
Modeling Specialized Electric Power Generators, Excitation
Systems and Prime Movers used by North American Utilities

Md Shamimul Islam1 Giuseppe Laera1 Marcelo de Castro Fernandes1 Luigi Vanfretti1

Chetan Mishra2 Kevin D. Jones2

1Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, United States,
{islamm7,vanfrl,laerag,decasm3}@rpi.edu

2Dominion Energy, United States, {chetan.mishra,kevin.d.jones}@dominionenergy.com

Abstract
The North American Electric Reliability Corporation
(NERC) is expected to mandate model validation of power
plant equipment in the near future. This will create a need
to validate models for a large number of existing and fu-
ture power plants. Historically, model validation of syn-
chronous generators, excitation system, turbine governor,
and other power system equipment has been conducted
using diverse software platforms. As a contribution to the
power system model implementation using Modelica lan-
guage and validation against commercial tools, this work
continues to develop power system component models
and enriching the Open-Instance Power System Library
(OpenIPSL). As a part of the development of OpenIPSL
this paper describes the development of models used by
North American utilities that follow NERC modeling re-
quirements, including models of a synchronous generator,
an excitation system, a turbine and governor using Model-
ica language in Dymola. The component implementation
process is described and the validation of the models im-
plemented in Modelica against PSS®E using both a single
machine infinite bus (SMIB) and multi-machine system
models is illustrated.
Keywords: Modelica, OpenIPSL, model validation, power
systems, power grid.

1 Introduction
Precise mathematical modeling and simulation has be-
come an integral part of different engineering tasks car-
ried out by utilities and grid operators, as it aids in op-
timization of operations, planning of future expansions,
and ensuring regulatory compliance. The ongoing efforts
in de-carbonizaiton, rising energy costs, extreme climate
events (Franke and Wiesmann 2014), etc., are challenging
the resilience of power grids and may result in increased
costs and may pose potential risks of disruption if not ad-
dressed timely. To address these challenges, engineers
rely upon extensive computer simulations to understand,
design and analyze the performance of power grids un-
der diverse operating scenarios. In turn, these simulations
enable stakeholders to identify vulnerabilities, implement
improvements, and minimize risks associated with power

delivery. Reliable and accessible modeling solutions of
power system components and networks are essential for
comprehensive analysis and decision making.

There are many different software tools available for
power system modeling and simulation. The de facto
standard tools used in the industry are domain-specific
software, including PSS®E and PowerFactory, to name a
few (Laera et al. 2022) concerned with power system dy-
namics and stability, with time-scales of tens of ms to tens
of seconds. There is also software with a specific focus on
ultra-fast time-scales, such as EMTP and PSCAD for anal-
ysis of electromagnetic transients and power electronic-
based components. Despite meeting industry require-
ments and providing a vast library, there are limitations
for closed-source software such as PSS®E. These include
a lack of transparency regarding underlying algorithms
and models, limited and less flexible modeling capabili-
ties, limited simulation solver options, the requirement of
a specific skill set for its use, rigid data format and high
software cost, as well as limited community support.

To address these issues, there have been open-source
initiatives to democratize research, development and over-
all access to alternative modeling tools in this field. Van-
fretti et al. proposed the use of object-oriented equation-
based modeling language Modelica to model power sys-
tems (Vanfretti et al. 2013). This started the efforts
of the development of an open source power system li-
brary for power grid modeling and simulation consistent
with the power industry practices and requirements, now
called Open-Instance Power System Library (OpenIPSL)
(Baudette et al. 2018). It is worth to note that other past
efforts in power grid modeling with Modelica have been
summarized in (Winkler 2017), with more recent efforts
reported in (Adrien Guironnet et al. 2018) and (Bartolini,
Casella, and A. Guironnet 2019). Meanwhile, outside the
scope of power system dynamic modeling, other open-
source initiatives that offer specific solutions to other anal-
ysis needs have emerged. These include OpenDSS(Mon-
tenegro, Dugan, and Reno 2017) for power distribu-
tion analysis, GridCal1 and PyPSA (Brown, Hörsch, and
Schlachtberger 2017; Parzen et al. 2023) etc., that allow

1See: https://gridcal.readthedocs.io/en/latest/



to perform studies focused on the solution of steady-state
problems, while also establishing a community to support
such efforts.

Outside the power grid domain, significant research ef-
forts have taken place to model various energy systems
with Modelica such as modeling of building energy sys-
tem modules (Wüllhorst, Maier, et al. 2022), Heat Venti-
lation and Air Conditioning systems (Wüllhorst, Storek, et
al. 2022), and overall modeling of buildings for energy ef-
ficiency (Wetter et al. 2014), to name a few. These efforts
show that there is tremendous potential in the Modelica
“approach" towards modeling of different facets of energy
systems. In this context, OpenIPSL aims to contribute
to this growing body of Modelica libraries providing an
open source and Modelica-based resource to address en-
ergy system needs. OpenIPSL offers different power grid
component models with specific characteristics, such as
a synchronous generator, excitation system, turbine gov-
ernor/prime mover, power system stabilizer, load models,
transformers, transmission line models, control unit, and
so on, enabling modeling of power system dynamic mod-
eling for generation, transmission and distribution systems
(Castro et al. 2023).

This work aims to expand the existing capabilities of
OpenIPSL by introducing the modeling of three new com-
ponents using Modelica language and OpenIPSL library
that are available in PSS®E and are required by the North
American Electric Reliability Corporation (NERC) for the
modeling of real-world power plants in the United States.
Targeting specific power generation facilities in the East-
ern Interconnection of the United States, new models of
generators (GENTPJ), excitation systems (ESURRY), and
prime movers (WPIDHY) that contain unique character-
istics in terms of design, response, and functionality, are
presented herein.

