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Abstract
Predictive control can substantially improve the energy
performance of buildings during operation, but it requires
a model of the building to be implemented. Gray-box
model identification starts from a physics-based model
(white-box element) and complements it with measure-
ments from the operation of the building (black-box el-
ement). The level of detail of the original model is lim-
ited by the optimization problem that needs to be solved
when estimating its parameters. Consequently, it is com-
mon to heavily simplify building models hindering the in-
telligibility of their parameters and limiting their applica-
tion potential. This paper investigates the accuracy and
scalability of different transcription methods for parame-
ter estimation of building models. The methodology starts
from a Modelica model as an initial guess which is trans-
ferred to CasADi using the Functional Mockup Interface
to solve the parameter estimation problem. The study
demonstrates the high effectiveness of multiple shooting.
Single shooting and direct collocation could be more suit-
able for setups with faster integration times or with in-
creased granularity in the training data, respectively.
Keywords: Gray-Box modeling, CasADi, Shooting Meth-
ods, Direct Collocation, OpenModelica

1 Introduction
Commercial and domestic buildings worldwide account
for 30-45% of the global energy use (Mariano-Hernández
et al. 2021). Therefore, efficient building energy use is a
topic of growing interest. A popular strategy for building
energy management systems (BEMS) is the use of model
predictive control (MPC) (Drgoňa et al. 2020). MPC uses
a building model and an optimizer to minimize a cost
function generally comprised of two competing elements
like occupant thermal discomfort and operational cost.

Gray-box model identification is a powerful tool for ob-
taining building models for predictive control through two
input sources: prior system knowledge and operational
data which are referred to as the white and black elements
of a gray model, respectively (Bohlin 2006). This ap-
proach benefits from the advantages of both physics- and
data-based modeling by calibrating the physical model pa-
rameters with operational data extracted from the actual

building. Moreover, gray-box modeling can automatically
and systematically tune the parameters for a model while
having the reliability offered by physics (Bohlin 2006).

Prior knowledge can be introduced with well-known
equations describing physical phenomena in buildings like
heat transfer and thermal inertia. Other inputs like weather
variables and internal gains are subject to uncertainty and
need to be estimated with forecasting models. It is also
crucial to obtain accurate values for parameters such as
heat conductivities of materials, solar transmittance of the
glazing in the windows, etc. However, obtaining detailed
information on the thermal systems for the building is a
difficult and time-consuming process in practice (Yu et al.
2019). Optimization is required to estimate the parameter
values that minimize a predefined error function, which
usually leads to a non-linear and non-convex problem that
needs to be solved. Traditionally, this problem is solved by
lumping the building parameters into basic models usually
represented by a lower-order RC (resistance-capacitance)
network. Some examples include (Beneventi et al. 2012),
(Drgoňa et al. 2020) and (Saurav and Chandan 2017).
These simplifications can decrease the usability and in-
telligibility of the building model and hamper the ability
of the model to be used for fault detection and diagnostics
mechanisms in the context of predictive maintenance.

Another approach to estimate the model’s parameters is
through black-box optimizers like brute-force or genetic
algorithms. However, these methods can have scaling is-
sues when increasing the number of parameters to be esti-
mated. Since building models can have several parameters
to calibrate, traditional gradient-based optimization meth-
ods are preferred for the envisaged application. Moreover,
unlike off-line parameter estimations, efficient non-linear
problem solvers are key for the application of on-line pa-
rameter estimations such as the ones involved in adaptive
control. For these reasons, the use of efficient, gradient-
based, parameter estimation methods is crucial in order to
develop more advanced building models.

This work investigates the performance of different
transcription methods for parameter estimation of building
models by coupling two open-source toolboxes: Open-
Modelica (Fritzson et al. 2005) and CasADi (Andersson
et al. 2019). The former is a tool for modeling physi-
cal systems using the Modelica language and the latter is



a numerical optimization and algorithmic differentiation
framework designed to solve highly complex optimization
problems. Similar workflows were adopted by (Shitahun
et al. 2013) and by (Decker 2021), but they were using
deprecated versions of the software and their focus was
not on parameter estimation of building models. Criteria
such as accuracy, scalability, convergence time, and com-
putational cost are investigated in this work. These criteria
are then used to compare all investigated methods as well
as to determine their optimal application range.

