
Application of the OpenModelica-MATLAB Interface to
Integrated Simulation and Successive Linearization Based Model

Predictive Control

Mohammad Hadi Alizadeh1 Ali M. Sahlodin1 Arunkumar Palanisamy2 Francesco Casella3

Peter Fritzson2

1Process Systems Engineering Laboratory, Department of Chemical Engineering, Amirkabir University of
Technology (Tehran Polytechnic), Iran, {m.hadi,sahlodin}@aut.ac.ir

2Department of Computer and Information Science (IDA), Linköping University, Sweden,
{arunkumar.palanisamy,peter.fritzson}@liu.se

3Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy,
francesco.casella@polimi.it

Abstract
This paper presents the implementation of successive lin-
earization based model predictive control (SLMPC) ef-
forts through the interfacing of OpenModelica and MAT-
LAB using the OMMatlab tool. The dynamic system
(here a chemical process) and the model predictive control
(MPC) algorithm are implemented in OpenModelica and
MATLAB, respectively. The model linearization proce-
dure is carried out through OMMatlab, which is highly op-
timized in terms of run-time by using a single executable
file and adapting it at each sample time. Also, neces-
sary theories for a continuous model discretization are dis-
cussed for both nonlinear Modelica and linearized contin-
uous models. A procedure for constructing an Extended
Kalman Filter (EKF) from a continuous Modelica model
is also presented. The usability of the OpenModelica-
MATLAB interface for SLMPC is demonstrated by con-
trol of liquid levels in a tanks-in-series problem.
Keywords: Model predictive control, OpenModelica, OM-
Matlab, Extended Kalman filter.

1 Introduction
In the recent years, the Modedica language has been
widely used for modeling of systems described by dif-
ferential algebraic equations (DAEs). The object-oriented
nature of Modedica facilitates modular model construc-
tion and the use of powerful solvers as provided by com-
mercial and open source Modedica-based simulators (e.g.,
Dymola, OpenModelica (Fritzson et al. 2020), Jmodel-
ica). Some integrated features such as Optimica (Åkesson
2008) and CasAdi are also supplied for solving dynamic
optimization problems. The reader is referred to (Ruge et
al. 2014; Magnusson and Åkesson 2015) for a thorough
discussion of these topics. Moreover, model predictive
control (MPC) problems have been implemented in Open-
Modelica; see e.g., (Bachmann et al. 2012) for MPC im-
plementation of a batch reactor.

Conventional nonlinear model predictive control
(NMPC) works by predicting the future behavior of a
system and solving a dynamic optimization problem
for minimizing a performance index, e.g., tracking
error or operational cost; see, for example, (Ellis, J.
Liu, and Christofides 2017; Heidarinejad, J. Liu, and
Christofides 2013). Although using a rigorous nonlinear
model increases the prediction accuracy, it leads to
high computational expense (Zhakatayev et al. 2017)
and potential convergence issues in the optimization
routine. Successive linearization MPC (SLMPC) is an
efficient alternative to NMPC (Seki, Ooyama, and Ogawa
2002; Cannon, Ng, and Kouvaritakis 2009; Cortinovis
et al. 2014; C. Liu et al. 2015), especially in large-scale
applications. In this method, the nonlinear model of
the system is linearized successively at each sample
time, and the prediction model is updated over time to
preserve the prediction accuracy (Vrlić, Ritzberger, and
Jakubek 2020). As a result of using a linear model, the
dynamic optimization can be performed faster, favoring
SLMPC over NMPC for large-scale systems in terms of
computational expense, although the prediction accuracy
may be undermined to some extent.

Many dynamic optimization or MPC efforts using
Modelica models are reported in the literature. Franke
(2002) employed Modelica to study optimal startup of a
power plant, in which Dymola was used for generating S-
Functions that would be imported into Simulink. Gräber
et al. (2012) proposed a framework based on functional
mockup interface generated from Modelica models for im-
plementing NMPC on a vapor compression cycle. Also,
L. Imsland, P. Kittilsen, and T. Schei (2010) integrated
Dymola models into commercial software designed for
NMPC and did a case study with an offshore oil and gas
processing plant. Pandey et al. (2021a) employed OMJu-
lia (Lie et al. 2019) for stochastic MPC of solar and hy-
dropower plants described by a set of small-scale DAEs.
Pandey et al. (2021b) implemented MPC for a power grid

