
Modelica Models in SSP

Dag Brück

Dassault Systèmes, Lund, Sweden, dag.brueck@3ds.com

Abstract

This is a proposed optional extension for SSP 2.0 that

defines how Modelica models can be referenced in SSP.

It specifies the mapping of key Modelica concepts to SSP,

which necessitates a few small extensions. The purpose is

to broaden the scope of SSP to embrace the more powerful

modeling concepts of Modelica, for environments that can

support it.

Keywords: Modelica, SSP, extension, standardization

1 Introduction

Using System Structure and Parameterization (SSP) (Mai

et al. 2019) as the high-level architecture description

combined with parameter sets, there is a natural desire to

be able to reference not only FMUs but also Modelica

component models in SSP. Modelica (Elmqvist 2014;

MLS36 2023) offers strong modeling capabilities and

usually yields a more efficient and accurate simulation of

complex systems compared to component-based

modeling with FMUs.

Given the example in Figure 1, We see two control-

oriented blocks defined as FMUs, and then a large and

more complex physical model with tightly-coupled

elements that, experience has proven, are not well

represented by interconnected FMUs. In this example, the

hybrid driveline uses pre-defined electrical, mechanical

and hydraulic components from Dymola’s VeSyMA

library. Templates with replaceable components offers

great flexibility for exploring design alternatives. Because

of Modelica’s inherent properties with equations, acausal

connections, etc., efficient simulation code can be

generated without sacrificing modular flexibility.

However, SSP has strong capabilities for combining the

system topology with meta-data (Heinkel et al. 2022),

multiple parameter sets, name mapping and basic

simulation setup (Hällqvist et al. 2021). In total, it yields

an attractive high-level package for a credible simulation

experiment (Heinkel and Steinkirchner 2022).

SSP is attractive for packaging interconnected simulation

modules with parameter data into a single unit that is

suitable for simulation. For many tools, connection of

causal FMUs are sufficient, but as the example shows,

structures that are more complex can be efficiently

manipulated and simulated if SSP is extended to the

Modelica domain. This proposal adds those capabilities,

without adding undue complexity to tools that chose to

forego the benefits of Modelica. The purpose of this

proposal is to provide a minimal solution for mapping

Modelica models into an SSP context, without any attempt

to cover advanced Modelica concepts.

The scope of this document is to define how components

and connectors can be specified as Modelica models, and

the mapping of Modelica modifiers to an SSP syntax.

Further constraints are presented in the Discussion.

Figure 1. SSP system description using a complex component with Modelica representation.

2 Identification of the new SSP format

Within the constraints of the existing version of the SSP

specification, it is possible to make extensions using a

layered standard. Such a layered standard is limited to

adding annotations and new media (MIME) types.

Because this proposal defines additional attributes, for

reasons discussed below, a new version number is

required. In the intermediate period until a future

standardization, the SSP design group has decided that

SSDs (System Structure Descriptions) using this

extension shall use the version number 2.0-alpha.1.

3 Representation of components

For SSP to support Modelica component models, the

proposed encoding is:

 The component source attribute contains the path

of the Modelica model. The source URI modelica:

designates a model in the namespace of the

Modelica environment.

 A media type (formerly known as a MIME type) is

a two-part identifier for file formats and format

contents. The media type used for Modelica is

"text/x-modelica".

Possibly an optional version number of the Modelica

library should be added, to support on-demand loading.

An example of such a Modelica component element is

shown in Listing 1.

4 Representation of connectors

Modelica connectors for built-in input and output types

are easily mapped to SSP connectors, see Table 1. Doing

this mapping facilitates connections with FMUs and

nested SSDs to Modelica components with fundamental

connector types.

Modelica Type SSP Type SSP Kind

RealInput ssc:Real input

RealOutput ssc:Real output

IntegerInput ssc:Integer input

IntegerOutput ssc:Integer output

BooleanInput ssc:Boolean input

BooleanOutput ssc:Boolean output

StringInput ssc:String input

StringOutput ssc:String output

Table 1. Mapping of standard connector types in

Modelica.Blocks.Interfaces to SSP.

