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Abstract
Machine learning models improve the speed and quality of
physical models. However, they require a large amount of
data, which is often difficult and costly to acquire. Predict-
ing thermal comfort, for example, requires a controlled
environment, with participants presenting various charac-
teristics (age, gender, ...). This paper proposes a method
for hybridizing real data with simulated data for thermal
comfort prediction. The simulations are performed using
Modelica Language. A benchmarking study is realized to
compare different machine learning methods. Obtained
results look very promising with an F1 score of 0.999 ob-
tained using the random forest model.
Keywords: machine learning, hybridization, simulation,
thermal comfort

1 Introduction
1.1 Context and problematic
Nowadays, numerical simulation represents an essen-
tial tool in designing and managing real-world systems,
thanks to its lower cost compared to direct experimen-
tal testing on the system to be designed. Many indus-
trial applications have benefited from the contributions of
numerical simulation to improve the performance of sys-
tems. Thermal comfort is considered as a important topic
the field of numerical simulation and several studies have
been conducted but the results are often far from reality
(Feng et al. 2022). One of the main difficulties is the lack
of reliable data. Indeed, the acquisition of data on thermal
comfort is very expensive. It requires to place the subjects
in an environment where the temperature, the hygrome-
try rate and the thermal radiation are controlled. It also
requires testing over a long period of time to avoid tran-
sient phenomena, and on a wide variety of subjects (age
and gender). In this paper, we address the following prob-
lem: how can we increase the quantity of data to improve
thermal comfort prediction?

1.2 State of the art
Time series data augmentation is a technique that aims to
increase the size of the dataset using synthetic data gen-
eration or data transformation methods. This technique is
used to improve the performance of time series prediction

models by increasing the diversity of the training data and
reducing the risk of overfitting. In the area of time series,
the increase in data is particularly important because data
are often scarce and expensive to collect.

1.2.1 Data generation approaches

One of the most well-known approaches in the field of
data augmentation is synthetic data generation. Synthetic
data generation approaches aim to increase the size of the
dataset by generating synthetic data that resembles the
real data. Some of the most common approaches include
Markov processes, Gaussian mixture models and genera-
tive adversarial neural networks (GANs).

Since their inception, GANs have gained a lot of trac-
tion in the deep learning research community. Their abil-
ity to generate and manipulate data in multiple domains
has contributed to their success.

A GAN is a generative model composed of a gener-
ator and a discriminator, typically two neural network
(NN) models. GANs have demonstrated their ability to
produce high-quality images and videos, transfer styles,
and complete images. They have also been successfully
used for audio generation, sequence prediction and im-
putation. Jinsung Yoon et al. (Yoon, Jarrett, and Van
der Schaar 2019) proposed Time-series GAN (TGAN), a
novel version of GAN for generating realistic time-series
data. They introduced the concept of supervised loss; the
model is encouraged to capture time conditional distribu-
tion within the data by using the original data as a supervi-
sion. They obtained significant improvements over state-
of-the-art benchmarks in generating realistic time-series
of multiple datasets.

One of the advantages of these techniques is their power
to greatly increase the size of the dataset and help to model
extreme situations that may not be observed in real data.

And, one of the main limitations of TGANs is the re-
striction of the specified sequence length that the architec-
ture can handle. In addition, generated data may not accu-
rately reflect real data and may require significant compu-
tational resources.

1.2.2 Data transformation approaches

Data transformation approaches aim to increase the size
of the data set by applying transformations to the existing



time series. Some common approaches include normaliza-
tion, Fourier transform, time warping and interpolation.

Time warping technique consists in applying random
guided transformations to existing time series to generate
new training series. The time warping transformations are
applied using a cost function that measures the similarity
between two series. The experiments conducted in the pa-
per (Iwana and Uchida 2021) show that the proposed data
augmentation technique significantly improves the perfor-
mance of neural networks for various time series related
tasks, such as energy consumption prediction and human
activity recognition.

The Fourier Transform method (Yang, Yuan, and X.
Wang 2023) involves dividing the training data into mul-
tiple sets and then applying the Fourier Transform to each
set. The Fourier coefficients of each set are then combined
in a stratified manner to generate new training series. The
newly generated series are used to train a time series clas-
sification model.