system, where a small-scale model was implemented in
OpenModelica as the actual plant, and a separate model
was developed in Julia for use in the control algorithm
that included an unscented Kalman filter for the state esti-
mation. OMJulia was used for interfacing OpenModelica
with Julia. Also, when it comes to optimal control prob-
lems that require a linearized model, Jmodelica can of-
fer a tool for linearizing the nonlinear model of the plant.
Jmodelica supplies the interfacing capability with Python,
enabling it to integrate Jmodelica simulation, optimiza-
tion, and linearization features and design MPC problems
that need linearization. It is possible to interact with the
Modelica models and functional mockup units through
IPython, a command shell for the programming environ-
ment (Andersson et al. 2018). The interested readers are
referred to, e.g., ((Romero, Goldar, and Garone 2019; Pip-
pia et al. 2021; Lars Imsland, Pål Kittilsen, and T. S. Schei
2009; Jorissen, Boydens, and Helsen 2019)) for other dy-
namic optimization studies involving Modelica models.

The use of engineering software such as MATLAB for
Modelica models offers easy implementation for algo-
rithm prototyping. However, a challenge in the applica-
tion of MPC for Modelica models is the computational
cost of interfacing the Modelica software with engineer-
ing software such as MATLAB. This is particularly true
in case of SLMPC, where repeated model linearization
through Jacobian calculations is required. The computa-
tional cost can grow quickly for large-scale models, mak-
ing it prohibitively expensive to apply SLMPC or similar
algorithms through interfacing of Modelica models with
MATLAB or other engineering software. Therefore, the
procedure needs to be carried out decently ensuring that
the Jacobian calculations are undertaken in a time-efficient
manner.

In this paper, efficient implementation of SLMPC for
Modelica models in OpenModelica is addressed. In par-
ticular, the dynamic model of the system (serving as the
virtual plant) is implemented in OpenModelica. Also,
OMMatlab (OpenModelica 2021) is used to take control
of the model simulation and make an interconnection be-
tween MATLAB and the OpenModelica model, which is
transformed into an executable file. Moreover, the OM-
Matlab linearization method is enhanced to operate con-
siderably faster than its older version, making the new ver-
sion more favorable for large-scale SLMPC.

These enhancements can also be implemented for other
OpenModelica interfaces such as OMOctave, OMPython,
and OMJulia so they can support efficient prototyping
of advanced control algorithms requiring successive lin-
earization.

The rest of the paper is structured as follows. In sec-
tion 2, the general structure of the SLMPC problem is
briefly introduced. In section 3, the method of assem-
bling the discrete system model from its continuous form
is presented. Section 4 discusses the details of the linear
prediction model, the pertinent theories, and the enhance-
ments made to OMMatlab to boost the linearization pro-

cess. The state estimator design algorithm is discussed in
section 5. In section 6, the dynamic optimization problem
solved at each sample time is formulated. A case study of
the SLMPC implementation is demonstrated in section 7.
Finally, the paper is concluded in section 8.

2 Overview of Problem Blocks
As depicted in Figure 1, the problem under study includes
an often nonlinear model that represents the actual phys-
ical system (here a chemical plant). Some of the plant
variables are measured at every sample time. Since mea-
suring all the variables is impractical, a state estimator is
used to estimate the unmeasured state variables. These
values are used to initialize the prediction model, which
is a linearized form of the nonlinear model updated at
each sample time. It is also possible to increase the fre-
quency of prediction model updates by regenerating the
linear model at each step over the prediction horizon in-
stead of updating it only at the beginning of each sample
time. The optimal control inputs are calculated over the
prediction horizon by minimizing the objective function
(e.g., the cumulative tracking error). Then, the first ele-
ment of the optimal input trajectory is passed to the plant,
and the procedure is repeated in the next sample time. The
building blocks of the SLMPC are detailed in the follow-
ing subsections.

3 System Model
The plant model is represented in a continuous, nonlinear,
time-invariant state-space form as

ẋ = f (x,u) (1)
y = g(x,u) (2)

where x ∈ Rnx is the set of nx system states, u ∈ Rnu

is the vector of nu control inputs, y ∈ Rny is the vec-
tor of ny system outputs, f = [f1, f2, f3, ..., fnx] and g =
[g1,g2,g3, ...,gny] are the sets of equations describing the
state evolution and outputs of the system, respectively.
OpenModelica automatically generates these functions
from a high-level, object-oriented, equation-based model
description, and can simulate the nonlinear model and
generate an executable file that will be used for the state
estimator and prediction model. The existing features of
OMMatlab allow the user to take control of the executable
file and overwrite the simulation setup and model param-
eters from MATLAB.