The specific contributions of this paper are:

• A Modelica language-based implementation of new
and representative power generators, excitation sys-
tems, and prime mover models. These models will
be included in the future release of the open-source
OpenIPSL library.
Generator (GENTPJ): A recent synchronous ma-
chine model (Birchfield et al. 2017) allowing the rep-
resentation of sub-transient saliency and containing a
much more complex saturation representation than ex-
isting models. Although being used by utilities and be-
ing available in the PSS®E software, this newer model
is not currently in the IEEE standards. This model ad-
dresses some of the limitations of widely used GEN-
ROU and GENSAL models.
Excitation System (ESURRY): This model is spe-
cialized for nuclear power plants in North American
Utilities.
Turbine Governor (WPIDHY):. This is a special-
ized model called Woodward PID Hydro Governor
(WPIDHY) for hydraulic turbines and their speed con-

trol system used by utilities in the Eastern Interconnec-
tion. It includes a hydro turbine, governor and pen-
stock representation for the modeling of hydro power
plants using Woodward governor control systems. The
model includes a nonlinear gate to power relationship
and a linearized turbine and penstock model.

• Benchmarking the developed models by comparing
the Modelica implementation results with the industry
de facto standard propriety software tool PSS®E.

• A discussion of challenges and a framework for future
development.

The reminder of this paper is organized as follows. Sec-
tion 2 describes the Modelica implementation of the new
electrical machine, excitation system, and turbine & gov-
ernor models. Section 3 discusses the validation approach
and explains the test procedure to test each of the compo-
nents in the SMIB and multi-machine system. Section 4
describes the simulation results and discusses the valida-
tion results. Finally, Section 5 concludes the paper.

2 Modelica Implementation
In modeling power system components, it is critical to
have a comprehensive understanding of the model’s speci-
fications and conceptual framework for its derivation. This
understanding is largely domain-specific and gives a guide
in the identification of relevant equations and/or block di-
agrams that accurately describe the system’s dynamic be-
havior. Once these equations and/or block diagrams have
been identified, they can be used to construct a model in
Modelica.

One important stage in the modeling process is to deter-
mine how to initialize the model, which involves specify-
ing how the initial values of the model’s variables should
be determined. After initialization, the model should
be subjected to a software-to-software validation test, in
which it is compared to a reference result (Otter et al.
2022) to ensure that the model’s inputs and outputs are
consistent with its specifications. This test is crucial in
verifying the model’s accuracy and ensuring it behaves as
intended.

In summary, modeling a system requires a clear under-
standing of its specifications and conceptual framework,
identification of relevant equations and/or block diagrams,
construction of the model in Modelica, initialization, and
validation through software-to-software testing.

In this article, the process summarized above is ap-
plied to three components used for the modeling of power
generation systems in the Eastern Interconnection of the
US. Namely, the components are: a generator GENTPJ
(as GENTPJU1 in PSS®E), an excitation system ES-
URRY, and a turbine governor WPIDHY. The components
have been modeled using Modelica language and verified
against PSS®E. The model is presented as block diagrams
in PSS®E’s manual, which is used along with other liter-
ature to start the implementation in Modelica using de-
veloped components available in Modelica Standard Li-



brary and OpenIPSL. These components were already de-
veloped and modeled in PSS®E.

2.1 Synchronous Machine (GENTPJ)
The Western Electricity Coordinating Council (WECC)
has historically used the GENROU model to simulate
round-rotor synchronous generators (used in steam- and
gas-turbine power plants) and the GENSAL model to
simulate salient-pole synchronous generators (used in hy-
dropower plants). In recent years, WECC has begun to
use the GENTPF model for round-rotor generators and a
modified version of the GENTPF model called GENTPJ
for salient-pole generators (Pourbeik et al. 2016). The
GENTPJ model was first developed by (J. Undrill 2012)
by introducing a new parameter Kis, which is a scalar
multiplier of total stator current. Finally, NERC issued
a “Modeling Notification(North American Electric Reli-
ability Corporation 2018),” in November 18, 2016, rec-
ommending to use the GENTPJ model for new model-
ing of salient pole generators and future (re)verification
of salient pole generator models.

Using GENTPJ, each synchronous machine is modeled
in its rotor reference frame, i.e., rotating at the speed of
the rotor. The electric source is represented by equations
of the flux behavior in orthogonal dq-axes. When the sys-
tem containing the generator model is subjected to a dis-
turbance this results in an imbalance between the power
generated and consumed, which in turn results in a speed
deviation from its synchronous reference at the machine.
Therefore, all of the machine variables are transferred to
the synchronous reference frame.

The synchronous machine is implemented using Mod-
elica in Dymola software by using the equations listed in
(Pourbeik et al. 2016; Olive 1968; J. M. Undrill 1969).
The GENTPJ model is similar to the GENROU, GEN-
SAL, and to GENTPF, except the saturation function uses
the Kis term. More details regarding the saturation func-
tion in the original 2007 and current 2012 specification are
discussed in a presentation by BC Hydro (Cui 2022). The
reader is refereed to (Zhang et al. 2015) for a discussion
on the Modelica implementation of GENROU and GEN-
SAL included in OpenIPSL. The equations that are used
to implement the GENTPJ model using Modelica and the
OpenIPSL library are listed in the Appendix. The mean-
ing of the symbols are specified to (Schulz 1975; Kundur
1994), and they are discussed in (Pourbeik et al. 2016)
and in the Modelica implementation within the annota-
tions and comments in the Appendix.

Finally, it should be noted that when Kis = 0, GENTPJ
can be used to represent the WECC Type F generator
model, GENTPF.

2.2 Excitation System (ESURRY)
The excitation system is an essential component of a
power generator, providing the necessary voltage/current
to excite the generator’s field winding. The ESURRY
model can be seen as a modified version of the IEEE Type

Figure 1. Block diagram of ESURRY from PSS®E (PTI 2017),
corrected by adding the purple arrow circled in red.

AC1A (“IEEE Recommended Practice for Excitation Sys-
tem Models for Power System Stability Studies” 2016) ex-
citation system that was developed in PSS®E, and it is
used to model the specialized excitation system in syn-
chronous machines at nuclear power plants.

The ESURRY model, as shown in Figure 1, consists
of a non-controlled rectifier and an alternator. The model
has three inputs: the generator terminal voltage, ECOMP,
generator field current, IFD, and an input for power sys-
tem stabilizer (PSS) signal, VS. The model’s output is the
exciter field voltage, EFD , which is connected to the syn-
chronous machine.

The non-controlled rectifier in the ESURRY model is
responsible for rectifying the generator’s output voltage
and producing a DC voltage that is applied to the exciter’s
field winding. The alternator generates a small AC voltage
that controls the rectifier’s firing angle.