The outline of the paper is as follows: Section 2 gives
theoretical background related to this work; Section 3
elaborates on the methodology used in this work to im-
plement and compare different transcription methods for
parameter estimation; Section 4 presents the results ob-
tained from the implementation of each parameter estima-
tion method. Finally, Section 5 draws the main conclu-
sions and Section 6 suggests lines of further research.

2 Theoretical Background
2.1 Parameter Estimation Problem
The process of parameter estimation is a crucial step when
configuring a building model. The process of calibrat-
ing the parameters of a physical model can be expressed
mathematically as shown in Eqs. 11 The objective function
to be minimized f (ppp) is expressed as a (non-linear) least
squares problem by means of the Eucledian (ℓ-2) norm
for the error between the outputs from the physical model
yyy(ppp, t) and the historical measurements ŷ̂ŷy(t) within a time
horizon t ∈ [t0, tT ]. Here, the error function is squared to
achieve the sum of the squared differences. This in turn
is divided by two as a convention in order to remove con-
stants during the calculation of its derivative. The opti-
mization is subject to equality and inequality constraints
(hhh(ppp) and ggg(ppp), respectively) which are derived from the
physics and limits of the real system, represented by the
physical model. Here, the objective function as well as
the equality and inequality constraints are dependent on
the model parameter values ppp ∈ Rm, which must be tuned
to minimize the residual between the model and measure-
ments.

min
ppp

f (ppp) =
∫ tT

t0

1
2
(∥yyy(ppp, t)− ŷ̂ŷy(t)∥2)

2 dt (1a)

subject to: hhh(ppp) = 0 (1b)
ggg(ppp)≤ 0, (1c)

Parameter estimation problems for building models are
usually non-convex because of the multiplication of ther-
mal resistances and capacitances that are commonly op-
timization variables. This non-convexity dictates the im-
portance of the initial parameter guesses ppp0 with minimum

1Vectors and matrices are expressed in bold while scalars are ex-
pressed in regular text (yyy vs y).

Figure 1. Non-convex minimization problem dependence on
initial parameter guess.

and maximum values pppmin and pppmax, respectively. For the
case of a convex problem, initial parameter guesses be-
come trivial since, by definition, all local minima in a con-
vex problem are the global minimum (Wright, Nocedal, et
al. 1999). The solution of a non-convex problem is most
likely a local minimum which is accepted in practice due
to the high complexity involved in the calculation and (in
some cases) the non-physicality of a global minimum.
For this reason, accurate initial guesses for the parameter
values are paramount to obtaining a physical local mini-
mum. Figure 1 depicts the results of a bad initial guess for
an estimation problem with a single parameter. The im-
portance of an accurate initial guess becomes clear even
in this case with a single parameter for which all initial
guesses lead to different local minima, none of which are
the global minimum.

2.2 Transcription Methods
Transcription methods are responsible for discretizing the
originally continuous parameter estimation problem into a
discrete non-linear program (NLP) in the form of Eqs. 2.

min
ppp

NT

∑
i=1

1
2
(∥yyyi − ŷ̂ŷyi∥2)

2 (2a)

subject to: hi = 0 (2b)
gi ≤ 0, (2c)

for i= 1, . . . ,NT with NT being the instance at the end of
the time horizon. Once this transcription takes place, NLP
solvers are used to minimize the objective function and
output the optimal parameter values (M. P. Kelly 2015).
The transcription method used to discretize the problem is
critical to the complexity and the outcome of a parameter
estimation problem since it dictates the number of deci-
sion variables and the sparsity of the eventual NLP to be
solved. Multiple algorithms exist for this process, yet they
can all be classified into two main groups: shooting meth-
ods and collocation methods.

2.3 Shooting Methods
Shooting methods take states as decision variables and in-
tegrate over a set of intervals, approximating the function



∫ ∫
. . .

∫f0 f̃1 f̃2 f̃NT−1 f̃NT

Figure 2. Block diagram for a single shooting transcription al-
gorithm.

dynamics along the integration path based on given con-
straints. The term shooting methods refers to their resem-
blance to the operation of a projectile deployment device
such as a cannon. In this example, the decision variables
are only known in the first instance (e.g. firing angle and
power), while the trajectory is subject to the projectile dy-
namics and physical constraints.