Equation 1 is converted to a discrete state-space form
with additive white Gaussian noise for process states and
measurements. This is done by the methodology pre-
sented in (Brembeck 2019; Brembeck, Otter, and Zim-
mer 2011), the implementation of which is adapted to
the MATLAB-OpenModelica environment. The discrete
form reads

Plant

Prediction

Model

Optimizer

Model Predictive Controller

State Estimator

Reference

Trajectories
Manipulated

Variables

Measured OutputsEstimated States

Outputs

Figure 1. A general schematic of the MPC blocks.

xk = fk|k−1 +wk−1 (3)

fk|k−1 = xk−1 +
∫ tk

tk−1

f (x,u)dt (4)

yk = g(xk,uk)+ vk (5)
E[wk] = 0 (6)
E[vk] = 0 (7)

E[wkwT
k] = Qk (8)

E[vkvT
k] = Rk, (9)

where wk and vk are additive process and measurement
noises, respectively; and Qk and Rk denote the process and
measurement noise covariance matrices, respectively.

The LHS of Equation 4 is computed by integration of
the system over one sample time. In the continuous model
implemented in OpenModelica, initial state values (de-
fined in the initial equation section) are set para-
metrically so that the initial values can be overwritten and
Equation 4 can be evaluated from MATLAB at each sam-
ple time. This is illustrated in Listing 1 for an arbitrary
continuous Modelica model.

Listing 1. Continuous system model in Modelica

model List1
...
parameter Real x1_In;
parameter Real x2_In;
...
input Real u1;
input Real u2;
...
output Real y1;
output Real y2;
...
Real x1;
Real x2;
...
initial equation
x1=x1_In;
x2=x2_In;
...
equation
...

end List1;

The initial conditions xk−1 could be set from MATLAB by
the setParameters() method of OMMatlab. Similarly,
the system inputs uk−1 are specified by the setInputs()
method. Finally, the integration in Equation 4 is per-
formed over one sample time using built-in OpenModelica
solvers such as DASSL and IDA.

4 Prediction Model
The system linearization required for the prediction model
and its implementation are described in this section.

4.1 System linearization
Equation 1 and Equation 2 can be linearized around an
arbitrary operating point (xop,uop) by using the first-order
Taylor expansion as follows.

ẋ = f (xop,uop)+Ac(x− xop)+Bc(u−uop) (10)
y = g(xop,uop)+Cc(x− xop)+Dc(u−uop), (11)

where

Ac =
∂ f
∂x

=

∂ f1(x)

∂x1
· · · ∂ f1(x)

∂xnx
...

. . .
...

∂ fnx(x)
∂x1

· · · ∂ fnx(x)
∂xnx

 (12)

Similarly, Bc =
∂ f
∂u

=, Cc =
∂g
∂x

, and Dc =
∂g
∂u

.
Considering Equation 1 and Equation 2, the bias values
are

f (xop,uop) =
dx
dt

∣∣∣∣
(x,u)=(xop,uop)

(13)

g(xop,uop) = y|(x,u)=(xop,uop)
(14)

Therefore, it is possible to construct continuous linearized
models by having Ac, Bc, Cc, Dc, and the bias values.
OMMatlab can provide all these matrices along with (ẋ,
y) at any specific simulation time by the linearize()

and getSolutions() methods. Equation 10 and Equa-
tion 11 can then be expressed as

ẋ = Acx+Bcu+Kxc (15)
y =Ccx+Dcu+Kyc, (16)

where Kxc = (f (xop,uop)−Acxop −Bcuop), and Kyc =
(g(xop,uop)−Ccxop −Dcuop). The continuous linearized
model can be discretized for a given sample time Ts as (see
(Zhakatayev et al. 2017; Vrlić, Ritzberger, and Jakubek
2020) for a detailed proof).

xk+1 = Adxk +Bduk +Kxd (17)
yk =Cdxk +Dduk +Kyd , (18)

in which

Ad = eAcTs (19)

Bd = A−1
c (eAcTs − I)Bc (20)

Kxd = A−1
c (eAcTs − I)Kxc (21)

and Cd =Cc, Dd = Dc, and Kyd =Kyc.

4.2 Improving OMMatlab for successive lin-
earization

Repeated linearization of a nonlinear dynamic model
was computationally inefficient in the previous OMMat-
lab distributions. For example, a single invocation of
the linearize() method for a system of DAEs with
about 1100 equations took around 420 seconds on an In-
tel Core i5 7200U CPU. This would make implementation
of SLMPC impractical as the linearization task should be
performed at every sample time. The leading cause for
this inefficiency was that the OpenModelica model had to
be recompiled each time the linearize() command was
called. The resulting linearized model had to be rebuilt to
create an XML file so that the values of matrices could be
extracted into MATLAB.

