESMod in the CI, installation of these
additional requirements is necessary. GitLab-CI offers
before-scripts to execute specific commands prior to the
actual script. Before generating the CI configurations us-
ing MoCITempGen, adding an additional line for require-
ment installation to the before-script section in the .txt
template files was required. Afterwards, all features of the
CI were directly accessible and useable, even for a more
complicated setup, as is the case in BESMod. In summary,
while smaller adjustments may be necessary to a specific
library, MoCITempGen decreases the CI setup time drasti-
cally.

5 Discussion
The presented methodology was successfully applied to
two Modelica libraries. Even though the template creation
tool was developed with the goal of high flexibility, there
are currently still some requirements. These requirements
are:

1. the target Modelica library must be hosted in or mir-
rored to a GitLab repository,

2. a GitLab runner must be configured (via SaaS or by
hosting an own),

3. for jobs that need a simulation environment, either an
OpenModelica or Dymola image must be provided

4. in case of using Dymola, a Dymola license is re-
quired

The limitation to GitLab repositories can be circumvented
by using the GitLab mirroring function in section 3 which

17https://github.com/RWTH-EBC/AixLib/wiki/
GitLab-CI

https://github.com/RWTH-EBC/AixLib/pull/1389
https://github.com/RWTH-EBC/AixLib/wiki/GitLab-CI
https://github.com/RWTH-EBC/AixLib/wiki/GitLab-CI


(a) New and existing results for failed regression test. (b) New regression results created by CI process.

Figure 6. Example of AixLib CI for regression testing.

allows applying the presented approach to GitHub, Bit-
Bucket or AWS CodeCommit. The required GitLab run-
ner can be self-hosted without requiring to pay any ser-
vice as described in section 2. However, the presented
version of MoCITempGen currently enforces the use of
GitLab-CI/CD in the background, which requires famil-
iarization with the GitLab-CI/CD syntax and runner in-
frastructure. Furthermore, as described in section 3, some
stages need Dymola, or at least OpenModelica. Dymola
requires a paid license. OpenModelica on the other hand
is open source and already offers public available images
on DockerHub18. But currently, not all stages are com-
patible with OpenModelica. Therefore, we are aiming to
make all stages available via OpenModelica in the future.
Additionally, there are further possibilities for improve-
ment. E.g., the outputs of the different stages are not uni-
form. Some stages output log files, others HTML-reports,
others files to download. This could be unified with a cen-
tral report, which holds all relevant information.

6 Conclusion and Outlook
This paper gives an overview of CI applications in the con-
text of Modelica and presents the tool MoCITempGen that
aims to facilitate the use of CI for authors of Modelica
libraries. The tool and the underlying methodology are
explained, and the application of the tool on two Mod-
elica libraries is shown. Even though we have applied
MoCITempGen to two libraries in the context of the build-
ing energy efficiency sector, it is also possible to apply it
to other libraries from other domains.
In order to increase the application possibilities and to sup-
port different repository architectures, we want to extend
the tool in the future. This concerns on the one hand the
support of OpenModelica in all stages, in which a simu-
lation environment is used. On the other hand, the export
format of the templates will be extended so that templates
for GitHub Actions can also be exported in the future.
This is especially useful since GitHub Actions also sup-
ports the possibility of self-hosted runners.
Furthermore, we want to increase the flexibility and main-

18https://hub.docker.com/r/openmodelica/
openmodelica/tags

tainability by separating the Python library from the tem-
plate generation tool.
Eventually, the goal is to unify the various existing ap-
proaches to CI in the context of Modelica and make them
available across use cases.

Acknowledgements
This work has been supported by the German Federal
Ministry for Economic Affairs and Climate Action as part
of the project BIM2Praxis (grant numbers 3EN1050A,
3EN1050B).

References
Beck, Kent (2000). Extreme Programming Explained: Em-

brace Change. Addison-Wesley Professional. ISBN: 978-0-
201-61641-5.