The paper also describes a method for selecting the data
sets to be used for data augmentation. This method in-
volves using a clustering algorithm to group the training
data into similar sets and then selecting the data sets that
are most different from each other.

Experiments conducted in the paper show that the pro-
posed data augmentation method significantly improves
the classification performance for various time series
datasets.

Interpolation (Oh, Han, and Jeong 2020) is a method
of estimating unknown values in the time series using the
known values based on a specific interpolation function
like cubic splines. This method may greatly improve the
score on the generated data especially when the interpola-
tion function is well suited to the problem.

Other approaches using data transformation include
time slicing window which consists of cutting a portion
of each data sample, to generate a different new sample.
Adding noise to time series, flipping by inverting a time
series, scaling by changing the magnitude of a certain step
in the time series, rotation and permutation. Some of these
techniques can only be used for specific datasets. Indeed,
it does not make sense to apply flipping for a time series
describing a temperature variable for example.

One of the advantages of these techniques is their sim-
plicity to implement and the fact that they allow to control
the generated time series.

On the other hand, if the data have complex patterns the
generated data may not accurately reflect the real data.

1.2.3 Simulation approaches

Another way for data augmentation is to use a simulation
model to generate synthetic data.

For example, in the autonomous driving (Cao and
Ramezani 2022) field, simulators such as DeepGTA-V
and CARLA (Car Learning to Act) can be used to gen-
erate large amounts of synthetic data that can complement
the existing real-world dataset in training autonomous car

perception. These models allow to generate several sce-
nario configurations (bad weather conditions, road acci-
dents, obstacles...etc.), which gives different driving envi-
ronments.

One potential downside of data augmentation using
simulation is that the simulated data may not perfectly
represent the real-world data, which can affect the perfor-
mance of machine learning models trained on the data.

On the other hand, simulation also provides more di-
verse information. For example, for a time series describ-
ing the operative temperature of a housing, it is possible
to simulate the operative temperature in several seasons.

Simulation enrichment allow to reduce the gap between
the training dataset and the dataset used for inference and
evaluation. the comfort models are typically learned from
real data but evaluated of these models are performs from
simulation results. It is important to note that simulation
results may deviate from the actual models, thus impacting
the accuracy of the learning process based on simulated
data. To address this issue, it is crucial to conduct the
inference of the learned model using simulated variables.

However, in order to prevent any biases in machine
learning (ML) models, simulations must accurately reflect
the real-world context. Creating a simulation model that
closely resembles the actual environment poses a signifi-
cant challenge.

2 Methodology
The aim of this approach is to complete each observation
with environment variables generated by simulation. For
each observation a simulation model will act as a digital
twin. The methodology is divided into four main stages
Figure 1.

The first step is the data preprocessing. This is a classi-
cal step in preparing data for machine learning. The main
objectives of this step are, to verify the data format, to
ensure the data consistency, complete missing data and re-
move outliers.

The second step is the data adaptation. The prepos-
sessed data may differ from the parameters of the model to
be generated. for example, if the data consists of question-
naires sent to a sample of people. The person answering
the questionnaire may not know the parameter of a sim-
ulation model. But this parameter can be deduced from
another question. For example, in the case of thermal sim-
ulation of buildings, it is easier for respondents to enter the
year of construction of their house than the thickness of its
insulation. It is then possible to approximate the thickness
of the insulation with the norms for the year of construc-
tion. The application section 3.1 will contains more details
on this step. As well as surveys.

The third step is the model generation. Model gener-
ation is performed for each observation. It requires the
creation of rules to generate the simulation model, or the
creation of several simulation templates whose parameters
are filled in according to the adapted observations.



Figure 1. Description of data generation process

The last step is the simulation of each model, and the
post-processing of the results. The objective of this step is
to prepare simulation results for learning.

3 Application
3.1 Description
3.1.1 Survey Analysis

The aim of this study is to predict household thermal com-
fort. A survey was sent to 4000 French households. The
sample was selected to be as representative as possible of
the French population.