To solve this problem, OMMatlab is edited by the au-
thors so that the initial executable file can be adapted
and used in all invocations without being recompiled.
Moreover, instead of using the time-consuming pertur-
bation and finite differences for Jacobian approximation,
the built-in automatic differentiation algorithm (invoked
by the -generateSymbolicLinearization flag) is
employed for exact linearization and construction of the
model matrices (Braun, Ochel, and Bachmann 2011). The
generated linearized model is populated in a .m file, from
which the matrix values are read. With these improve-
ments, a single invocation of the linearize() command
for the same DAE system now takes only a fraction of
a second, which is a remarkable computational enhance-
ment. This improvement can benefit any application re-
quiring nonlinear Modelica model linearization through
MATLAB, including SLMPC.

5 State Estimator
The extended Kalman filter (EKF) is used for state estima-
tion. An EKF for Modelica models can be implemented in
MATLAB based on the approach presented in (Brembeck
2019). The EKF uses linearization for state and measure-
ment covariance propagation. The prediction and correc-
tion steps of the EKF for Equation 3 to Equation 5 proceed
as follows.

• Prediction:

x̂−k = fk|k−1(x
+
k−1,uk−1) (22)

Fk−1 = exp(
∂ f
∂x

|x+k−1
.Ts) (23)

P−
k = Fk−1P+

k−1FT
k−1 +Q (24)

• Correction:

Gk =
∂g
∂x

|x−k (25)

Kk = P−
k GT

k .(GkP−
k GT

k +R)−1 (26)

x̂+k = x−k +Kk(ym
k −g(x−k)) (27)

P+
k = (I −Kk.Gk).P−

k , (28)

where the − and + superscripts respectively denote the
predicted and corrected values. The EKF is initialized by
setting x̂+0 and P+

0 to arbitrary or approximate values. It
should be noted that the required Jacobian values Fk−1 and
Gk can be calculated easily by a call to the linearize()
method through OMMatlab.

6 Optimization Problem
MPC solves the following general optimization problem
at the k-th sample time.

min
r∈U

Jk(X ,r) (29)

s.t. Xk+i = h(Xk+i−1,rk+i−1), i = 1, . . . ,NHp (30)

M(X ,r)≤ 0 (31)
S(X ,r) = 0 (32)

Xk = x̂+k , (33)

where Jk is the objective function optimized over the pre-
diction horizon Hp. Note that NHp =

Hp
Ts

. The decision
variable set r is the trajectory of control inputs. Also, in
order to reduce the computational cost, the control horizon
is set as Hc <Hp, and rk+NHc

= rk+NHc+1 = · · ·= rk+NHp−1,

with NHc =
Hc
T s . The function h describes the discrete state

evolution that is used for prediction. Also, M and S are
the inequality and equality constraints, respectively, and
Xk is the estimated current state vector used to initialize
the prediction model.

The MPC objective can be a tracking index, an eco-
nomic index, or a combination of the two; see e.g., (Hei-
darinejad, J. Liu, and Christofides 2013; Ellis, J. Liu,

Objective function

Calculation

Discrete

Model

Input(s) generation

using parameters

Constraint(s)

Evaluation
Optimizer

Figure 2. Sequential dynamic optimization method.

and Christofides 2017). In this work, the dynamic opti-
mization problem is solved using the sequential method
(Chachuat 2009), where the control input trajectories are
parameterized (usually in a piece-wise constant manner),
and the dynamic model and the nonlinear optimization
problem are solved in sequence as shown in Figure 2. This
work uses the active-set optimization algorithm to solve
the nonlinear optimization problem.

7 Case Study
A tracking SLMPC is implemented for a system of three
interconnected cylindrical tanks as depicted in Figure 3.
The flow rates of the three inlet streams are considered
the control inputs. The outlet flow rates of the tanks are
the measured outputs, and the tanks’ liquid levels are re-
garded as the system states being estimated by the EKF.
The tanks are empty at the initial time, and the control
scenario is to move the tank levels to a specific set point
by adjusting the inlet flow rates. The continuous dynamic
model describing the system is as follows.