The ESURRY model also includes an input signal to
couple a power system stabilizer (PSS), which dampens
the generator’s response to disturbances. The input sig-
nal provided by the PSS modulates the exciter’s output
voltage in response to system frequency or electrical load
changes. This exciter model is implemented in Modelica
using a block diagram, however, the implementation was
challenging as detailed information or documentation to
the different functions within the blocks were not avail-
able. During this study, a connection error was identified
in the PSS®E reference manual that is corrected in this
article with its location marked in Figure 1 in red2, and
the corrected diagram is shown in Figure 2. Note that the
initialization equations are implemented in the text layer
within the initial equation section of the model
and therefore are omitted in the Figure.

2.3 Turbine Governor (WPIDHY)
The primary frequency control of synchronous machines
is a critical function of a power plant. The governor
achieves this by adjusting the mechanical power output

2The error is a missing input signal VE used in the computation of
IN in the lower right corner of the diagram. The correction is shown as
a purple arrow, added to the diagram taken from the manual.



Figure 2. Implementation of ESURRY in Modelica using the
OpenIPSL.

of the turbine in response to changes in electrical load or
disturbances on the system.

The WPIDHY model, as shown in Figure 3, considers
the rotor speed deviation ∆ω , electric power PELEC, and
reference power PREF as input signals. These signals are
used to determine the mechanical power PMECH to be
applied to the generator. The model uses a proportional-
integral-derivative (PID) control scheme. The PID con-
troller compares the generator’s speed with a predefined
reference and adjusts the mechanical power output to
maintain the desired frequency. Similar to ESURRY, the
Modelica implementation was carried out using a block
diagram, as shown in Figure 4. Note that the initialization
equations were implemented in the text layer within the
initial equation section of the model and there-
fore are omitted in Figure 4.

In Figure 3 after the integrator, a graph shows the re-
lationship between gate position (X − axis) and the tur-
bine governor’s corresponding output per unit (Y −axis).
Each data point signifies a unique mapping between the
gate’s position and power output. In the graph, the tur-
bine generates no power starting at the zero gate posi-
tion (MBASE = 0). As the gate opens towards its max-
imum extent (one), the turbine reaches its peak capac-

𝑹𝑬𝑮

𝟏 + 𝒔𝑻𝑹𝑬𝑮

𝑲𝑰

𝒔
Σ Σ

𝒔

𝟏 + 𝒔𝑻𝑩

𝟏

(𝟏 + 𝑻𝑨𝒔)
𝟐

𝑲𝑷

𝒔𝑲𝑫

𝟏

𝒔

𝟏 − 𝒔𝑻𝒘

𝟏 + 𝒔
𝑻𝑾
𝟐

𝑫 Σ

Σ
𝑷𝑬𝑳𝑬𝑪 𝑷𝑹𝑬𝑭

𝑺𝑷𝑬𝑬𝑫

𝚫𝝎

𝑷𝑴𝑬𝑪𝑯

+
−

−

+

+

+
+

𝑽𝑬𝑳𝑴𝑿 𝑮𝑨𝑻𝑴𝑿

𝑮𝑨𝑻𝑴𝑵

𝑮𝑷

𝑽𝑬𝑳𝑴𝑵

𝑷𝑴𝑨𝑿

𝑷𝑴𝑰𝑵

−+

𝑷
𝒆
𝒓
𝑼
𝒏
𝒊𝒕
𝑶
𝒖
𝒕𝒑
𝒖
𝒕

(𝑴
𝑩
𝑨
𝑺
𝑬
)

𝟎 𝟏. 𝟎𝑮𝟎, 𝟎

(𝑮𝟏, 𝑷𝟏)
(𝑮𝟐, 𝑷𝟐)

(𝟏, 𝑷𝟑)

Figure 3. Block diagram of WPIDHY from PSS®E (PTI 2017).

Figure 4. Implementation of WPIDHY in Modelica using the
OpenIPSL

ity and produces the maximum possible per unit output
(MBASE = P3). Between these two points lies a range of
gate positions and their accompanying power outputs.

The curve shows an exponential rise in power output
between the zero gate position and G1 gate position. At
Gate Position G1, the power output rises sharply before
leveling off around Gate Position G2. Beyond Gate Posi-
tion G2, minor variations in gate position yield only min-
imal gains in power output. Finally, the curve approaches
the maximum power output (MBASE = P3) as the gate ap-
proaches its whole opening (one).

This graph serves multiple analysis purposes:
• It enables analysis of the minimum gate position

needed to generate electricity G1.
• It identifies the optimal gate position for maximum

power output G2.
• It suggests appropriate gate settings based on desired

power output levels between G1 and G2.
Overall, understanding this graph is necessary for the

effective modeling of hydro turbines with non-linear gate-
to-power relationships, as in the case of WPIDHY.

3 Model Validation
3.1 Model Validation Procedure
In this paper, we followed the model validation approach
according to (Laera et al. 2022), which is summarized as
follows:
• Obtain the steady state computation results of a power

flow solution in PSS®E.
• Export the results and provide them as initial guess

values to solve the initialization problem of the cor-
responding SMIB in the Modelica-compliant software
tool.

• Define the scenario for the dynamic simulation in both
tools and run a dynamic simulation of the SMIB or
other test system in both software.



• Choose the quantities to compare and export them in
the appropriate format to be used in another tool, for
example, CSV Compare (https://github.com/
modelica-tools/csv-compare) or funnel
(https://github.com/lbl-srg/funnel).

• Use a tool (e.g. CSV Compare or funnel) to quan-
tify the discrepancies between the simulation software
tools after defining an acceptable tolerance level.

• The validation is complete if the errors between the
quantities to compare are within the tolerance band.

• If the errors are more significant than the defined tol-
erance, then more model debugging is required.

• Compare the implemented model’s sub-component in-
puts, outputs, and states with the analogous signals
from the SMIB in PSS®E.

• Continue the iterative process until the signal differ-
ence is lower than the tolerance.

In the sequel, the model validation procedure described
above is applied to perform a software-to-software val-
idation of the models implemented in Modelica against
PSS®E using two types of test systems.