In SSP 2.0 we expect a richer set of types because of the

adaption to FMI 3. This offers the opportunity to represent

additional Modelica types, for example arrays and perhaps

even hierarchically structured types.

Modelica connectors of more advanced types are mapped

the same way as Modelica component models.

 The connector type is ssc:Binary.

 The connector source attribute contains the full

path of the Modelica model.

 The media type is "text/x-modelica".

 Acausal Modelica connector types are in SSP of

kind="acausal". This is a generalization

compared to SSP 1.0.

For all connector types, the following extension is made:

 ConnectorGeometry is amended: An optional

attribute rotation of type xs:double may be

specified. It should be noted that this extension is

of general interest to SSP, regardless of Modelica

support.

Two such Modelica connectors are shown in Listing 2.

5 Representation of modifiers

Modelica modifiers are mapped to SSP parameter sets as

follows:

 Literal modifiers of Modelica types Real, Integer,

Boolean and String are mapped to their

corresponding types in SSP.

 Other modifier expressions are mapped to

ssv:Enumeration, with the value attribute

containing the Modelica text of the modifier value.

This is needed to handle expressions, which are

common in Modelica models.

An example of a parameter binding is shown in Listing 3.

A more complete example is shown in Listing 4.

6 Discussion

After presenting the actual proposal for extension in

Sections 3-5, some of the design choices can be discussed.

6.1 The scope of the proposal

If we intend to work actively with Modelica models in the

SSP context (not only display the architecture), we can

assume that a full Modelica environment (Brück 2023),

and hence any needed Modelica library, is available. For

that reason, the SSD only needs to store references to the

Modelica models.

Storing the model text of a component model and all

dependent models would be a major effort (corresponding

to “Save Total” in Dymola), but doable. If needed, a tool

could for example store the Modelica text as an SSP

annotation. It should be noted that this approach would

fail for many libraries that are deployed in encrypted form,

or use a license mechanism.

<ssd:Elements>

 <ssd:Component name="sin"

 type="text/x-modelica" source=

 "modelica://Modelica.Blocks.Sources.Sine">

 <ssd:Connectors>

 ...

 </ssd:Connectors>

 <ssd:ElementGeometry x2="-110" x1="-130"

 y1="-10" y2="10"/>

 </ssd:Component>

</ssd:Elements>

Listing 1. Representation of a Modelica component.

<ssd:Connectors>

 <ssd:Connector name="y" kind="output"

 description="Connector of Real output

signal">

 <ssc:Real/>

 <ssd:ConnectorGeometry x="0.5" y="0.0"

 rotation="90" />

 </ssd:Connector>

 <ssd:Connector name="flange_a"

 kind="acausal"

 description="Flange of left shaft">

 <ssc:Binary mime-type="text/x-modelica"

source="modelica://Modelica.Mechanics.Rotati

onal.Interfaces.Flange_b"/>

 <ssd:ConnectorGeometry x="0" y="0.5"/>

 </ssd:Connector>

</ssd:Connectors>

Listing 2. Representation of Modelica connectors.

<ssd:ParameterBindings>

 <ssd:ParameterBinding

 type="application/x-ssp-parameter-set">

 <ssd:ParameterValues>

 <ssv:ParameterSet

 name="DefaultParameters"

 version="1.0">

 <ssv:Parameters>

 <ssv:Parameter

 name="peak">

 <ssv:Real value="1.1"/>

 </ssv:Parameter>

 <ssv:Parameter

 name="startTime">

 <ssv:Enumeration value="2*T2"/>

 </ssv:Parameter>

 </ssv:Parameters>

 </ssv:ParameterSet>

 </ssd:ParameterValues>

 </ssd:ParameterBinding>

</ssd:ParameterBindings>

Listing 3. Example of a parameter biding.

Advanced Modelica concepts such as inheritance,

replaceable components/models, re-declarations and

expandable connectors are intentionally left out because

there is no natural mapping to SSP concepts.

6.2 Tools without Modelica capabilities

We can expect that most tools supporting SSP will not

have capabilities to simulate Modelica models. Such tools

can partially support SSP files that use Modelica

components with little additional effort. The information

to display components and their connectors, as well as

connections, is identical. The tool must ignore what it

cannot process, such as any component source of type

"text/x-modelica". Simple editing operations are possible,

assuming that the new attributes described in this

document are ignored but maintained.