ḣ1 =
qin1 −qo1

A1
(34)

ḣ2 =
qo1 +qin2 −qo2

A2
(35)

ḣ3 =
qo2 +qin3 −qo3

A3
(36)

qo1 =Cv
√

h1 −h2 (37)

qo2 =Cv
√

h2 −h3 (38)

qo3 =Cv
√

h3 (39)

where A1, A2, and A3 are the vessel cross-section areas,
Cv is the valve coefficient; qin1, qin2, and qin3 are the volu-
metric flow rates of the inlet streams, and qo1, qo2, and qo3
are the volumetric flow rates of the outlet streams. In case
of reverse flow through the valves, the square root term in
the valve equations becomes negative, leading to a com-
plex number and solver failure. To avoid this situation and
preserve local Lipschitz continuity, the valve equations are
regularized as (Barton, Banga, and Galán 2000; Sahlodin

2022; Casella 1998)

qo1 =Cv
h1 −h2√

|h1 −h2|+ ε
(40)

qo2 =Cv
h2 −h3√

|h2 −h3|+ ε
(41)

qo3 =Cv
h3√

|h3|+ ε
, (42)

where ε > 0. Let A1 = A2 = A3 = 1m2 and Cv = 0.5. The
model nonlinearity comes from the outlet stream equa-
tions. Also, the desired set points for the tank levels are
hsp = [0.56,0.52,0.36]T . For the dynamic optimization
given in Equation 29, the following quadratic tracking ob-
jective function with control move penalization is defined.

Jk =

NHp

∑
i=1

(hk+i −hsp
k+i)

T .W1.(hk+i −hsp
k+i)+∆rT

k+i−1.W2.∆rk+i−1

(43)

The weighting factors W1 and W2 are positive-definite
matrices set as

W1 =

 1 0 0
0 1 0
0 0 1

 , W2 =

 18 0 0
0 18 0
0 0 18

Also, the following path constraints are added to avoid

reverse flow between the tanks.

NHp

∑
i=1

max(0,−qo1(k+ i))≤ δ (44)

NHp

∑
i=1

max(0,−qo2(k+ i))≤ δ , (45)

where δ > 0 is a small regularization parameter (Chachuat
2009). The system is simulated for a time span of 50
minutes with sampling time of 6 seconds. The predic-
tion and the control horizons are set to Hp = 1.5 and
Hc = 1 min, respectively. The control inputs are bounded
as 0 ≤ qin1, qin2, qin3 ≤ 0.3. Note that a discretized lin-
ear model is applied as the prediction model is updated at
each sample time.

The results of the SLMPC are presented in the sequel.
Figure 4 shows trajectories of the measured outlet flow
rates that are used to estimate the tank levels.

Figure 5 depicts the actual and estimated trajectories of
the tank levels. The initial guess for the state estimator
is ĥ+0 = [0.1, 0.1, 0.1]T , which is different than the actual
values h0 = [0, 0, 0]T . Despite this difference, the EKF
is able to track the actual state trajectories successfully.
It is also seen that the actual tank levels approach the set
points shortly after the SLMPC is executed. The optimal

qi1

h1
qo3

h2 h3
qo2qo1

State Estimator (EKF)

Prediction

Model

Optimizer

SLMPC

Set Points

qi2

qi3

Figure 3. Schematic of the system with the SLMPC and estimator blocks.

0 5 10 15 20 25 30 35 40 45 50

Time (min)

0

0.1

0.2

F

lo
w

 (
m

3
/m

in
) q

o1

Measured-Value

0 5 10 15 20 25 30 35 40 45 50

Time (min)

0

0.1

0.2

F

lo
w

 (
m

3
/m

in
) q

o2

Measured-Value

0 5 10 15 20 25 30 35 40 45 50

Time (min)

0

0.2

0.4

F

lo
w

 (
m

3
/m

in
) q

o3

Measured-Value

Figure 4. Measured system outputs.

control inputs are plotted in Figure 6. It is observed that
the control inputs are slightly oscillatory as a result of the
process noise.

It is worth noting that the total simulation takes only 25
minutes by the enhanced OMMatlab, while it would take
around 7 hours when employing the previous OMMatlab
versions. This proves that the linearization part is the main
bottleneck in the SLMPC procedure.

The code for the case-study presented in this
manuscript can be found on GitHub at https://
github.com/pseAUT/SLMPC_OMMatlab.