3.2 Test in SMIB Models
The Single-Machine Infinite-Bus (SMIB) model is a sim-
plified representation of a power network typically used
to analyze the interconnection of generation facilities to
the rest of the grid. The SMIB model includes one gen-
erator, one infinite bus, several transmission lines and/or
transformers. Figures 5, 6 and 7 show the implementation
of the test system, one for each of the components under
test, all of which are located on the left side of the Figures,
close to bus GEN1.

In Figures 5, 6 and 7, the infinite bus is modeled with
a GENCLS machine with constant voltage and high in-
ertia. It is connected to bus GEN2 to represent the in-
terconnection to a stiff network. In contrast, the genera-
tor connected at bus GEN1 is composed of synchronous
machine: GENTPJ in Figure 5, GENROU in Figure and
GENSAL in Figure 7. When validating ESURRY, in Fig-
ure 6, this fast static excitation system model is added to
the GENROU model. Meanwhile, to validate WPIDHY,
this turbine and governor model is added to a GENSAL
model.

To verify the simulation, the power network is per-
turbed during the simulation. To this end a three-phase-
to-ground fault is applied on bus FAULT to the models in
Figures 5, 6 and 7.

3.3 Test using a Real Power Plant Model
To further validate the developed models (GENTPJ, ES-
URRY, and WPIDHY), we perform the validation test of a
power plant composed by two generators, connected to a
similar network as used before, as shown in Figure 8. This
simple model is representative of a specific generation sta-
tion in the Eastern Interconnection of the US. According
to Figure, this test system has two generation units, each

Figure 5. Implementation of the SMIB system to test GENTPJ
in Modelica using the OpenIPSL.

Figure 6. Implementation of the SMIB system to test ESURRY
in Modelica using the OpenIPSL.

consisting of a machine, an excitation system, a turbine
governor, and a PSS. In Figure 8, the generators are con-
nected to two buses, and then through a transformer, they
are connected to the SMIB network we discussed earlier.

4 Results
To perform software-to-software validation of the newly
implemented components in Modelica, we performed
simulations in a simple SMIB network and multi-machine
test system in both Dymola and PSS®E. In all simulation
scenarios, a three-phase bus fault is applied to the FAULT
bus at t = 2s and cleared at t = 2.15s.

In the case of the unit test models in Figures 5, 6 and 7,
simulation results are shown in Figures 9, 10, and 11, re-
spectively. These results show the successful validation
of individual components that are implemented for this
work, i.e., GENTPJ, ESURRY and WPIDHY. These fig-
ures show that the Modelica implementation can produce
the same results as PSS®E. Here we can see the genera-
tor terminal voltage, exciter field voltage, and mechanical
power of the turbine governor for the models GENTPJ,
ESURRY, and WPIDHY perfectly match the PSS®E for
both steady state and dynamic response.

In the case of the real power plant model, Figures 12,
13, and 14 depict the Dymola vs. PSS®E validation re-
sults through the steady state and dynamic response of
generator terminal voltage, active, reactive power, speed
deviation, and exciter field voltage for the system in Fig-
ure. 8. Similar to the SMIB test system, the response

https://github.com/modelica-tools/csv-compare
https://github.com/modelica-tools/csv-compare
https://github.com/lbl-srg/funnel


Figure 7. Implementation of the SMIB system to test WPIDHY
in Modelica using the OpenIPSL.

Within G1 and G2

ESURRY

WPIDHY

Figure 8. Implementation of the real world power plant model
in Modelica using the OpenIPSL.

match that of PSS®E response; however, a small mis-
match starts during the fault period. From these figures,
we can see the mismatch starts disappearing at t = 4.5s,
and after that, the dynamic response is the same in both
Dymola and PSS®E. This difference is attributed to the
differences on how the PSS®E handles the equations dur-
ing the fault event, which are unknown to the authors.

5 Conclusion and Future Work
The detailed implementation of new power system com-
ponent models used by North American utilities using
the Modelica language, the OpenIPSL, and Dymola has
been documented in this article. This paper summarizes
the Modelica implementation of three power system com-
ponents: a round rotor synchronous machine, an excita-
tion system, and a turbine & governor system. More-
over, the implemented components were tested through
using both the Dymola software and the PSS®E software
for three simple test unit power system models (i.e., the
SMIB) and multi-machine test system model representa-
tive of a power plant in the Eastern Interconnection of the

US. Finally, the simulation results obtained using Dymola
were compared against PSS®E. According to the results
discussed in this paper, the Modelica implementation of
power systems components performs similar to those of
PSS®E. These models need to be tested in various test
model setups to solve any possible issues that have not
yet appeared during this work. Future work includes per-
forming further simulation experiments to detect any re-
maining issues, performing validation and finally integrat-
ing the newly developed models into a future release of
OpenIPSL.

Acknowledgements
This material is based upon work supported in part by Do-
minion Energy, in part by the National Science Foundation
Award No. 2231677, and in part by the U.S. Department
of Energy’s Office of Energy Efficiency and Renewable
Energy (EERE) under the Advanced Manufacturing Of-
fice, Award Number DE-EE0009139.

References
Bartolini, A., F. Casella, and A. Guironnet (2019-09). “Towards

Pan-European Power Grid Modelling in Modelica: Design
Principles and a Prototype for a Reference Power System Li-
brary”. In: Proceedings of the 13th International Modelica
Conference. Linköping Electronic Conference Proceedings
157:64. Regensburg, Germany: Modelica Association and
Linköping University Electronic Press, pp. 628–636. ISBN:
978-91-7929-027-6. DOI: 10.3384/ecp19157627.

Baudette, Maxime et al. (2018). “OpenIPSL: Open-instance
power system libraryupdate 1.5 to iTesla power systems li-
brary (iPSL): A modelica library for phasor time-domain sim-
ulations”. In: SoftwareX 7, pp. 34–36.

Birchfield, Adam B et al. (2017). Impact of Synchronous Gen-
erator Model GENTPJ on System Dynamics. URL: https : / /
adambirchfield.com/cv/gm2017_paper.pdf.

Brown, Tom, Jonas Hörsch, and David Schlachtberger (2017).
“PyPSA: Python for power system analysis”. In: arXiv
preprint arXiv:1707.09913.

