
Pseudo Array Causalization

Karim Abdelhak1 Francesco Casella2 Bernhard Bachmann1

1Faculty of Engineering and Mathematics, University of Applied Sciences Bielefeld, Germany
{karim.abdelhak,bernhard.bachmann}@hsbi.de

2Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy
francesco.casella@polimi.it

Abstract
In the current state-of-the-art modeling tools for simula-
tion, it is common to describe system behavior symbol-
ically using mixed continuous and discrete differential-
algebraic equations, so called hybrid DAEs. To correctly
resolve higher index problems, hybrid systems and to ef-
ficiently use ODE solvers, a matching and sorting prob-
lem has to be solved, commonly referred to as Causaliza-
tion. Typically multidimensional equations and variables
are scalarized, which leads to excessive build time and
generated code size in the case of large systems. In the
following paper an algorithm will be presented, that pre-
serves array structures as much as possible while still solv-
ing the problem of causalization in scalar fashion. Test
results carried out in the OpenModelica tool show a re-
duction in build time of one/two orders of magnitude and
a reduction by a factor of two/three in the simulation run
time for models of the ScalableTestSuite library.
Keywords: array preservation, causalization, matching,
sorting, large scale

1 Introduction
The simulation of complex physical systems typically re-
quires the handling of large systems of hybrid differential-
algebraic equations. To model such systems the object-
oriented equation based language Modelica was devel-
oped. The development of Modelica drastically decreased
the amount of work necessary to simulate a model based
on these so called hybrid DAEs. Necessary steps such as
causalization, index reduction and consistent initialization
have been automated using symbolic transformation.

The results of this publication have been implemented
in the OpenModelica Compiler (Fritzson et al. 2020),
which is able to compile and simulate models from differ-
ent domains, such as mechanics, electrics, fluids (Braun et
al. n.d.) biology (Proß and Bachmann 2011; Kofránek et
al. 2010) or power systems (Casella, Leva, and Bartolini
2017; Qi 2014; Viruez et al. 2017). Generally, it is de-
signed to simulate any model that can be described with a
system of hybrid DAEs. Theoretical background and def-
initions for differential-algebraic equations can be found
in (Mattheij and Molenaar 2002). The goal, is to create
a holistic environment for modeling and simulation to be
used for teaching, research and in the industry.

2 State of the Art
Current simulation tools based on the modeling language
Modelica scalarize the equations and variables of a system
to apply scalar methods of causalization and symbolic ma-
nipulations. This has major drawbacks, mainly revolving
around computation time and memory usage. Besides the
approach of scalarization, there has been work published
with similar intentions to this paper (Otter and Elmqvist
2017; Neumayr and Otter 2023; Zimmermann, Fernán-
dez, and Kofman 2020).

The work of (Otter and Elmqvist 2017) focusses around
reducing a model containing array equations to index-1
form using index-reduction methods, without having to
scalarize. Although index reduction will not be covered in
this paper, it is expected to be able to apply scalar methods
for index reduction using pseudo array causalization.

Methods presented in (Neumayr and Otter 2023) allow
the size of generated arrays to be changed after code gen-
eration. These ideas are not part of this paper, but the
idea of generalized for-equations will be expanded in fu-
ture work to for-equations of variable size.

The approach of (Zimmermann, Fernández, and Kof-
man 2020) presents a new algorithm that adapts the idea
of scalarized matching and expands it to set-based graphs.
Array structures are preserved as much as possible and
only split up during the process of matching if no other
solution can be found.

This paper focusses on providing a solution that is ap-
plicable without language restrictions while retaining the
most compact array form possible. The core algorithms
of matching and sorting are not expected to be bottlenecks
in computation time and are performed using scalar meth-
ods, while having all other symbolic manipulation meth-
ods operate on array structures. The test results shown in
section 6 support this assumption.

3 Causalization
Solving hybrid differential algebraic systems of equations
requires the process of causalization, also known as BLT-
Transformation1, to ensure that

a. high differential index problems (index > 1) can be
resolved

1BLT: Block-Lower-Triangular

b. the dependencies involving discrete equations and
variables are found.

c. causalized systems can be simulated far more effi-
ciently due to explicit assignments instead of a large
implicit system. Exceptions prove the rule of course
(Henningsson, Olsson, and Vanfretti 2019).

BLT-Transformation mainly consists of three steps,
Matching, Index-Reduction and Sorting.