8 Conclusion
The implementation of the SLMPC algorithm using Open-
Modelica and MATLAB has been demonstrated in this
paper. The OMMatlab API is upgraded to avoid re-
peated compilation of the OpenModelica model into an
executable file at each sample time. In this way, the sys-
tem can be linearized efficiently and the model matrices

0 10 20 30 40 50 60

Time (min)

0

0.5

L
e
v
e
l(
m

)

h
1

Real-Value

Estimated-Value

Set Point

0 10 20 30 40 50 60

Time (min)

0

0.5

L
e
v
e
l(
m

)

h
2

Real-Value

Estimated-Value

Set Point

0 10 20 30 40 50 60

Time (min)

0

0.5

L
e
v
e
l(
m

)

h
3

Real-Value

Estimated-Value

Set Point

Figure 5. Actual and estimated system states.

0 5 10 15 20 25 30 35 40 45 50

Time (min)

0

0.1

0.2

F

lo
w

 (
m

3
/m

in
) q

in1

0 5 10 15 20 25 30 35 40 45 50

Time (min)

0

0.1

0.2

F

lo
w

 (
m

3
/m

in
) q

in2

0 5 10 15 20 25 30 35 40 45 50

Time (min)

0

0.1

0.2

F

lo
w

 (
m

3
/m

in
) q

in3

Figure 6. Optimal control inputs.

can be obtained directly in a .m file, thanks to the exist-
ing OpenModelica flags that make it possible to gener-
ate the linearized model in different formats. Therefore,
the successive linearization runtime is optimized consid-

https://github.com/pseAUT/SLMPC_OMMatlab
https://github.com/pseAUT/SLMPC_OMMatlab

erably. These enhancements can be implemented on other
OpenModelica interfaces such as OMOctave, OMPython,
and OMJulia to facilitate fast prototyping of control algo-
rithms that require successive linearization.

References
Åkesson, Johan (2008). “Optimica—an extension of modelica

supporting dynamic optimization”. In: In 6th International
Modelica Conference. Citeseer, pp. 57–66.

Andersson, Christian et al. (2018). JModelica.org User Guide.
English. Version Version 2.2. Modelon AB.

Bachmann, Bernhard et al. (2012). “Parallel multiple-shooting
and collocation optimization with openmodelica”. In: Pro-
ceedings of the 9th International MODELICA Conference;
September 3-5; 2012; Munich; Germany. 076. Linköping
University Electronic Press, pp. 659–668.

Barton, P.I., J.R. Banga, and S. Galán (2000). “Optimization
of hybrid discrete/continuous dynamic systems”. In: Com-
put. Chem. Eng 24.9, pp. 2171–2182. ISSN: 0098-1354. DOI:
https : / / doi . org / 10 . 1016 / S0098 - 1354(00) 00586 - X.
URL: http : / / www. sciencedirect . com / science / article / pii /
S009813540000586X.

Braun, Willi, Lennart Ochel, and Bernhard Bachmann
(2011). “Symbolically derived Jacobians using automatic
differentiation-enhancement of the OpenModelica compiler”.
In: Proceedings of the 8th International Modelica Confer-
ence; March 20th-22nd; Technical Univeristy; Dresden; Ger-
many. 063. Linköping University Electronic Press, pp. 495–
501.

Brembeck, Jonathan (2019). “A Physical Model-Based Ob-
server Framework for Nonlinear Constrained State Estima-
tion Applied to Battery State Estimation”. In: Sensors 19.20.
ISSN: 1424-8220. DOI: 10 . 3390 / s19204402. URL: https : / /
www.mdpi.com/1424-8220/19/20/4402.

Brembeck, Jonathan, Martin Otter, and Dirk Zimmer (2011).
“Nonlinear observers based on the functional mockup in-
terface with applications to electric vehicles”. In: Proceed-
ings of the 8th International Modelica Conference; March
20th-22nd; Technical Univeristy; Dresden; Germany. 63.
Linköping University Electronic Press, pp. 474–483.

Cannon, Mark, Desmond Ng, and Basil Kouvaritakis (2009).
“Successive linearization NMPC for a class of stochastic non-
linear systems”. In: Nonlinear model predictive control: to-
wards new challenging applications, pp. 249–262.

Casella, Francesco (1998). “Modeling, simulation and control of
a geothermal power plant”. PhD thesis. Politecnico di Milano,
Italy, p. 72.

Chachuat, B.C. (2009). Nonlinear and Dynamic Optimization:
From Theory to Practice - IC-32: Spring Term 2009. Poly-
copiés de l’EPFL. EPFL. URL: http : / / books . google . com /
books?id=%5C_JOHYgEACAAJ.

Cortinovis, Andrea et al. (2014). “Safe and efficient operation
of centrifugal compressors using linearized MPC”. In: 53rd
IEEE Conference on Decision and Control. IEEE, pp. 3982–
3987.