The simplest variation of the shooting algorithms is the
single shooting method. Single shooting works by tak-
ing only the very first state as a decision variable which
is used to determine a prediction for the following state.
Subsequently, this prediction is used for the integration
of the following state, starting a chain reaction of predic-
tions until the integration horizon is reached (Schittkowski
2002). Figure 2 shows a block diagram demonstrating the
integration process in a single shooting algorithm with fi
being decision variables and f̃i being predictions. Here,
it can be seen that for every integration step, the previous
prediction is taken as an input, generating the following
prediction until the instance NT is reached.

The main advantages of a single shooting algorithm
stem from its simplicity and the compact representation of
the eventual NLP. They are suitable for simple differential-
algebraic equations (DAE) where extremely good initial
guesses can be provided. Nevertheless, they may pose
convergence problems for complex systems because of the
need to integrate over the entire time horizon for every
iteration of the optimization (Michalik, Hannemann, and
Marquardt 2009).

Multiple shooting algorithms operate in a very similar
way to single shooting algorithms but break down the time
horizon into multiple intervals. Instead of taking a sin-
gle decision variable, multiple shooting methods take a
decision variable for every time step within the integra-
tion horizon, making a single integration over that time
step (M. P. Kelly 2015). As the segments become shorter,
the integration paths tend to become linear. Additionally,
since each step is not dependent on the previous step, each
integration can be computed in parallel, leading to shorter
integration times. Since each prediction step does not per-
fectly match the decision variable for the following seg-
ment, the difference (known as the defect) must be stated
in the constraint equations leading to larger and sparser
programs. The increase in the number of constraints can
increase the total computational time (M. Kelly 2017). A
block diagram for this process is visualized in Figure 3.
The use of single and multiple shooting methods is highly
dependent on the application case and its level of complex-
ity. Figure 4 shows an example of both shooting methods
being applied to a parameter estimation problem.

∫
stop

∫
stop . . .

∫
f0

f̃1

f1

f̃2

fNT −1

f̃NT

Figure 3. Block diagram for a multiple shooting transcription
algorithm.

Figure 4. Example for a single (top) and multiple (bottom)
shooting algorithm applied to the transcription of an error func-
tion.

2.4 Collocation Methods
The basis of collocation methods is the use of spline func-
tions made up of polynomial sequences. The motivation
is the effortless derivation and integration of these spline
functions as well as their capability to be easily expressed
in terms of coefficients (M. Kelly 2017). The integration
path followed for each segment in a direct collocation al-
gorithm is determined by two factors: the desired order for
the polynomial to be fitted and the slope of the function at
the collocation points (Bellomo et al. 2007). Depending
on the desired order for the polynomial fit n, n− 1 col-
location points must be placed within the segment. Once
these collocation points are determined, the algorithm ad-
justs the values for them such that a spline function go-
ing through the initial decision variable matches the slope
of the function at each collocation point. If, like in most
applications for collocation methods, this algorithm is ap-
plied within a multiple shooting framework, this proce-
dure is completed for multiple segments covering the en-
tire integration horizon. Similarly to multiple shooting,
this process can be realized in parallel, yielding a series of
predictions and their corresponding defects which must be
accounted for in the constraint equations of the NLP.

Two approaches are widely used with the goal of re-
ducing the defects between the predictions and decision
variables. These are referred to as mesh refinement pro-



Figure 5. Example for a p-refinement procedure on direct col-
location for polynomial orders ranging from first (top left) to
fourth (bottom right) order.

Figure 6. Example for an h-refinement procedure on direct col-
location using second degree polynomials.

cedures, namely p- and h-refinement. A p-refinement pro-
cedure increases the order of the polynomial for each col-
location segment such that the integration path can better
follow the trajectory dynamics, ultimately resulting in a
better prediction. An h-refinement procedure reduces the
segment length such that the functions become more lin-
ear.

Figure 5 shows an example of a p-refinement procedure
with varying polynomial orders. Here, a focused view on
a single segment (k to k+ 1) is shown for polynomial or-
ders ranging from first to fourth order for a direct collo-
cation method on a function f (p). It is clear that the de-
fect decreases and the dynamics are better represented as
the polynomial order increases. Similar to Figure 5, Fig-
ure 6 shows an h-refinement procedure for varying seg-
ment lengths for a function f (p) using a second-order di-
rect collocation method. A noticeable decrease in the pre-
diction defect can be seen as the segment lengths become
smaller.