Castro, Marcelo de et al. (2023). “Version [OpenIPSL 2.0.0]
- [iTesla Power Systems Library (iPSL): A Modelica li-
brary for phasor time-domain simulations]”. In: SoftwareX
21. DOI: https : / / doi . org / 10 . 1016 / j . softx . 2022 . 101277.
URL: https : / / www. sciencedirect . com / science / article / pii /
S2352711022001959.

Cui, Philip (2022). GENTPJ Model Saturation Function.
WECC MVS Meeting. URL: https : / / nerc . com / comm /
pc / nercmodelingnotifications / use % 20of % 20gentpj %
20generator%20model.pdf.

Franke, Rüdiger and Hansjürg Wiesmann (2014). “Flexible
modeling of electrical power systems–the Modelica Power-
Systems library”. In: Proceedings of the 10th International
Modelica Conference. Linköping Electronic Conference Pro-
ceedings 96:54. Lund, Sweden: Linköping University Elec-
tronic Press, pp. 515–522. ISBN: 978-91-7519-380-9. DOI:
10.3384/ecp14096515.

Guironnet, Adrien et al. (2018-10). “Towards an Open-Source
Solution using Modelica for Time-Domain Simulation of
Power Systems”. In: 2018 IEEE PES Innovative Smart Grid
Technologies Conference Europe (ISGT-Europe). DOI: 10 .

https://doi.org/10.3384/ecp19157627
https://adambirchfield.com/cv/gm2017_paper.pdf
https://adambirchfield.com/cv/gm2017_paper.pdf
https://doi.org/https://doi.org/10.1016/j.softx.2022.101277
https://www.sciencedirect.com/science/article/pii/S2352711022001959
https://www.sciencedirect.com/science/article/pii/S2352711022001959
https://nerc.com/comm/pc/nercmodelingnotifications/use%20of%20gentpj%20generator%20model.pdf
https://nerc.com/comm/pc/nercmodelingnotifications/use%20of%20gentpj%20generator%20model.pdf
https://nerc.com/comm/pc/nercmodelingnotifications/use%20of%20gentpj%20generator%20model.pdf
https://doi.org/10.3384/ecp14096515
https://doi.org/10.1109/isgteurope.2018.8571872


0 1 2 3 4 5 6 7 8 9 10

Time (s)

0.7

0.75

0.8

0.85

0.9

0.95

1

V
o

lt
a
g

e
 (

p
u

)

(a) Terminal voltage at bus GEN1.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

2

S
p

e
e
d

 D
e
v
ia

ti
o

n
 (

p
u

)

10-3

(b) Speed deviation at bus GEN1.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

P
o

w
e
r 

(p
u

)

(c) Active power at bus GEN1.

Figure 9. Generator terminal voltage, speed deviation, and active power of system in Figure 5.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0.85

0.9

0.95

1

1.05

V
o

lt
a
g

e
 (

p
u

)

(a) Terminal voltage at bus GEN1.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

0.5

1

1.5

2

2.5

V
o

lt
a
g

e
 (

p
u

)

(b) Exciter field voltage at bus GEN1.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

P
o

w
e
r 

(p
u

)
(c) Active power at bus GEN1.

Figure 10. Generator terminal voltage, exciter field voltage, and active power of system in Figure 6.

1109 / isgteurope .2018 .8571872. URL: https : / / doi .org /10 .
1109%2Fisgteurope.2018.8571872.

“IEEE Recommended Practice for Excitation System Models
for Power System Stability Studies” (2016). In: IEEE Std
421.5-2016 (Revision of IEEE Std 421.5-2005), pp. 1–207.
DOI: 10.1109/IEEESTD.2016.7553421.

Kundur, Prabha (1994). Power System Stability and Control.
McGraw-Hill.

Laera, Giuseppe et al. (2022). “Guidelines and Use Cases
for Power Systems Dynamic Modeling and Model Verifica-
tion using Modelica and OpenIPSL”. In: Proceedings of the
American Modelica Conference 2022. Dallas, Texas, USA,
pp. 146–157. DOI: 10.3384/ECP21186146.

Montenegro, Davis, Roger C Dugan, and Matthew J Reno
(2017). “Open source tools for high performance quasi-static-
time-series simulation using parallel processing”. In: 2017
IEEE 44th Photovoltaic Specialist Conference (PVSC). IEEE,
pp. 3055–3060.

North American Electric Reliability Corporation (2018). Mod-
eling Notification. Use of GENTPJ Generator Model. URL:
https://nerc.com/comm/pc/nercmodelingnotifications/use%
20of%20gentpj%20generator%20model.pdf.

Olive, David W. (1968). “Digital Simulation of Synchronous
Machine Transients”. In: IEEE Transactions on Power Appa-
ratus and Systems PAS-87.8, pp. 1669–1675. DOI: 10.1109/
TPAS.1968.292127.

Otter, Martin et al. (2022). “Towards Modelica Models with
Credibility Information”. In: Electronics 11.17. ISSN: 2079-
9292. DOI: 10.3390/electronics11172728. URL: https://www.
mdpi.com/2079-9292/11/17/2728.

Parzen, Maximilian et al. (2023). “PyPSA-Earth. A new global
open energy system optimization model demonstrated in
Africa”. In: Applied Energy 341, p. 121096.

Pourbeik, Pouyan et al. (2016-10). “Modeling of synchronous
generators in power system studies”. In: CIGRE Science &
Engineering 6, pp. 21–32.

PTI, Siemens (2017). PSS/E 34.2.0 Model Library. Siemens
Power Technologies International. Schenectady, NY, USA.

Schulz, Richard P (1975). “Synchronous machine modeling”.
In: IEEE Symposium on Adequacy and Philosophy of Model-
ing: Dynamic System Performance, pp. 24–28.

Undrill, John (2012). The Gentpj Model. Western Electricity Co-
ordinating Council. URL: https://www.wecc.org/Reliability/
gentpj-typej-model-specification.pdf.

Undrill, John M. (1969). “Structure in the Computation of
Power-System Nonlinear Dynamical Response”. In: IEEE
Transactions on Power Apparatus and Systems PAS-88.1,
pp. 1–6. DOI: 10.1109/TPAS.1969.292330.

Vanfretti, Luigi et al. (2013). “Unambiguous power system dy-
namic modeling and simulation using Modelica tools”. In:
2013 IEEE Power & Energy Society General Meeting. IEEE,
pp. 1–5. DOI: 10.1109/PESMG.2013.6672476.