The survey is composed of 240 questions divided into
5 categories; building geometry, building insulation, heat-
ing systems, heating habits and comfort perception. As
descried in Figure 2, building geometry, building insula-
tion and heating systems questions are adapted in order to
generate the thermal simulation of the housing.

Figure 2. Synopsis of approach

Heating habits answers are used in order to reproduce
household heating curve, including, Transmitter control
curve and the opening and closing curves of the shutters

and windows. Finally, questions about perceived comfort
are adapted to feed the learning model.

3.1.2 Survey Validation And Preprocessing

The reliability of questionnaire responses was validated
by an external organization (IPSOS). Prior to the survey,
200 homes were instrumented with power and tempera-
ture sensors for each emitter. The technicians who visited
the homes filled in the necessary information. When the
survey was completed, the results from these 200 homes
were compared with the instrumented data to validate the
approach. These results, and the comparison with simu-
lation results, will be the subject of a future paper. The
present paper deals with the methodology Process.

The first step was to pre-process the data. Dwellings
containing outliers were removed. For each variable the
Interquartile Rule were applied in order to identify out-
liers. For example, dwellings with surface too large or too
small are removed. After this step, 3 529 dwellings con-
tained statistically acceptable variables.

3.2 Completion of data with simulation

3.2.1 Model hypothesis

The simulation model used for the model generation is
created thanks to buildSysPro (Plessis, Kaemmerlen, and
Lindsay 2014). This opensource modelica library contains
parametric models for different building parts, including
wall, windows, roof and floor. The parametrization is
simplified by grouping all the characteristic parameters in
records. A record contains the parameters of the differ-
ent materials used for the structure, insulation and interior
cladding. It also includes geometrical parameters, such as
the thickness of the different materials. The records are
established according to the years of construction of the
buildings and the different standards.

For every dwelling, each room is modeled as a thermal
node. The temperature is considered uniform at each point
of the room volume. The conductive exchanges between
the walls of the rooms and the external walls are modeled
using the heat transfer in one spatial dimension. Transient
phenomena are considered. Walls are discretized every
time materials are changed or every five cm (this is done
automatically by the buildSysPro library). It allows to lin-
earize the heat equations for each wall.

The air flow exchanges between individual rooms are
neglected. We have assumed that all the interior doors are
closed. Convection exchange between the outside air and
the wall is calculated using the newton law. Heat transfer
coefficient is given by the record according to the exterior
materials.

The solar radiation is calculated using the model from
Hay Davies Klucher Reindl (HDKR) (Padovan and Del
Col 2010). The environment variables (external tempera-
ture, humidity, wind speed and direction, variables needed
to calculate the incident radiative flux, etc.) are loaded
from a file.



3.2.2 Description of model templates

Two generic building models are created with buildSysPro
library; a 2-3 bedroom house (Mozart house) and a 1-
2 bedroom apartment (Matisse apartment). 35% of the
households interviewed in the survey correspond to these
two types of housing which corresponds to about 1400
dwellings. The plans of these dwellings are described in
Figure 3. For each template, the Bedroom 2 can be empty.

Figure 3. Plan of different model templates

A simulation model template has been created by
dwelling category. An example of simulation template
for Mozart house is described in Figure 4. In this fig-
ure, each variable is a vector. Each coordinate of the
vector corresponds to a room. The dimension of the vec-
tor corresponds to the number of rooms of the dwelling.
This template is composed of 4 parts; one part is the
model that generates environment variables previously de-
scribed. The second part is the thermal model of the build-
ing. Hypothesis of this model have also been previously
described.

The window model controls the opening and closing of
windows room by room. The opening of the windows is
controlled by an external file (generated from the survey
answers). At each time step, the model allows to open
a window if its window state variable is set to true and
the set temperature is reached. This model also closes
the window if the difference between the set temperature
and the air temperature is below a certain threshold. This
threshold has been set at 3°C by default.