Booch, Grady (1991). Object Oriented Design with Applica-
tions. Benjamin/Cummings Publishing Company. ISBN: 978-
0-8053-0091-8.

Gall, Leo et al. (2021-09-27). “Continuous Development and
Management of Credible Modelica Models”. In: Modelica
Conferences, pp. 359–372. ISSN: 1650-3740. DOI: 10.3384/
ecp21181359.

Hugues, Jerome et al. (2022-03-24). TwinOps: Digital Twins
Meets DevOps. report. Carnegie Mellon University. DOI: 10.
1184/R1/19184915.v2.

Maier, Laura et al. (2023). “AixLib: an open-source Modelica
library for compound building energy systems from compo-
nent to district level with automated quality management”.
In: Journal of Building Performance Simulation 0.0, pp. 1–
24. DOI: 10 . 1080 / 19401493 . 2023 . 2250521. eprint: https :
/ / doi . org / 10 . 1080 / 19401493 . 2023 . 2250521. URL: https :
//doi.org/10.1080/19401493.2023.2250521.

Rabuzin, Tin, Maxime Baudette, and Luigi Vanfretti (2017-07-
01). Implementation of a continuous integration workflow for
a power system Modelica library. Pages: 5. 1 p. DOI: 10.1109/
PESGM.2017.8274618.

Schölzel, Christopher et al. (2021-07-19). “Countering repro-
ducibility issues in mathematical models with software en-
gineering techniques: A case study using a one-dimensional
mathematical model of the atrioventricular node”. In: PLoS
ONE 16.7, e0254749. ISSN: 1932-6203. DOI: 10 . 1371 /
journal.pone.0254749.

https://hub.docker.com/r/openmodelica/openmodelica/tags
https://hub.docker.com/r/openmodelica/openmodelica/tags
https://doi.org/10.3384/ecp21181359
https://doi.org/10.3384/ecp21181359
https://doi.org/10.1184/R1/19184915.v2
https://doi.org/10.1184/R1/19184915.v2
https://doi.org/10.1080/19401493.2023.2250521
https://doi.org/10.1080/19401493.2023.2250521
https://doi.org/10.1080/19401493.2023.2250521
https://doi.org/10.1080/19401493.2023.2250521
https://doi.org/10.1080/19401493.2023.2250521
https://doi.org/10.1109/PESGM.2017.8274618
https://doi.org/10.1109/PESGM.2017.8274618
https://doi.org/10.1371/journal.pone.0254749
https://doi.org/10.1371/journal.pone.0254749


Vasilescu, Bogdan et al. (2015-08-30). “Quality and productivity
outcomes relating to continuous integration in GitHub”. In:
Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering. ESEC/FSE 2015. New York, NY,
USA: Association for Computing Machinery, pp. 805–816.
ISBN: 978-1-4503-3675-8. DOI: 10.1145/2786805.2786850.

Wetter, Michael (2019). BuildingsPy. Language: en. DOI: 10 .
11578/DC.20190430.2.

Wetter, Michael et al. (2014). “Modelica Buildings library”. In:
Journal of Building Performance Simulation 7.4, pp. 253–
270. DOI: 10.1080/19401493.2013.765506.

https://doi.org/10.1145/2786805.2786850
https://doi.org/10.11578/DC.20190430.2
https://doi.org/10.11578/DC.20190430.2
https://doi.org/10.1080/19401493.2013.765506

	Introduction
	State of the Art
	Common CI hosts
	Available CI for Modelica

	Methodology
	CI-Nomenclature
	Setup description
	Templates Generation Process
	Template Structure and Functionality
	Description of Stages
	IBPSA Library Specific
	Interfacing and Communication


	Exemplary Application on Two Libraries: AixLib and BESMod
	Setup at RWTH in Aachen
	AixLib
	BESMod

	Discussion
	Conclusion and Outlook