Note that in either case, SSPs that do not include Modelica

components are completely unchanged compared to SSP

1.0. In that sense, this is an unobtrusive extension.

6.3 Enumeration expressions

The proposal to handle parameter expressions as

enumerations can be questioned. Reusing the concept of

enumeration values can be perceived as a creative abuse

of the rules, but appears to fall within the constraints of

SSP. A cleaner solution would be to introduce a new kind

of value for this case, but that adds another incompatibility

with SSP 1.0. A further generalization would be to use

Modelica’s full modifier syntax, which would allow e.g.

redeclaration.

It has been proposed to generalize the allowed string for

e.g. Real values to include an arbitrary expression. This is

not a good idea because it defeats the possibility to syntax-

check purely numeric parameters sets.

6.4 Change proposal or layered standard

When developing a proposed extension of SSP, one is

faced with the choice of two approaches.

The first is to make an extension that is as close as possible

to SSP 1.0 with minimum disruption for existing tools and

users. SSP is designed to manage this, using the concept

of Layered Standard that uses a general extension

mechanism in the form of annotations. Using such

annotations, it is possible to make a layered standard that

can (in limited form) be processed by conforming tools

that know nothing at all about new features.

The second is to make an extension proposal designed to

cleanly extend SSP 1.0 into SSP 2.0 with new concepts

that naturally fit into SSP. In this case, we need to add

attributes that are not present in SSP 1.0 instead of using

annotations. Examples are the proposed rotation attribute

and the notion of acausal connectors. The drawback is that

tools that strictly conform to SSP 1.0 will not be able to

read the new format, which for that reason should be

identified with a unique version number.

After due consideration we have respectfully opted for the

second approach, a non-layered extension. The key reason

is the future growth path with a potentially wide

application. If this feature will be a permanent part of SSP

2.0, we want it to be “natively” integrated and not be

implemented with annotations. If we started with a layered

standard based on SSP 1.0, the native representation in

SSP 2.0 would require yet another migration effort. Some

aspects of the proposal, such as the rotation attribute for

connectors, are not inherently tied to Modelica.

Acknowledgements

The author wants to thank the members of the SSP design

group, in particular Pierre Mai, Robert Hällqvist and Peter

Lobner, for constructive feedback on the proposal.

References

Brück, Dag (2023). "SSP in a Modelica Environment" in Proc.

15th International Modelica Conference, Aachen, Germany.

Elmqvist, Hilding (2014). "Modelica Evolution - From My

Perspective" in Proc. 10th Modelica Conference, Lund,

Sweden.

Heinkel, Hans-Martin, P. R. Mai, R. Aue, J. Bou, C. Bühler, C.

Franke and A. Puetz (2022). "SRMD format

and classifications for metadata".

https://gitlab.setlevel.de/open/processes_and_traceability/tr

aceability_data/-/blob/main/SETLevel_SRMD_and_classifi

cations_for_metadata.pdf.

Heinkel, Hans-Martin and K. Steinkirchner (2022).

"Credible Simulation Process".

https://gitlab.setlevel.de/open/processes_and_traceability/cr

edible_simulation_process_framework/-

/blob/main/Credible-Simulation-Process-v1-2.pdf.

Hällqvist, Robert, R. C. Munjulury, R. Braun, M. Eek and P.

Krus (2021). "Engineering Domain Interoperability Using

the System Structure and Parameterization (SSP) Standard"

in Proc. of the 14th International Modelica Conference,

Linköping, Sweden.

Mai, Pierre R. et al. (2019). "System Structure and

Parameterization".

https://ssp-standard.org/publications/SSP10/SystemStructur

eAndParameterization10.pdf.

MLS36 (2023). “Modelica – A Unified Object-Oriented

Language for Systems Modeling, Language Specification

Version 3.6”.