3 Methods
The workflow followed in this work is hosted in the fol-
lowing open-source repository under a BSD license:

https://gitlab.kuleuven.be/positive-energy-districts/mocaspy

The necessary steps to generate the original physics-
based model are illustrated with white blocks in Figure 7.
These white blocks of Figure 7 represent the steps han-
dling the model with true system dynamics. The original
model is reconfigured into a so-called wrapped model that
redeclares the parameters as inputs to tune its values dur-
ing the optimization. Multiple open-source Modelica li-
braries exist for building modeling that can be used to con-
figure the original building model such as IDEAS (Joris-
sen et al. 2018) and Buildings (M. Wetter et al. 2014).
OpenModelica is used to compile a Functional Mockup
Unit (FMU) to later transfer the model into CasADi.

The data collection process is illustrated by the black
blocks shown in Figure 7. In practice, the data needed
for calibration would be directly gathered from the actual
building. However, in this work, OpenModelica is also
used to emulate operational data. That is, we use the same
model to generate the data as the model that is later used
for parameter estimation. In this way, the true parameter
values are known, and the accuracy of the parameter esti-
mation process can be measured for a given deviation that
is artificially introduced. This provides a hermetic envi-
ronment for the investigation which would be unachiev-
able in a real setting. Measurements of interest comprise
weather and building variables such as the ambient tem-
perature T̂amb and the total heat input into the thermal zone
Q̂hea,coo. Finally, the recorded operative zone temperature
T̂zon is used as the target variable in Eqs. 1. The training
period tT is set to one week (604800 seconds) with a sam-
pling time ts of 30 seconds, leading to 20160 samples in
total.

Once the model FMU and the operational data are
ready, the parameter estimation problem is formulated
with the CasADi framework. This process is shown by
the gray blocks of Figure 7. CasADi’s DaeBuilder
class was recently extended to import Model Exchange
FMUs of version 2.0 (Andersson 2023 submitted). From
Eqs. 1, the parameter estimation problem is relaxed to
Eqs. 3 where a slack variable S is introduced to use soft
constraints. The objective function minimizes the Eu-
clidean norm of the error between the (virtually) measured
T̂zon and the modelled Tzon thermal zone temperatures.

min
ppp

f (ppp) =
∫ tT

t0

[(∥∥Tzon(ppp, t)− T̂zon(t)
∥∥

2

)2
+S

]
dt (3a)

subject to: ppp ≤ pppmax +S (3b)
ppp ≥ pppmin −S (3c)
SSS ≥ 0 (3d)

https://gitlab.kuleuven.be/positive-energy-districts/mocaspy
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Figure 7. Parameter estimation workflow. The CasADi’s DaeBuilder class is used to load the building model and to transcribe
the continuous-time (CT) parameter estimation problem into a discrete-time (DT) problem that an NLP solver can address.

In Eqs. 3, pppmax and pppmin represent the upper and lower
boundaries of the parameter vector ppp, respectively.

The parameter estimation problem must be discretized
by means of transcription methods. The Rockit framework
(Gillis et al. 2020) is used here since it is built on top of
CasADi and offers readily available formulations of dif-
ferent transcription methods. In this study, single shoot-
ing, multiple shooting, and collocation are investigated.
Multiple variations of these algorithms are implemented
to study the effect of h- and p-refinement. Upon comple-
tion of the problem transcription, the parameter estimation
problem is solved by means of an NLP solver. IPOPT is
chosen here due to its widely recognized reputation and
capabilities for large-scale optimization. It is used in a set-
ting with a limited-memory Hessian approximation. The
results are compared based on three factors: accuracy for
the parameter estimation, number of iterations, and the
computational time required for convergence. These fac-
tors determine the application range for each transcription
method based on the desired level of accuracy and avail-
able computational power.

The model SimpleRoomOneElement from the IDEAS
library is chosen as a good trade-off between the level of
detail and simplicity. This model represents a single ther-
mal zone equipped with multiple, double-paned windows

at different wall orientations (declared as corGDouPan),
and is shown in Figure 8. Additionally, the model is
equipped with a heater operating under a simple on/off
control at a given time of the day (represented by the data
table intGai). The weather data is simulated by the mod-
ule weaDat and inputted into the building thermal zone,
thermalZoneOneElement.