The heating models are composed of two models. One
model controls the heat flow injected room by room by
the fixed heaters. The second one controls the heat flow
injected room by room by the mobile heaters. The model
controlling the heat flow for mobile heaters consists in two

Figure 4. Example of simulation template for Mozart House

heat flow injections; one by convection and a second one
by radiation. Total heat flow injection is defined by an in-
put csv file (generated from the survey answers). The ratio
between convective and radiative heat flow is considered
constant and is established according to the type of heating
system entered in the questionnaire.

The parametrization of fixed heaters for Matisse apart-
ment with one bedroom is described in Figure 5. For each
room, it is possible to set the heater type and heater con-
troller. Variable P_nom_heater is a vector that contains at
each coordinate the sum of the nominal power of all the
heaters in a room. Scenario and InputPath parameters in-
dicate the path for the file describing the wood reloading
hours. This scenario is specific for the inhabitants using a
fireplace for heating. It depends mainly on the activity of
the inhabitants composing the household.

Three control models have been implemented. A Pro-
portional integral differential (PID) model, a dead band
model and a model of absence of control, when the inhab-
itants declared not to have heating in the room. Six heat-
ing models have been implemented: electric heating type
convector, radiant panel, soft heat, accumulation, water
heating or wood heating.

Models have been implemented using method Th-BCE
(écologique 2023) except for wood heating model that
have been instantiated from the buildSysPro library. Th-
BCE method is a French regulation. The two hypothesis
concerning heaters are that: the thermal inertia of heaters
is neglected and the ratio of heat transfer radiated flow and
convective flow is considered constant.

3.2.3 Description of data used for simulation

The parameters used to fill the simulation model are de-
scribed in Table 1. This table also describes the questions
in the survey, and the method used to calculate simulation



Figure 5. Parametrization of fixed heaters room by room

model parameters from the questions. The temporal vari-
ables were filled from the survey by choosing three typi-
cal days per week. For each day, the variables are filled
in hour by hour for each room. These typical days are
assigned to each day of the week.

The temperature measured in the questionnaire is based
on a typical week. It does not give details of the tem-
perature hour by hour over a year. Also, room tempera-
tures are likely to vary according to the insulation of the
dwelling and the power of the radiators. The simulation
shows this variation. In the simulation, the temperature
measured over a typical week is approximated as the set
temperature and repeated every week.

Two algorithms were used; a first one allows to com-
pute the orientation variables and a second one to control
the opening and closing of the shutters.

Concerning orientation variable, the chosen algorithm
is a decision tree. The decision node was manually imple-
mented. The survey contains for each room whether the
windows are predominantly south-facing. Thus, orienta-
tion is calculated thanks to different plans (Matisse and
Mozart) in order to maximize the surface of the windows
facing to the south according to the survey. 1 describes the
decision tree for Mozart house. By convention, the Orien-
tation variable is null when north is oriented at the top of
the plan in Figure 3. A similar algorithm was built for the
Matisse template.

In this algorithm, IsSouthroom is a binary list where
room belongs to each available room of Mozart house,
Orientation designates the variable in degree of house
Orientation.

The instruction for opening and closing the shutters is
calculated from the presence variable room by room. The

time at which the shutters open is determined by the time
at which a room becomes empty.

Table 1. links between questions and variables used to complete
the simulation models

Question Variable in simu-
lation

Calculation
method

Number of rooms Number of rooms assignment
The total floor
area of the
dwelling

Floor total area assignment

Room with
south-facing
windows

orientation deductive al-
gorithm

Heating power
for each room

Nominal power
of heater for each
room

assignment

Year of con-
struction of the
dwelling

House record assignment

Temperature
measured hour
by hour over a
week

setpoint tempera-
ture

assignment

Ignition time of
auxiliary heaters
and power of
auxiliary heaters

auxiliary heating
power

assignment

Hour of opening
of the windows
and duration of
the opening

instruction for
opening and clos-
ing the windows

assignment

Presence in the
rooms

instruction for
opening and clos-
ing the shutters

deductive al-
gorithm

Date of switching
on the heating

instructions for
switching the
heater on and off

assignment

The closing time of the shutters has been calculated in
relation to the sunset time. The sunset time depends on the
day and the location of the dwelling. The python library
suntime (Stopa 2019) has been used for the calculation of
the sunset time according to the department in which the
dwelling is located and the simulated day. The closing
time corresponds to the times of presence in the dwelling
closest to the sunset.