Ellis, Matthew, Jinfeng Liu, and Panagiotis D. Christofides
(2017). “Two-Layer EMPC Systems”. In: Economic Model
Predictive Control: Theory, Formulations and Chemical Pro-
cess Applications. Cham: Springer International Publishing,
pp. 171–232. ISBN: 978-3-319-41108-8. DOI: 10.1007/978-
3-319-41108-8_6. URL: https://doi.org/10.1007/978-3-319-
41108-8_6.

Franke, Rüdiger (2002). “Formulation of dynamic optimiza-
tion problems using Modelica and their efficient solution”.
In: Proceedings 2nd International Modelica Conference,
pp. 315–323.

Fritzson, Peter et al. (2020). “The OpenModelica Integrated En-
vironment for Modeling, Simulation, and Model-Based De-
velopment”. In: Modeling, Identification and Control 41.4,
pp. 241–295. DOI: 10.4173/mic.2020.4.1.

Gräber, Manuel et al. (2012). “Using functional mock-up units
for nonlinear model predictive control”. In: Proceedings of
the 9th International MODELICA Conference; September 3-
5; 2012; Munich; Germany. 076. Linköping University Elec-
tronic Press, pp. 781–790.

Heidarinejad, Mohsen, Jinfeng Liu, and Panagiotis D.
Christofides (2013). “Algorithms for improved fixed-
time performance of Lyapunov-based economic model
predictive control of nonlinear systems”. In: Journal of
Process Control 23.3, pp. 404–414. ISSN: 0959-1524.
DOI: https : / / doi . org / 10 . 1016 / j . jprocont . 2012 . 11 . 003.
URL: https : / / www. sciencedirect . com / science / article / pii /
S0959152412002545.

Imsland, L., P. Kittilsen, and T.S. Schei (2010). “odel-Based Op-
timizing Control and Estimation Using Modelica Model”. In:
Modeling, Identification and Control: A Norwegian Research
Bulletin 31.3, pp. 107–121. DOI: 10.4173/mic.2010.3.3. URL:
https://doi.org/10.4173/mic.2010.3.3.

Imsland, Lars, Pål Kittilsen, and Tor Steinar Schei (2009). “Us-
ing modelica models in real time dynamic optimization–
gradient computation”. In: Proc. of Modelica.

Jorissen, F., W. Boydens, and L. Helsen (2019). “TACO, an auto-
mated toolchain for model predictive control of building sys-
tems: implementation and verification”. In: Journal of Build-
ing Performance Simulation 12.2, pp. 180–192. eprint: https:
/ / doi . org / 10 . 1080 / 19401493 . 2018 . 1498537. URL: https :
//doi.org/10.1080/19401493.2018.1498537.

Lie, Bernt et al. (2019). “Omjulia: An openmodelica api for
julia-modelica interaction”. In: Proceedings of the 13th Inter-
national Modelica Conference, Regensburg, Germany, March
4–6, 2019. 157. Linköping University Electronic Press.

Liu, Changchun et al. (2015). “Stochastic predictive control
for lane keeping assistance systems using a linear time-
varying model”. In: 2015 American Control Conference
(ACC). IEEE, pp. 3355–3360.

Magnusson, Fredrik and Johan Åkesson (2015). “Dynamic Op-
timization in JModelica.org”. In: Processes 3.2, pp. 471–496.
ISSN: 2227-9717. DOI: 10 . 3390 / pr3020471. URL: https : / /
www.mdpi.com/2227-9717/3/2/471.

OpenModelica (2021). https : / / openmodelica . org / doc /
OpenModelicaUsersGuide/1.16. Accessed: 2023-07-23.

Pandey, Madhusudhan et al. (2021a). “Formulation of Stochastic
MPC to Balance Intermittent Solar Power with Hydro Power
in Microgrid”. In: The First SIMS EUROSIM Conference on
Modelling and Simulation, SIMS EUROSIM 2021.

Pandey, Madhusudhan et al. (2021b). “Using MPC to Balance
Intermittent Wind and Solar Power with Hydro Power in Mi-
crogrids”. In: Energies 14.4. ISSN: 1996-1073. DOI: 10.3390/
en14040874. URL: https://www.mdpi.com/1996-1073/14/4/
874.