The parameters of the original model are redeclared
as inputs in a so-called wrapped model to enable 1)
their variability as decision variables in the CasADi
DaeBuilder object, and 2) derivative information of
model outputs. Moreover, some elements of the model
had to be bypassed with inputs obtained from a previous
simulation as the DaeBuilder class does not yet support
time events.

Three studies are considered: the estimation of a sin-
gle parameter, three parameters, and five parameters. Ta-
ble 1 shows the parameters estimated during all studies
along their units, true values pppreal , lower pppmin and upper
pppmax limits, and their initial guesses after being artificially
perturbed ppp0. Parameters that are commonly unknown,
desired and/or hard to obtain in practice are selected to
be estimated like Uwin and hcon,win,out which represent the
transmission and convective coefficients associated with
the installed windows, respectively. hcon,wall,out represents



Figure 8. Graphical representation of SimpleRoomOneElement.mo model from IDEAS (Jorissen et al. 2018).

Table 1. Parameter values, boundaries and initial guesses for all
studies conducted.

# Params. ppp Unit pppreal pppmin pppmax ppp0

1 Uwin W/m2K 2.1 1.9 2.4 6.3

3
hcon,win,out W/m2K 20 18 22 60
hcon,wall,out W/m2K 20 18 22 60

5
hrad W/m2K 5 4 6 15
aext - 0.7 0.5 0.9 1

the convective coefficient for the exterior walls. Finally,
hrad is the coefficient of radiative heat transfer for the zone
walls, and aext represents the thermal absorption coeffi-
cient for the exterior walls. From Table 1 it can be seen
that the first study estimates the window transmission co-
efficient, the second study includes the window and exte-
rior wall convective coefficients and the final study incor-
porates hrad and aext . For all instances, the initial guesses
are shown. These are decided to be three times larger than
the actual value for the parameter, except for aext since it
is a percentage and has a maximum value of 1.

The number of steps per discretization interval M is de-
cided through a sensitivity analysis for a simple model in-
tegration with respect to the results of a reference inte-
grated with an arbitrarily high value of M = 3000 steps. A
value of M = 10 is taken as a compromise between inte-
gration error and computational demand. Table 2 contains
a detailed list of all variations conducted to compare the
transcription methods for parameter estimation. Notably,
each variation is implemented for all cases outlined in Ta-
ble 1 with one, three, and five parameters, which results in

Table 2. Conducted investigations for all considered test cases.
First, the refinement scheme is studied in detail for multiple
shooting and collocation schemes (Sections 4.1,4.2,4.3). Then,
all three transcription methods are compared for specific refine-
ment schemes (Section 4.4).

Method
Refinement Scheme Transcription methods
h (N) p (deg) h (N) p (deg)

Single Shooting - - 100 -
200

Multiple Shooting

100

-
100

-200
300

200
400

Direct Collocation

100 2, 3, 4,
100

3
200

5, 6, 7,
300

200
400 8, 9

a total of 60 optimizations being carried out.

4 Results and Discussion
All optimizations were run on an Apple M1 MacBook Air
(2020 version) with 8 GB of RAM and MacOS Ventura
13.0. A comparison between the thermal zone tempera-
tures using the perturbed initial guess values and the esti-
mated parameter values can be seen in Figure 9. All valid
estimations, i.e. those optimization runs that converged,
led to proper fitting and their solutions resulted in original
parameter values within a tolerance of 10%, in many cases
landing on the local minima at the parameter boundaries



Figure 9. Temperature profiles of the model using the parameter
initial guesses (top) and the estimated values (bottom) compared
to the actual model temperature profile (Reference).

(see Table 1). Therefore, all achieved solutions are con-
sidered successful in terms of accuracy and the focus of
this section is on the computational demand of obtaining
these values.