Wetter, Michael et al. (2014). “Modelica Buildings library”. In:
Journal of Building Performance Simulation 7.4, pp. 253–
270. DOI: 10 . 1080 / 19401493 . 2013 . 765506. URL: https :
//doi.org/10.1080/19401493.2013.765506.

Winkler, Dietmar (2017). “Electrical Power System Modelling
in Modelica - Comparing Open-source Library Options”. In:
Proceedings of the 58th Conference on Simulation and Mod-
elling (SIMS 58), pp. 263–270.

https://doi.org/10.1109/isgteurope.2018.8571872
https://doi.org/10.1109%2Fisgteurope.2018.8571872
https://doi.org/10.1109%2Fisgteurope.2018.8571872
https://doi.org/10.1109/IEEESTD.2016.7553421
https://doi.org/10.3384/ECP21186146
https://nerc.com/comm/pc/nercmodelingnotifications/use%20of%20gentpj%20generator%20model.pdf
https://nerc.com/comm/pc/nercmodelingnotifications/use%20of%20gentpj%20generator%20model.pdf
https://doi.org/10.1109/TPAS.1968.292127
https://doi.org/10.1109/TPAS.1968.292127
https://doi.org/10.3390/electronics11172728
https://www.mdpi.com/2079-9292/11/17/2728
https://www.mdpi.com/2079-9292/11/17/2728
https://www.wecc.org/Reliability/gentpj-typej-model-specification.pdf
https://www.wecc.org/Reliability/gentpj-typej-model-specification.pdf
https://doi.org/10.1109/TPAS.1969.292330
https://doi.org/10.1109/PESMG.2013.6672476
https://doi.org/10.1080/19401493.2013.765506
https://doi.org/10.1080/19401493.2013.765506
https://doi.org/10.1080/19401493.2013.765506


0 1 2 3 4 5 6 7 8 9 10

Time (s)

0.75

0.8

0.85

0.9

0.95

1

1.05

V
o

lt
a
g

e
 (

p
u

)

(a) Terminal voltage at bus GEN1.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-1.5

-1

-0.5

0

0.5

1

S
p

e
e
d

 D
e
v
ia

ti
o

n
 (

p
u

)

10-3

(b) Speed deviation at bus GEN1.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0.107

0.108

0.109

0.11

0.111

P
o

w
e

r 
(p

u
)

(c) Governor’s mech. power at bus GEN1.

Figure 11. Generator terminal voltage, speed deviation, and mechanical power of system in Figure 7.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

V
o

lt
a
g

e
 (

p
u

)

(a) Terminal voltage at Bus01.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

V
o

lt
a
g

e
 (

p
u

)

(b) Terminal voltage at Bus02.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-4

-3

-2

-1

0

1

2

3

S
p

e
e

d
 D

e
v

ia
ti

o
n

 (
p

u
)

10-3

(c) Speed deviation at Bus01.

Figure 12. Terminal voltage and speed deviation system in Figure 8.

Wüllhorst, Fabian, Laura Maier, et al. (2022). “BESMod-A
Modelica Library providing Building Energy System Mod-
ules”. In: Modelica Conferences, pp. 9–18.

Wüllhorst, Fabian, Thomas Storek, et al. (2022). “AixCal-
iBuHA: Automated calibration of building and HVAC sys-
tems”. In: Journal of Open Source Software 7.72, p. 3861.

Zhang, Mengjia et al. (2015-10). “Modelica Implementation and
Software-to-Software Validation of Power System Compo-
nent Models Commonly used by Nordic TSOs for Dynamic
Simulations”. In: Proceedings of the 56th Conference on Sim-
ulation and Modelling (SIMS 56). Linköping Electronic Con-
ference Proceedings 119 (2015). Linköping University, Swe-
den: Linköping University Electronic Press, pp. 105–112.
ISBN: 978-91-7685-900-1. DOI: 10.3384/ecp15119105.

Appendix

GENTPJ Mathematical Model

The derivation of the dynamic equations of GENTPJ are
described in detail in (Pourbeik et al. 2016), they are sum-
marized as follows.

The differential equations are,

dE ′
q

dt
=
[
E f d − (1+Sd)Eq1

] 1
T ′

do
,

dE ′
d

dt
=−(1+Sq)

Ed1

T ′
qo
,

dE ′′
q

dt
=−(1+Sd)

(
X ′

d −X ′′
d

Xd −X ′′
d

)
Eq2

T ′′
do
,

dE ′′
d

dt
=−(1+Sq)

(
X ′

q −X ′′
q

Xq −X ′′
q

)
Ed2

T ′′
qo
.

The algebraic equations for the terminal voltage in dq-
axis are given by

Vq = Eq1 +Eq2 − Iqra − Id

(
Xd −Xl

1+ sd
+Xl

)
,

Vd = Ed1 +Ed2 − Idra + Iq

(
Xq −Xl

1+Sq
+Xl

)
.

Meanwhile the auxialiry equations for the dq-axis voltage
behind the transient and sub-transient impedances are de-

https://doi.org/10.3384/ecp15119105


0 1 2 3 4 5 6 7 8 9 10

Time (s)

-4

-3

-2

-1

0

1

2

3

4

5

S
p

e
e

d
 D

e
v

ia
ti

o
n

 (
p

u
)

10-3

(a) Speed deviation at Bus02.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

0.1

0.2

0.3

0.4

P
o

w
e
r 

(p
u

)
(b) Active power at Bus01.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

0.1

0.2

0.3

0.4

0.5

P
o

w
e
r 

(p
u

)

(c) Active power at Bus02.

Figure 13. The system’s speed deviation and active power in Figure 8.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

P
o

w
e
r 

(p
u

)

(a) Reactive power at Bus01.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0.5

0.7

0.9

1.1

1.3

1.5

P
o

w
e
r 

(p
u

)

(b) Reactive power at Bus02.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

V
o

lt
a
g

e
 (

p
u

)

(c) Field voltage at Bus02.