Pippia, Tomas et al. (2021). “Scenario-based nonlinear model
predictive control for building heating systems”. In: Energy
and Buildings 247, p. 111108. ISSN: 0378-7788. DOI: https:
//doi.org/10.1016/j.enbuild.2021.111108. URL: https://www.
sciencedirect.com/science/article/pii/S0378778821003923.

https://doi.org/https://doi.org/10.1016/S0098-1354(00)00586-X
http://www.sciencedirect.com/science/article/pii/S009813540000586X
http://www.sciencedirect.com/science/article/pii/S009813540000586X
https://doi.org/10.3390/s19204402
https://www.mdpi.com/1424-8220/19/20/4402
https://www.mdpi.com/1424-8220/19/20/4402
http://books.google.com/books?id=%5C_JOHYgEACAAJ
http://books.google.com/books?id=%5C_JOHYgEACAAJ
https://doi.org/10.1007/978-3-319-41108-8_6
https://doi.org/10.1007/978-3-319-41108-8_6
https://doi.org/10.1007/978-3-319-41108-8_6
https://doi.org/10.1007/978-3-319-41108-8_6
https://doi.org/10.4173/mic.2020.4.1
https://doi.org/https://doi.org/10.1016/j.jprocont.2012.11.003
https://www.sciencedirect.com/science/article/pii/S0959152412002545
https://www.sciencedirect.com/science/article/pii/S0959152412002545
https://doi.org/10.4173/mic.2010.3.3
https://doi.org/10.4173/mic.2010.3.3
https://doi.org/10.1080/19401493.2018.1498537
https://doi.org/10.1080/19401493.2018.1498537
https://doi.org/10.1080/19401493.2018.1498537
https://doi.org/10.1080/19401493.2018.1498537
https://doi.org/10.3390/pr3020471
https://www.mdpi.com/2227-9717/3/2/471
https://www.mdpi.com/2227-9717/3/2/471
https://openmodelica.org/doc/OpenModelicaUsersGuide/1.16
https://openmodelica.org/doc/OpenModelicaUsersGuide/1.16
https://doi.org/10.3390/en14040874
https://doi.org/10.3390/en14040874
https://www.mdpi.com/1996-1073/14/4/874
https://www.mdpi.com/1996-1073/14/4/874
https://doi.org/https://doi.org/10.1016/j.enbuild.2021.111108
https://doi.org/https://doi.org/10.1016/j.enbuild.2021.111108
https://www.sciencedirect.com/science/article/pii/S0378778821003923
https://www.sciencedirect.com/science/article/pii/S0378778821003923

Romero, Alberto, Alejandro Goldar, and Emanuele Garone
(2019). “A Model Predictive Control Application for a Con-
strained Fast Charge of Lithium-ion Batteries”. In: Interna-
tional Modelica Conference.

Ruge, Vitalij et al. (2014). “Efficient implementation of col-
location methods for optimization using openmodelica and
ADOL-C”. In: Proceedings of the 10 th International Mod-
elica Conference; March 10-12; 2014; Lund; Sweden. 096.
Linköping University Electronic Press, pp. 1017–1025.

Sahlodin, Ali M (2022). “Optimally safe tank changeover op-
eration using a smooth optimization formulation”. In: ACS
omega 7.39, pp. 34974–34989.

Seki, Hiroya, Satoshi Ooyama, and Morimasa Ogawa (2002).
“Nonlinear Model Predictive Control Using Successive Lin-
earization Application to Chemical Reactors”. In: Transac-
tions of the society of instrument and control engineers 38.1,
pp. 61–66.

Vrlić, Martin, Daniel Ritzberger, and Stefan Jakubek (2020).
“Safe and Efficient Polymer Electrolyte Membrane Fuel Cell
Control Using Successive Linearization Based Model Predic-
tive Control Validated on Real Vehicle Data”. In: Energies
13.20. ISSN: 1996-1073. DOI: 10 . 3390 / en13205353. URL:
https://www.mdpi.com/1996-1073/13/20/5353.

Zhakatayev, Altay et al. (2017). “Successive linearization
based model predictive control of variable stiffness actu-
ated robots”. In: 2017 IEEE International Conference on Ad-
vanced Intelligent Mechatronics (AIM), pp. 1774–1779. DOI:
10.1109/AIM.2017.8014275.

https://doi.org/10.3390/en13205353
https://www.mdpi.com/1996-1073/13/20/5353
https://doi.org/10.1109/AIM.2017.8014275

	Introduction
	Overview of Problem Blocks
	System Model
	Prediction Model
	System linearization
	Improving OMMatlab for successive linearization

	State Estimator
	Optimization Problem
	Case Study
	Conclusion