3.2.4 Description of input files

Thermal regulation 2012 (RT 2012) (écologique 2023) is
a French regulation. it separates France into 8 thermal
zones. RT2012 provides for each thermal area, an aver-
age environment file. This file provides each 30 minutes
a value for weather variables, including, wind speed and
orientation, different temperatures variables, relative hu-
midity, atmospheric pressure and solar irradiance direct



Algorithm 1 Calculation of orientation for Mozart House
Start

if IsSouthliving then
if IsSouthbedroom3 then

Orientation← 0◦

else
Orientation← 90◦

end if
else

if IsSouthbedroom2 & IsSouthbedroom3 then
Orientation← 270◦

else
Orientation← 180◦

end if
end if

End

and indirect. These files were used in order to estimate
environment variables. The thermal area of a dwelling is
determined according to its department.

3.2.5 Generation of modelica models
Each observation is instantiated using the class diagram
of the algorithms as described in Figure 6. Modelica files
were generated from instantiation of this class diagram us-
ing model transformation process. The implementation
was carried out using the Modelica Language.

Figure 6. Class Diagram of python models

The simulations were launched using Dymola-Python
application programming interface (API). The solver used
is Differential/Algebraic System Solver (DASSL) with a
time step of 1800s. The simulations were launched from
October 1st to April 30th, results files are stored as CSV
files. The simulations were run on a laptop with a quad
core processor with 16GB of RAM. It took 72 hours to

run 1,400 simulations. Simulations were parallelized on 4
cores.

In order to facilitate the training of recurrent machine
learning models, it is frequent to use an invariant time step
for all the time series. Therefore, the results were post-
processed to have a constant time step of 1800s, because
DASSL is a variable time steps solver.

3.2.6 Simulation results

The simulation results are given in Figure 7. The average
air temperature in the living room is 19◦C for an apart-
ment or a house. The main difference concerns the max-
imum and minimum values. Indeed, the maximum and
minimum temperatures are higher for apartments than for
houses. The difference concerns the minimum tempera-
ture, which is explained by the proximity of an apartment
to other apartments. Thus, an unheated apartment will be
heated by convection by the other surrounding apartments,
avoiding too low temperatures. This is not the case for
houses. As regards the increase of the temperature be-
tween October 1st and November 1st, it concerns only one
apartment, this apartment combines an early ignition of
heating managed by a collective boiler with a high out-
side temperature due to the localization of the apartment
(in the department of Corsica). Note that weather vari-
ables are approximate, and local weather conditions may
be different, which explains this difference. Finally, the
generalized fall of temperature after the 15th April is due
to the stop of the heating at this date.

Figure 7. Comparison of simulation results between House and
Apartements

The inhabitants surveyed were able to fill in the thermal
discomfort time in the questionnaire. 5 choices were avail-
able: being comfortable (84.6% of total observations), be-
ing cold for at least 24 hours (6.9%), being cold for a
few days (5.2%), being cold almost all the time (1.9%)
or all the time (1.4%). Figure 8 illustrates the average liv-



ing room temperature of households according to their re-
sponse to the comfort question.

This figure highlights that air temperature is not a good
indicator. It does not allow to differentiate between house-
holds that are cold all the time and those that are cold some
days.

Figure 8. Air temperature of living room according to comfort
clusters

The operating temperature is a good but not sufficient
indicator of comfort. In fact, it considers the air temper-
ature and the radiated temperature. However, this tem-
perature does not represent the temperature felt by an in-
habitant, because the inhabitant does not always occupy
the cold room. For example, even if the operating tem-
perature of the bathroom is 10◦C, if there is never anyone
in the bathroom it is useless to take this variable into ac-
count. Thus, we have introduced the operating tempera-
ture of presence. This variable is the operating tempera-
ture averaged by the presence of inhabitant per room. This
variable is calculated at each time step when there is at
least one inhabitant in the house (∑nroom

i Presroomi > 0),
as follow:

Top pres =
∑

nroom
i Top roomi . Presroomi

∑
nroom
i Presroomi

(1)

Where; nroom is the number of rooms for one dwelling,
Top roomi is the operating temperature of the roomi with
i ∈ 1;nroom, Presroomi is a Boolean variable for each
room of one dwelling with i ∈ 1;nroom. This variable
is equal to 1 if there is a presence in the room and null if
there is nobody in the room and Top pres is a list composed
of the operating temperatures. As illustrated in Figure 9,
the presence operating temperature allows to recover the
comfort trend established in the questionnaire. Therefore,
we focused on this variable for learning. Note, however,
that inhabitants that are cold for a few days and those that
are cold almost all the time are difficult to differentiate.

Figure 9. Air temperature of living room according to comfort
clusters

3.2.7 Preparation of data for learning
Simulation model computes for each time step the thermal
environment of the inhabitants for a dwelling. However,
in order to train the ML model of thermal comfort, it is
required to calculate the thermal comfort at each time step.

The first algorithm implemented is a simple threshold
on the operating temperature of presence. Indeed, for each
dwelling a threshold was calculated to respect the discom-
fort period. If operating temperature is below this thresh-
old, the inhabitants are considered as uncomfortable, oth-
erwise, they are considered as comfortable. The problem
with this model is that there were some comfort/discom-
fort switches between two successive time step(s). The
second issue of this approximation is that it does not con-
sider the inertia of thermal comfort.

The improved algorithm computes for each dwelling
two thresholds. When the first threshold is reached, the in-
habitant is in a discomfort state. It is then required to wait
for the presence operative temperature to rise to the second
threshold before the inhabitant will be again considered to
be comfortable. The calculation of the thresholds is per-
formed by minimizing the number of comfort/discomfort
switches under the constraint of respecting the discomfort
time indicated in the survey.

For one dwelling, the problem is stated as the following
optimization problem:

argmin(εmax,nswitch) (2)

The constraints are:

{
εmax > εmin

max(∆t1, . . . , ∆tn)≥ tdiscom f ortsurvey
(3)

Where; (εmax,εmin) is the couple of thresholds to cal-
culate, with εmax ∈ R+ and εmin ∈ R+, nswitch is the
number of comfort/discomfort switches, with nswitch ∈N,
(∆t1, ...,∆tnswitch ) is the list of discomfort times with
∆tk ∈ R+ with k ∈ 1,nswitch and tdiscom f ortsurvey ∈ R+

is the discomfort time indicated in the survey.



The estimation of these two thresholds is performed us-
ing the following algorithm. This algorithm is an heuristic
which is divided into 3 main steps. The first step is to cal-
culate a first value of εmax, named ε0 (2). The calculation
of ε0 is similar to the calculation of a single threshold for
comfort/discomfort switching.

In this algorithm, the following variables are used;
Top pres[ ] designates a real list composed of the operat-
ing temperature at each time step, Tasc_op pres[ ] is a real
list composed of the operating temperature ordered in an
ascending order, n is an integer , nconsecutive is an inte-
ger representing the number of consecutive time steps in
Tasc_op pres between 0 and n, tdiscom f ort_survey a real repre-
senting the discomfort time indicated in the survey, ∆tstep
is a real representing the duration of one simulation time
step, ε0 is a real representing the minimum threshold to
have nconsecutive discomfort time steps.

The function used are : list ← sorting_asc(list) is a
function that orders a list in an ascending order, int ←
get_consecutive_tstep(int : n, list) is a function that re-
turns the number of consecutive time steps in a list be-
tween 1 and n.

The second step is to define a set of εmax,i and
εmin,i pairs that are close to the optimal solution
εmax,1,εmin,1, ...,εmax,m,εmin,m (3). The third step is to se-
lect the optimal couple εmax,k,εmin,k that minimizes the
objective function and respects the constraints described
above.