3.1 Scalarization
Before being able to perform scalar BLT-Transformation
on a system of variables and equations, they need to be
scalarized. Modelica offers comfortable ways of defining
multiple equations at once, such as for-equations:

for i in 1:N loop
der(x[i]) = i * sin(time);

end for;

Scalarizing this for-equation leads to following equations

der(x[1]) = 1 * sin(time);
der(x[2]) = 2 * sin(time);
...
der(x[N]) = N * sin(time);

which scales with the size of N. This currently is common
practice among Modelica tools. Scalarization increases
the computation time unnecessarily, as symbolic manipu-
lation on the body is done N times instead of only once
on the body equation. However, for current methods of
Causalization this step is necessary.

Instead of scalarization, for-equations and array-
equations will be converted into canonical form, which is
further explained in 5.

3.2 Matching
The first step to the process of causalization is matching.
The goal is to find an equation for each variable in which
it can be solved. Note that this is only a theoretical as-
signment, in the sense that these assignments can also be
either ambiguous, resulting in an algebraic loop, or only
implicitly solvable in the first place.

A system of equations can be understood as a bipar-
tite graph, where one set of nodes represents the equations
and the other set represents the unknowns for which the
system has to be solved. Edges in that graph show vari-
able incidences in equations. The goal of matching al-
gorithms is to find a perfect matching, which is achieved
by assigning each variable uniquely to an equation such
that each variable and each equation is assigned only once.
This matching problem was analyzed thoroughly and the
most commonly used algorithm to solve it is the Ford-
Fulkerson (or maximum flow) algorithm, first described in
(Ford and Fulkerson 1956). The OpenModelica-Compiler
has a large selection of different matching algorithms, of
which Pothen and Fan’s algorithm (PF+) was selected to
be the default (Duff, Kaya, and Uçcar 2012; Kaya et al.
2011).

3.3 Sorting
After a perfect matching has been found, the process of
sorting determines the order in which to execute those
assignments. The order, once again, can be ambiguous,
depending on the system. Furthermore, sets of equa-
tions which have to be solved at the same time, so called
algebraic loops are identified. Tarjan’s algorithm (Tar-
jan 1972) is implemented in OpenModelica and the most
commonly used sorting algorithm.

4 Pseudo Array Causalization
The main idea of Pseudo Array Causalization (PAC) re-
volves around doing as few scalarization steps as needed,
while still using scalar causalization methods. Previous
tests have shown that the graph-based causalization al-
gorithms scale linearly with the size of well posed and
reasonable models, even though the theoretical compu-
tational complexity is nonlinear (Kaya et al. 2011). Far
more time is spend on symbolic manipulation or generat-
ing code.

In the following an algorithm will be presented, that
keeps all equations and variables in their array form only
creating a scalarized graph for causalization (a differ-
ent approach to (Zimmermann, Fernández, and Kofman
2020), where a set-based graph is used). Known matching
(see section 3.2) and sorting (see section 3.3) algorithms
can be used on the scalar graph to resolve causalization. A
three-step sorting as described in section 4.3 is applied, to
ensure that the result contains as few slicing steps as possi-
ble. Array-based strong components can be derived using
information about the underlying array structures and the
result of causalization.

Due to the array equations and variables never being
scalarized symbolically, all optimization methods only
scale with the number of array components rather than
the number of scalarized components. Furthermore, the
created simulation code is far smaller, due to the fact that
compact array structures were preserved.

4.1 Preparation for Causalization
To recover the array structures after causalization with
scalar methods, three structures have to be created before-
hand:

Mapping: Maps array indices to the list of their
scalar children and vice versa.

Matrix: Represents the scalar graph as an adjacency
matrix.

Modes: Compact way of tracking which equation is
solved for what variable instance.

4.1.1 Mapping

The goal of this section is to obtain functions MV and
ME that map a variable name and its indices or an equa-
tion and its iterator values (if it is a for-equation) to a

unique scalar index. Furthermore, the four inverse func-
tions M−1

V and M−1
E to recover the indices or iterator

values and M̂−1
V ,M̂−1

E to recover the original variables
and equations from the unique scalar indices, have to be
defined.

First, there needs to be a mapping for variable and equa-
tion names to their respective array indices Ia. These are
trivial, but necessary for further explanations:

NV : V → Ia (1)
NE : E→ Ia (2)

with V and E as the set of variable and equation names
and Ia being the set of array indices. Since these have to
be uniquely indexed, they are bijective and have inverse
functions N−1

V ,N−1
E .