Figure 14. Reactive power and field voltage of system in Figure 8.

fine, for the q-axis, as

Eq1 = E ′′
q −Eq2 + Id

(
Xd −X ′′

d
1+Sd

)
,

Eq2 =

[
E ′′

q −E ′
q + Id

(
X ′

d −X ′′
d

1+Sd

)](
Xd −X ′′

d
X ′

d −X ′′
d

)
,

and for the d-axis:

Ed1 = E ′′
d −Ed2 − Iq

(
Xq −X ′′

q

1+Sq

)
,

Ed2 =

[
E ′′

d −E ′
d − Iq

(
X ′

q −X ′′
q

1+Sq

)](
Xq −X ′′

q

X ′
q −X ′′

q

)
.

Finally, the terminal voltage magnitude with leakage and
the saturation is defined as:

El =

√
(Vq + Iqra + IdXl)

2 +(Vd + Idra − IqXl)
2

Sd = fS (El) and Sq =
Xq

Xd
fs (El) .

where fs(El) saturation function introduced by quadratic
open-circuit.

GENTPJ Modelica Implementation
Listing 1 presents the Modelica implementation
of GENTPJ. Observe that in addition to depen-
dencies to the Modelica Standard Library, there

are important dependencies to the OpenIPSL. It
is worth to note that the swing equations for the
model are inherited from the base machine class
OpenIPSL.Machines.PSSE.baseMachine, and
therefore are not displayed within the listing below.

Listing 1. GENTPJ Partial Modelica Implementation

model GENTPJ "WECC Type J GENERATOR: ROUND
ROTOR WITH SATURATION ON BOTH AXES."

extends Icons.VerifiedModel;
// Import o f dependenc i e s
import Complex;
import Modelica.ComplexMath.arg;
import Modelica.ComplexMath.real;
import Modelica.ComplexMath.imag;
import Modelica.ComplexMath.abs;
import Modelica.ComplexMath.conj;
import Modelica.ComplexMath.fromPolar;
import Modelica.ComplexMath.j;
import OpenIPSL.NonElectrical.Functions.

SE;

extends BaseClasses.baseMachine(
XADIFD(start=efd0),
delta(start=delta0, fixed=true),
id(start=id0),
iq(start=iq0),
Te(start=pm0),
ud(start=ud0),
uq(start=uq0));



//Machine parameters
parameter Types.PerUnit Xpq "q-axis

transient reactance ";
parameter Types.Time Tpq0 "q-axis

transient open-circuit time constant"
;

parameter Types.PerUnit Kis "Current
multiplier for saturation calculation
";

Types.PerUnit Epd(start=Epd0) "d-axis
voltage behind transient reactance ";

Types.PerUnit Epq(start=Epq0) "q-axis
voltage behind transient reactance ";

// Machine v a r i a b l e s t a r t v a l u e s
Types.PerUnit Eq1(start=Eq10);
Types.PerUnit Eq2(start=Eq20);
Types.PerUnit Ed1(start=Ed10);
Types.PerUnit Ed2(start=Ed20);
Types.PerUnit Xppdsat(start=Xppdsat0);
Types.PerUnit Xppqsat(start=Xppqsat0);
Types.PerUnit dsat(start=dsat0);
Types.PerUnit qsat(start=qsat0);

// State v a r i a b l e s
Types.PerUnit PSId(start=PSId0) "d-axis

flux linkage ";
Types.PerUnit PSIq(start=PSIq0) "q-axis

flux linkage ";
Types.PerUnit PSIppd(start=PSIppd0) "d-

axis subtransient flux linkage ";
Types.PerUnit PSIppq(start=PSIppq0) "q-

axis subtransient flux linkage ";
Types.PerUnit PSIpp "Air-gap flux ";
Types.PerUnit XadIfd(start=efd0) "d-axis

machine field current ";

protected
parameter Complex Zs=R_a + j*Xppqsat0 "

Equivalent impedance";
parameter Complex VT=v_0*cos(angle_0) + j

*v_0*sin(angle_0) "Complex terminal
voltage";

parameter Complex S=p0 + j*q0 "Complex
power on machine base";

parameter Complex It=real(S/VT) - j*imag(
S/VT) "Complex current, machine base"
;

parameter Complex Is=real(It + VT/Zs) + j

*imag(It + VT/Zs) "Equivalent
internal current source";

parameter Complex PSIpp0=real(Zs*Is) + j

*(imag(Zs*Is) - id0*(Xppqsat0-
Xppdsat0)) "Sub-transient flux
linkage in stator reference frame";

parameter Types.Angle ang_PSIpp0=arg(
PSIpp0) "flux angle";

parameter Types.Angle ang_It=arg(It) "
current angle";

parameter Types.Angle ang_PSIpp0andIt=
ang_PSIpp0 - ang_It "angle difference
";

parameter Types.PerUnit abs_PSIpp0=abs(
PSIpp0) "magnitude of sub-transient
flux linkage";

parameter Complex Z = R_a+j*Xl;
parameter Complex PSIag= real(VT+Z*It) +

j*(imag(VT+Z*It));
parameter Real dsat0=1+SE(

(abs(PSIag)+Kis*sqrt(id0*id0+iq0*iq0)
),

S10,
S12,
1,
1.2) "To include saturation during

initialization";
parameter Real qsat0=1+(Xq/Xd)*SE(

(abs(PSIag)+Kis*sqrt(id0*id0+iq0*iq0)
),

S10,
S12,
1,
1.2) "To include saturation during

initialization";
parameter Real a=(abs(PSIag))*dsat0;
parameter Real b=(It.re^2 + It.im^2)

^0.5*(Xppdsat0-Xq);
// I n i t i a l i z i o n r o t o r ang l e p o s i t i o n
parameter Types.Angle delta0 = ang_PSIpp0

+ atan(b*cos(ang_PSIpp0andIt)/(b*sin
(ang_PSIpp0andIt) - a)) "initial
rotor angle in radians";

parameter Complex DQ_dq=cos(delta0) - j*
sin(delta0) "Parks transformation,
from stator to rotor reference frame"
;

parameter Complex PSIpp0_dq=PSIpp0*DQ_dq
"Flux linkage in rotor reference
frame";

parameter Complex I_dq=conj(It*DQ_dq); //
"The t e r m i n a l c u r r e n t i n r o t o r
r e f e r e n c e frame "

parameter Types.PerUnit PSIppq0=imag(
PSIpp0_dq) "q-axis component of the
sub-transient flux linkage";

parameter Types.PerUnit PSIppd0=real(
PSIpp0_dq) "d-axis component of the
sub-transient flux linkage";