4.1 Multiple Shooting h-refinement
The number of iterations and computing times for all vari-
ations to investigate h-refinement in multiple shooting are
shown in Figure 10. The first aspect to highlight is that the
multiple shooting algorithm succeeds to estimate the pa-
rameters for all cases with one, three, and five parameters.
It is evident that the multiple shooting algorithm demon-
strates remarkable suitability in the scenario of a single
estimated parameter. It is able to estimate the chosen pa-
rameter without encountering any significant challenges
despite the increasing estimation problem granularity. Its
convergence times remain significantly low compared to
the other cases with more parameters. The computational
limits when increasing the problem granularity for the
multiple shooting are reached in the cases involving three
and five estimated parameters. Upon closer examination,
it becomes apparent that the number of iterations and com-
putational time for the three-parameter case with 100 sam-
ples closely resemble those of the single-parameter case.
However, a steep increase is observed starting at the esti-
mation with 200 samples, increasing quasi-exponentially
until the iteration limit for IPOPT of 3000 iterations is
reached for the case using 400 samples. Similar behav-
ior is observed for the five-parameter case, although at a
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Figure 10. h-refinement investigation for a multiple shooting
algorithm.

much earlier point. The computational time necessary for
this scenario is approximately eight times larger than that
of the single- and two-parameter cases when using a sam-
ple size of 100. Moreover, it rapidly reaches the iteration
limit with a sample size of 200.

Considering that all estimations led to an accurate rep-
resentation of the model, it is clear that an h-refinement for
the multiple shooting algorithm is not necessary for the
envisaged application. Increasing the granularity merely
increases the computational resources required for the es-
timation without providing any additional value to the so-
lution. However, the granularity choice should be made
carefully since lower values can result in a loss of detail
which can lead to an infeasible problem statement. In-
feasible problem statements were encountered for sam-
ple sizes of 50, 85 and 90 for the single, three- and five-
parameter cases, respectively.

4.2 Direct Collocation p-refinement
After exploring the h-refinement for multiple shooting, the
impact of increasing the order for direct collocation is in-
vestigated. The sample size is set to 100, which repre-
sents the minimum value for a viable problem. Figure 11
presents the resulting number of iterations and comput-
ing times for all case studies. A slight increase in compu-
tational demand is observed for the three-parameter case
around the collocation order of 9 and a sudden increase
for the collocation order of 6, which can be qualified as an
outlier. However, there is no clear correlation between the
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Figure 11. p-refinement investigation for a direct collocation
algorithm with 100 samples.

computational resources and the order of the collocation.
As discussed in subsection 2.4, a higher collocation order
results in a more accurate fit for the objective function,
particularly for cases with lower granularity. The results
from this study suggest that the collocation order is not af-
fecting the computational strain thanks to a large enough
granularity in the problem statement. Therefore, an in-
crease in computational demand would be expected for a
case with a higher number of samples.

4.3 Direct Collocation h-refinement
Similar to the multiple shooting case, an h-refinement in-
vestigation is conducted for a direct collocation algorithm.
Here, a collocation degree of three is used based on the
results of the p-refinement investigation. The results are
shown in Figure 12. Similar patterns to those observed in
the multiple shooting case emerge with a notable differ-
ence for the single parameter case. In comparison to the
multiple shooting case, the estimation process using 400
samples takes approximately 13 times longer to converge,
indicating a significantly higher computational strain for
the direct collocation algorithm. Similar observations can
be made when comparing the three- and five-parameter
cases. While the overall trends are similar to the multiple
shooting case, it is clear that the direct collocation algo-
rithm experiences a higher computational burden. This
is particularly evident in the three-parameter case, where
the iteration limit is reached at 300 samples, compared to
400 samples in the multiple shooting case. In the five-
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Figure 12. h-refinement investigation for a direct collocation
algorithm with collocation degree of 3.

parameter case, both studies reach the iteration limit at 200
samples. However, the computational strain is higher for
direct collocation, as evidenced by the significantly longer
computational time and more than twice the number of it-
erations required in the case with 100 samples.

Again, since all successful estimations yielded identi-
cal results, it is recommended to select a sample size that
ensures proper convergence while minimizing the compu-
tational load. Excessively large sample sizes can lead to
unnecessary waiting times or, in complex scenarios such
as the five-parameter case, even convergence failure in the
estimation process.