Furthermore, an index mapping for variables and equa-
tion has to be defined. The main restriction is that all
scalar variables that belong to the same array variable need
to have consecutive indices, the same is true for equa-
tions. This restriction allows more predictable outcomes
from the causalization methods such that reasonable rec-
ollection and slicing is possible. In the following the vari-
ables will be indexed in such a way, that the innermost di-
mension is iterated first, then the second etc. The same
is true for equations and the innermost iterator, second
to innermost iterator and so on. It is important to differ
between iterator value and normalized index for this in-
dexing method. Considering an iterator with a range of
10 : −2 : 2, the value 10 corresponds to index 0, value 8
corresponds to index 1 and so on. Even though the mod-
eling language Modelica has 1-based indices, all indexing
will be considered to be 0-based. This allows easier com-
putation of index mappings. The mapping of a single vari-
able index sv can be done by subtracting 1. The index se
representing an iterator value i of an equation on the other
hand, has to be computed:

sv(i) = i−1 (3)

se(i) =
i− rstart

rstep
(4)

with rstart as the start and rstep as the step of the range.
This mapping is only defined for reachable iterator values
with i ≡ rstart mod rstep. The function applying this in-
dex shift on all indices of a variable or iterator values of
an equation will be called Sv(indices,v) and Se(indices,e)
respectively. For scalar variables and equations these
functions return 0 if indices is an empty list. Further-
more these functions are bijective and therefore invertible
(∃S−1

v ∧∃S−1
e).

The local mapping of an equation or variable with n
dimensions can be described as a function

m : Π
n
i=1Ii→ I (5)

where Ii = {x ∈ N0 | x < di} and di being the size of the
i-th dimension. I = {x ∈ N0 | x < d} with d = Πn

i=1di as

the set of all flattened indices. The inverse local mapping

m−1 : I→Π
n
i=1Ii (6)

is also needed to recover the original multi-dimensional
indices for slicing. Each equation and variable has their
own local mapping m and inverse local mapping m−1.

The two global mappings ME and MV each map all ar-
ray indices to the indices of their scalar members. They
are derived by creating the pseudo inverse2 maps M†

E and
M†

V through enumeration of all array equations (Ia
E) and

variables (Ia
V) and all (hypothetical) scalar equations (Is

E)
and variables (Is

V) and letting the scalar indices point to
the index of the original array equation.

M†
E : Is

E → Ia
E (7)

M†
V : Is

V → Ia
V (8)

Since scalar indices have to be consecutive, the global
mapping M can be stored more efficiently, by only storing
the start index and its length. For further explanations the
length is irrelevant and therefore omitted. These global
mappings have to be created for equations (ME ,M

†
E) and

variables (MV ,M
†
V). An example for these mappings can

be found in figure 1.

In the following, variable and equation names will
be used instead of their indices. Using a variable as vind
with ind as the indices will be used as a representor of
the variable index in scalar context. It is found using the
following full map MV which converts a variable name
and its list of subscript indices to the scalar variable index.

vind = MV (v, ind) = MV (NV (v))+mv(Sv(ind,v)). (9)

The inverse of this function is split up into two parts, one
recovering the variable name and one recovering the in-
dices. It will be necessary in chapter 5 to recover the orig-
inal variable representations in equations.

v = M̂−1
V (vind) = N−1

V (M†
V (vind)) (10)

ind = M−1
V (vind) = S−1

v (m−1
v (vind−MV (NV (v))),v)

(11)

Likewise an equation as eval with val as the iterator values
implies the following operations:

eval = ME(e,val) = ME(NE(e))+me(Se(val,e)). (12)

and has similarly formulated inverse mappings:

e = M̂−1
E (eval) = N−1

E (M†
E(eval)) (13)

val = M−1
E (eval) = S−1

e (m−1
e (eval−ME(NE(e))),e).