In this algorithm, the following variables are used :
Top pres[ ] a real list composed of the operating tempera-
ture at each time step; ε0 is the first value of the thresh-
old calculated by the first algorithm; Tthresholdo p pres[ ] is
a real list composed of the operating temperature bellow
the threshold ε0; tdiscom f ortsurvey is a real representing the
discomfort time indicated in the survey; ∆tstep is a real
representing the duration of one simulation time step; nclu
designates an integer defining the number of time steps of
discomfort; idmin[ ] a list of indexes for local minimums;
i,minID ,maxID are integers, εmin[ ] is a list of candidates
of minimal threshold value; εmax[ ] is a list of candidates
of maximal threshold value.

The function used are : list ←
keep_value_below(list,real : threshold) a function
that keeps the values of a list below the threshold value;
list ← local_minium_list(list) a function allowing to
calculate the local minimums of a list; int ← len(list) a
function that calculates the length of the list.

The algorithm was implemented in python language
and executed on the 1400 dwellings. Figure 10 shows an
example for an inhabitant that reported to be cold almost
all the time. In this figure, the x axis defines the time step.
The y axis corresponds to the operating temperature in de-
grees Kelvin.

Algorithm 2 First step Find a first value for εmax

Initialization
Tasco p pres← sortingasc(Top pres)

n← tdiscom f ort_survey
∆tstep

nconsecutive← get_consecutive_tstep(n,Tasc_op pres )

Start
while nconsecutive . ∆tstep < tdiscom f ortsurvey do

nconsecutive← get_consecutive_tstep(n,Tasco p pres)
n← n+1

end while
ε0 ← Tasc_op pres[n]

end

Figure 10. Results of the change from comfort to discomfort in
a household that is almost always cold

Algorithm 3 Find candidate couples εmax

Initialization
nclu← tdiscom f ortsurvey/over∆tstep
i← 0

Start
Tthreshold_op pres← keep_value_below(T _op pres , ε0)
id_min ← local_minium_list(Tthreshold_op pres)
while i < len(id_min) do

minID ← id_min[i]
εmin[i]← Top pres[minID]
maxID← min(minID +nclu, len(Top pres))
E psi ← max(Top pres[minID : maxID ])
εmax[i]← E psi
i ← i + 1

end while
End

3.3 Machine learning results
A data-driven modeling was performed in order to learn
the comfort based on the both real and simulated data.
The inputs considered are the simulations output at each
time step (Radiation temperature, Convective temperature,
presence operative temperature, heat flux emitted by radi-
ators for each rooms, Outdoor temperature ) and sociolog-
ical data from survey (average age of household, average
gender of household). The output of the machine learning
model is a prediction of occupant comfort and discomfort



states.
The dataset was divided into 3 sets (60% on Train, 20%

on Validation and 20% on Test). The training set is used
to train the model and calibrate its parameters, the vali-
dation set is used to prevent the model from overfitting
during the training phase; by monitoring the evolution of
the cost function on both sets. Finally, the test set is used
the evaluate the model performances once the training is
done.

A first version was built, considering the time steps in-
dependent between them. That is, the comfort at a given
time step depends only on the simulated temperatures and
the characteristics of the housing, and does not depend on
the comfort at the time step that precedes it.

Using this configuration, several Machine Learning
(ML) models were trained and tested; including Ensem-
ble models like Random Forest and XGBoost, neural
networks: Multi-Layer-Perceptron (MLP) (Singh et al.
2017).

In a second step, a new version of modeling was built.
It would allow to consider that each comfort value at a
given time step depends on its previous values, in addition
to exogenous variables (temperatures...etc.). For this con-
figuration, a multi-horizon model (Wen et al. 2018) was
tested, consisting of a past horizon and a prediction hori-
zon. This model is particularly well suited for time series
prediction.

For this model, two configurations were compared. A
first one was built using the real values in the past hori-
zon of the model. The second supposes not to know these
real comfort values, and therefore uses only the predicted
values to feed the past horizon comfort values.

In order to train these different models, the CrossEn-
tropy loss (CE) (Q. Wang et al. 2020) was used as a cost
function to minimize during training, it is defined for one
sample as follow:

CE =
C

∑
i = 1

yi× log(pi) (4)

Where C is the total number of classes, yi is the truth
value of the label, and pi the softmax probability for the
ith class.