<?xml version="1.0" encoding="UTF-8"?>

<ssd:SystemStructureDescription fileversion="4.0.0" generationDateAndTime="2023-08-15T14:16:21Z"

 generationTool="Dymola by Dassault Systemes" name="CoupledClutches" version="2.0-alpha.1" >

 <ssd:System description="Drive train with 3 coupled clutches" name="CoupledClutches">

 <ssd:Connectors>

 <ssd:Connector description="Frequency to invoke clutch1" kind="parameter" name="f">

 <ssc:Binary mime-type="text/x-modelica"

source="modelica://Modelica.Units.SI.Frequency"/>

 </ssd:Connector>

 ...

 </ssd:Connectors>

 <ssd:Elements>

 <ssd:Component name="sin2" source="modelica://Modelica.Blocks.Sources.Sine" type="text/x-

modelica">

 <ssd:Connectors>

 <ssd:Connector description="..." kind="output" name="y">

 <ssc:Real/> <ssd:ConnectorGeometry x="1.05" y="0.5"/>

 </ssd:Connector>

 </ssd:Connectors>

 <ssd:ElementGeometry rotation="270" x1="-40" x2="-20" y1="30" y2="50"/>

 <ssd:ParameterBindings>

 <ssd:ParameterBinding type="application/x-ssp-parameter-set">

 <ssd:ParameterValues>

 <ssv:ParameterSet name="DefaultParameters" version="1.0">

 <ssv:Parameters>

 <ssv:Parameter name="amplitude"> <ssv:Real value="1"/> </ssv:Parameter>

 <ssv:Parameter name="f"> <ssv:Enumeration value="f"/> </ssv:Parameter>

 <ssv:Parameter name="phase"> <ssv:Real value="1.570796326794897"/>

 </ssv:Parameter>

 </ssv:Parameters>

 </ssv:ParameterSet>

 </ssd:ParameterValues>

 </ssd:ParameterBinding>

 </ssd:ParameterBindings>

 </ssd:Component>

 ...

 </ssd:Elements>

 <ssd:Connections>

 <ssd:Connection endConnector="flange_a" endElement="J1"

 startConnector="flange" startElement="torque"> </ssd:Connection>

 ...

 </ssd:Connections>

 <ssd:ParameterBindings>

 <ssd:ParameterBinding type="application/x-ssp-parameter-set">

 <ssd:ParameterValues>

 <ssv:ParameterSet name="DefaultParameters" version="1.0">

 <ssv:Parameters>

 <ssv:Parameter name="f"> <ssv:Real value="0.2"/> </ssv:Parameter>

 <ssv:Parameter name="T2"> <ssv:Real value="0.4"/> </ssv:Parameter>

 <ssv:Parameter name="T3"> <ssv:Real value="0.9"/> </ssv:Parameter>

 </ssv:Parameters>

 </ssv:ParameterSet>

 </ssd:ParameterValues>

 </ssd:ParameterBinding>

 </ssd:ParameterBindings>

 <ssd:SystemGeometry x1="-140" x2="140" y1="-100" y2="100"/>

 <ssd:Annotations>

 <ssc:Annotation type="com.3ds.ssp">

 <smmd:ModelicaMetaData>

 <UserAnnotation key="description" value="Drive train with 3 coupled clutches"/>

 <UserAnnotation key="name" value="CoupledClutches"/>

 <UserAnnotation key="version" value="4.0.0"/>

 <UserAnnotation key="versionDate" value="2020-06-04"/>

 <UserAnnotation key="revisionId" value="6626538a2 2020-06-04 19:56:34 +0200"/>

 </smmd:ModelicaMetaData>

 </ssc:Annotation>

 </ssd:Annotations>

 </ssd:System>

 <ssd:DefaultExperiment startTime="0" stopTime="1.5"/>

</ssd:SystemStructureDescription>

Listing 4. CoupledClutches example from MSL with certain parts removed for brevity.

	Abstract
	1 Introduction
	2 Identification of the new SSP format
	3 Representation of components
	4 Representation of connectors
	5 Representation of modifiers
	6 Discussion
	6.1 The scope of the proposal
	6.2 Tools without Modelica capabilities
	6.3 Enumeration expressions
	6.4 Change proposal or layered standard

	Acknowledgements
	References