// I n i t i a l i z a t i o n o f c u r r e n t and v o l t a g e
components i n r o t o r r e f e r e n c e frame (
dq−axes ) .

parameter Types.PerUnit iq0=real(I_dq) "q
-axis component of initial current";

parameter Types.PerUnit id0=imag(I_dq) "d
-axis component of initial current";

parameter Types.PerUnit ud0=(-PSIq0) -
R_a*id0 "d-axis component of initial
voltage";

parameter Types.PerUnit uq0=PSId0 - R_a*
iq0 "q-axis component of initial
voltage";

// I n i t i a l i z a t i o n c u r r e n t and v o l t a g e
components i n synchronous r e f e r e n c e
frame .

parameter Types.PerUnit vr0=v_0*cos(
angle_0) "Real component of initial
terminal voltage";

parameter Types.PerUnit vi0=v_0*sin(
angle_0) "Imaginary component of
initial terminal voltage";



parameter Types.PerUnit ir0=-CoB*(p0*vr0
+ q0*vi0)/(vr0^2 + vi0^2) "Real
component of initial armature current
(system base)";

parameter Types.PerUnit ii0=-CoB*(p0*vi0
- q0*vr0)/(vr0^2 + vi0^2) "Imaginary
component of initial armature current
(system base)";

// I n i t i a l i z a t i o n mechan ica l power and
f i e l d v o l t a g e .

parameter Types.PerUnit pm0=p0 + R_a*iq0*
iq0 + R_a*id0*id0 "Initial mechanical
power (machine base)";

parameter Types.PerUnit efd0= dsat0*Eq10
"Initial field voltage magnitude";

parameter Types.PerUnit Epq0= PSIppd0 +
id0*(Xpd-Xppd)/dsat0;

parameter Types.PerUnit Epd0= -PSIppq0 -
iq0*(Xpq-Xppq)/qsat0;

parameter Types.PerUnit Eq10= ((-1)*
PSIppd0*(Xd-Xpd) + Epq0*(Xd-Xppd))/(
Xpd-Xppd);

parameter Types.PerUnit Ed10= (PSIppq0*(
Xq-Xpq)+Epd0*(Xq-Xppq))/(Xpq-Xppq);

parameter Types.PerUnit Eq20= (PSIppd0-
Epq0+id0*((Xpd-Xppd)/dsat0))*((Xd-
Xppd)/(Xpd-Xppd));

parameter Types.PerUnit Ed20= (-PSIppq0-
Epd0-iq0*((Xpq-Xppq)/qsat0))*((Xq-
Xppq)/(Xpq-Xppq));

// I n i t i a l i z e rema in ing v a r i a b l e s :
parameter Types.PerUnit Xppdsat0=((Xppd-

Xl)/dsat0)+Xl;
parameter Types.PerUnit Xppqsat0=((Xppq-

Xl)/qsat0)+Xl;
parameter Types.PerUnit PSId0=PSIppd0 -

Xppdsat0*id0;
parameter Types.PerUnit PSIq0=PSIppq0 -

Xppqsat0*iq0;
// Constants
parameter Real CoB=M_b/S_b "Constant to

change from system base to machine
base";

initial equation
der(Epd) = 0;
der(Epq) = 0;
der(PSIppd) = 0;
der(PSIppq) = 0;

equation
// I n t e r f a c i n g outputs with the i n t e r n a l

v a r i a b l e s
XADIFD = XadIfd;
ISORCE = XadIfd;
EFD0 = efd0;
PMECH0 = pm0;
// D i f f e r e n t i a l equa t i on s
der(Epq) = (1/Tpd0)*(EFD - XadIfd);
der(Epd) = (1/Tpq0)*(-1)*qsat*Ed1;
der(PSIppd) = -(dsat)*((Xpd-Xppd)/(Xd-

Xppd))*(Eq2/Tppd0);
der(PSIppq) = (qsat)*((Xpq-Xppq)/(Xq-Xppq

))*(Ed2/Tppq0);
Te = PSId*iq - PSIq*id;
// Unsaturated a i r −gap f l u x

PSIpp = sqrt((uq+iq*R_a+id*Xl)*(uq+iq*R_a
+id*Xl)+(ud+id*R_a-iq*Xl)*(ud+id*R_a-
iq*Xl));

// Sa tu r a t i on on d−a x i s
dsat=1+SE(

((PSIpp+Kis*sqrt(id*id+iq*iq))),
S10,
S12,
1,
1.2);

// Sa tu r a t i on on q−a x i s
qsat=1+(Xq/Xd)*SE(

((PSIpp+Kis*sqrt(id*id+iq*iq))),
S10,
S12,
1,
1.2);

// A u x i l i a r y Equat ions
Eq1= ((-1)*PSIppd*(Xd-Xpd) + Epq*(Xd-Xppd

))/(Xpd-Xppd);
Ed1= (PSIppq*(Xq-Xpq)+Epd*(Xq-Xppq))/(Xpq

-Xppq);
Eq2= (PSIppd-Epq+id*((Xpd-Xppd)/dsat))*((

Xd-Xppd)/(Xpd-Xppd));
Ed2=-(Epd+PSIppq)*((Xq-Xppq)/(Xpq-Xppq))-

iq*((Xq-Xppq)/qsat);
// F i e l d Current
XadIfd = dsat*Eq1;
// Flux and sa t u r a t e d induc tance s
Xppdsat=((Xppd-Xl)/dsat)+Xl;
Xppqsat=((Xppq-Xl)/qsat)+Xl;
PSId=PSIppd - Xppdsat*id;
PSIq=PSIppq - Xppqsat*iq;
// Terminal v o l t a g e
ud = (-PSIq) - R_a*id;
uq = PSId - R_a*iq;

end GENTPJ;


	Introduction
	Modelica Implementation
	Synchronous Machine (GENTPJ)
	Excitation System (ESURRY)
	Turbine Governor (WPIDHY)

	Model Validation
	Model Validation Procedure
	Test in SMIB Models
	Test using a Real Power Plant Model

	Results
	Conclusion and Future Work