This loss penalizes the probabilities far from the truth
label. The logarithm gives a large score for large differ-
ences close to 1 and small score for the ones tending to 0.
The total cost is then calculated by averaging the individ-
ual costs obtained for the different samples.

And, to evaluate and compare the different models’ per-
formances, many classification scores were used; includ-
ing precision, recall and F1 score (Erickson and Kitamura
2021) for each class of comfort. Precision represents the
rate of correct predictions, recall represents the rate of pos-
itive samples detected, and the F1 score is a compromise
of these two scores. These scores are defined as follow:

Precision =
T P

T P+FP
(5)

Recall =
T P

T P+FN
(6)

F1 = 2 × Precision×Recall
Precision+Recall

(7)

Where TP represents the number true positives, FP the
number of false positives and FN the number of false neg-
atives. Table 2 and Table 3 illustrate the different classifi-
cation scores evaluated on the test dataset. Table 2 shows
the results obtained using the first modeling configuration
with the three models (RF, XGBoost and MLP).

Table 2. links between questions and variables used to complete
the simulation models

Class Model Precision Recall F1score

Comfort
MLP 0.95 0.98 0.97
XGBoost 0.999 0.999 0.999
Random
Forest

0.999 0.999 0.999

Discomfort
MLP 0.61 0.37 0.46
XGBoost 0.97 0.95 0.96
Random
Forest

0.999 0.999 0.999

Unknown
MLP 1.0 1.0 1.0
XGBoost 1.0 1.0 1.0
Random
Forest

1.0 1.0 1.0

Table 3 shows the results obtained with the second mod-
eling configuration using the multi-horizons model with
its two configurations. The support column represents the
number of test examples used for each class of comfort.

From Table 2, with the first configuration, the ran-
dom forest model performed very promisingly for all three
comfort classes with the different evaluation metrics. This
is likely due to the fit between how the comfort labels
were defined using the thresholds and how a decision tree
(unit of an RF model) works. In addition, a random for-
est model is composed of a set of simple decision trees,
making it accurate and robust on small datasets.

On the other hand, Table 3 shows that with the sec-
ond configuration, the multi-horizon model can also ob-
tain very promising results when it is possible to feed
its past horizon with the actual comfort values. Unfor-
tunately, for this use case, and with the available data, this
configuration cannot be applied because the comfort val-
ues in the past horizon cannot be available for each time
step. Therefore, according to these benchmark results, the
most sweated model for comfort modeling is the random
forest model which is simple and demonstrated very accu-
rate prediction results.



Table 3. Multi-horizons model evaluation
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rt Real values

in past hori-
zon

0.999 0.999 0.999 33550

Recursive
prediction

0.88 0.25 0.39

C
om

fo
rt Real values

in past hori-
zon

0.999 0.999 0.999 124390

Recursive
prediction

0.83 0.99 0.90

U
nk

no
w

n Real values
in past hori-
zon

1.0 1.0 1.0 44220

Recursive
prediction

1.0 1.0 1.0

4 Conclusion
The hybridization of thermal simulation and data-based
modeling addressed the problem of data scarcity and al-
lowed for the inclusion of additional variables not cap-
tured in the survey. Various machine learning models were
trained and tested, with the random forest model perform-
ing best.

This first study considers temperature, convective, and
radiative flux variables. To improve the accuracy and re-
alism of the approach, humidity and air speed parameter
shall be considered. In this context, implementing a Stol-
wijk model (Stolwijk 1971) instead of calculating thresh-
olds on operating temperature would significantly improve
the realism of simulated data. Additionally, integrating a
multi-agent model like the SMACH model (Albouys et al.
2019) developed by EDF would help for making more ac-
curate predictions of comfort. Finally, a more complete
simulation model, modeling air exchanges between each
room, could improve the precision of results.

Lastly, although this approach is promising, it has taken
a long time to develop. A comparison of the cost, qual-
ity, development time and repeatability of the different
approaches would allow to assess which approach is best
suited to the need. The LIPS platform (LEYLI ABADI
et al. 2022) will be used to perform such a benchmark.
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