4.4 Transcription Method Comparison
Finally, a comparison of all transcription methods applied
is carried out. Two sample sizes are investigated: one of
100 (shown in Figure 13) and another of 200 (shown in
Figure 14). Single shooting, multiple shooting, and direct
collocation with a collocation degree of three are com-
pared for each sample size when estimating one, three, and
five parameters. From examining the results in Figure 13
and Figure 14, several observations emerge.

Single Shooting This algorithm fails to converge to a
solution for the five-parameter case. In the single- and
three-parameter cases, it shows the fewest iterations re-
quired for convergence with the highest computing times
for all scenarios. This could be seen as an advantage for
a setup with more powerful computational resources. It
is worth noting that the FMI simulations triggered by the
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Figure 14. Transcription method performance comparison us-
ing 200 samples.

DaeBuilder object took more than 20 times longer than
the calculations needed in each iteration for the optimiza-
tion. Hence, single shooting could become competitive if
the FMU integration times can be sped up.

Multiple Shooting Overall, multiple shooting shows
the best performance for all investigated transcription
methods. As shown for both sample sizes, it offers the
lowest computing times for all cases, demonstrating its
scalability potential. Moreover, when compared to its
usual counterpart, direct collocation, multiple shooting re-
quires significantly fewer iterations to achieve these fast
convergence times, particularly evident in the investiga-
tion with 100 samples. Furthermore, if the efficiency of
the FMI is improved, multiple shooting has the potential to
achieve even better performance. The advantage of mul-
tiple shooting over direct collocation is further supported
by the h-refinement investigation where multiple shooting
achieved the same level of model granularity at a much
lower computational cost. In general, multiple shooting
is able to converge to accurate solutions for all investi-
gated cases while requiring less tuning compared to single
shooting and direct collocation.

Direct Collocation Similar to multiple shooting, direct
collocation is able to converge to an optimal solution for
all investigated cases though it has a higher computational
burden. However, by comparing the results from both
sample sizes (Figs 13 and 14) a decrease in the perfor-
mance gap between both algorithms is observed. While
multiple shooting still achieves convergence with a lower
computational burden, it experiences a significant increase
in both iterations and computing time when the granular-
ity of the problem increases. This suggests that for higher
sample sizes direct collocation could outperform multiple
shooting. Additionally, direct collocation offers the high-
est level of tunability, which can be optimized for a spe-
cific application, perhaps leading to better performance.
However, this tuning process is time-consuming and re-
quires deep system knowledge. Overall, direct collocation
algorithms exhibit great potential for rapid convergence,
although meticulous fine-tuning is necessary to fully ex-
ploit their capabilities.

5 Conclusion
Predictive control can substantially enhance energy effi-
ciency in buildings. To calibrate building models with op-
erational data, efficient discretization methods are needed
for the associated parameter estimation problem. The im-
plemented methodology formulates the original building
model in Modelica and transfers the model to CasADi
through its DaeBuilder class, which relies on the Func-
tional Mockup Interface. Multiple variations of tran-
scription methods and the effect of different refinement
schemes are investigated. The study demonstrates the high
effectiveness of the multiple shooting algorithm for the en-
visaged application. Multiple shooting successfully con-
verges for all cases investigated and shows the smallest



convergence time. Single shooting has the highest com-
puting times but requires fewer iterations to converge, so
it may also work for simpler models or setups with more
computational resources. Finally, a trend is observed to-
ward better performance in cases with increased granular-
ity for direct collocation.

6 Future Work
Although the use of the CasADi’s DaeBuilder to cal-
ibrate Modelica models shows huge potential, there are
still some challenges when following this methodology.
A large setback for the proposed workflow relates to the
fixed variability for the parameters of an FMU compiled
with OpenModelica. This requires a manual redeclaration
of all parameters to be estimated as inputs to enable their
variability in CasADi as decision variables. Furthermore,
FMU simulations are slow when compared to the time
needed in the NLP solver per iteration (approximately 20
times longer for the model used in this work) , which leads
to excessive computing times. Finally, the lack of sup-
port for time events in CasADi’s DaeBuilder required
major changes in the model to accommodate their intro-
duction as inputs, similar to the parameter variability is-
sue. The introduced methodology shows promise in cou-
pling Modelica and CasADi for optimization. However, as
shown in this work, it is still in its early stages and there
is ample room for further improvements. Joint efforts are
needed to come up with a workable solution, which will
then be illustrated on multiple applications.
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