(14)
2These pseudo inverse maps have the property M†M = id, however

in general MM† 6= id, which is similar to the Moore-Penrose pseudo
inverse matrix definition from (Penrose 1955).

model mapping_example
parameter Integer n = 3;
Real x[n+1];
Real y[n,n];

equation
x[1] = sin(time) "Scalar equation e";
for i in 1:n loop
x[i] = y[i,i] + x[i+1];

end for "For-equation f";
for i in 1:n, j in 1:n loop
y[i,j] = i*cos(j*time);

end for "For-equation g";
end mapping_example;

Local Mapping Global Mapping

mx :
[0] 7→ 0
[1] 7→ 1
[2] 7→ 2
[3] 7→ 3

my :
[0,0] 7→ 0
[0,1] 7→ 1
[0,2] 7→ 2
[1,0] 7→ 3
[1,1] 7→ 4
[1,2] 7→ 5
[1,3] 7→ 6
[2,1] 7→ 7
[2,2] 7→ 8

me :
[0] 7→ 0

m f :
[0] 7→ 0
[1] 7→ 1
[2] 7→ 2

mg :
[0,0] 7→ 0
[0,1] 7→ 1
[0,2] 7→ 2
[1,0] 7→ 3
[1,1] 7→ 4
[1,2] 7→ 5
[2,0] 7→ 6
[2,1] 7→ 7
[2,2] 7→ 8

MV :
0 7→ 0
1 7→ 4

M†
V :
0,1,2,3 7→ 0
4,5, . . . ,11,12 7→ 1

ME :
0 7→ 0
1 7→ 1
2 7→ 4

M†
E :
0 7→ 0
1,2,3 7→ 1
4,5, . . . ,11,12 7→ 2

Figure 1. Example for index mapping.

4.1.2 Matrix

A scalar adjacency matrix A has to be created while re-
specting the index mappings ME and MV from (7). The
rows belonging to for-equations can be created by first ex-
tracting all occurring variable instances and afterwards it-
erating over the ranges of the iterators, replacing every in-
stance of an iterator in the variable instance indices with
their local values. For each possible iterator configuration
a list of occuring variable instances is created. The multi-
dimensional indices are mapped to their respective scalar
index using mapping MV . Each iterator configuration re-
sults in the i-th row of the scalar adjacency matrix, where i
is that configuration mapped using the mapping ME . The
pseudo code for this procedure is shown in algorithm 1.

In all further explanations a bipartite graph representa-
tion of the adjacency matrix will be used where the nodes
are enumerated from top to bottom. The bipartite digraph
for the example from figure 1 can be seen in figure 2. The
causalization modes derived from algorithm 1 are repre-
sented as edge markings and will be explained in the fol-
lowing section 4.1.3.

4.1.3 Modes
Each equation can be solved in n different ways, where n
is the number of different variable instances in that equa-
tion. It is important to note here, that the occurence of the
same variable indexed differently, has to be counted as two
distinct variable instances. A causalization mode for solv-
ing an array equation e for variable v will be denominated
as

e _ v. (15)

Example 4.1. There are three instances x[i], y[i]
and x[i+1] in the following for-equation e:

for i in 1:10 loop
x[i] = y[i] + x[i+1];

end for;

It has three causalization modes, e _ x[i], e _ y[i] and
e _ x[i+1].

For each scalar equation a mode mapping will be created
as a function

c : V→Mi (16)

with V being the set of all scalar variable indices and Mi
as the set of all modes (variable instances) for the corre-
sponding array equation i. These mode mappings can be
created alongside with the adjacency matrix A while re-
placing the iterators. If variable indices are used it is more
efficient to create it as an inverse mapping

c−1 : Mi→ V (17)

to not create large arrays when only a few variables ac-
tually occur. Since the number of modes is usually very
low, one can easily traverse all modes in search for the cor-
rect scalar variable to determine in which mode the scalar
equation was solved. These causalization modes can be
used to correctly slice an array equation after causaliza-
tion by determining the slices that have been solved for
the same variable instance.

For the example from figure 1 and its digraph shown in
figure 2, one can see that there are five different causaliza-
tion modes in total. These causalization modes are shown
in figure 3 in greater detail.

4.2 Pseudo-Array Matching
The Pseudo-Array Matching algorithm requires all the
preparation described in section 4.1 and further explana-
tions are based on the example in figure 1.

Based on the digraph shown in figure 2(a) the scalar
matching algorithm described in section 3.2 is applied.
The resulting perfect matching uses the causalization
modes e _ x[1], f _ x[i] and g _ y[i, j] in its entirety.
This convenient solution requires no slicing, harder prob-
lems requiring more sophisticated methods are shown in
section 5. The matching solution is represented as an ar-
ray Ω that maps a scalar equation index to the matched

Algorithm 1 Adjacency Matrix and Causalization Modes

Input: equation array E
Input: variable array V
Output: adjacency matrix A . efficient structure for matching
Output: causalization modes C (inverse map) . modes to recover after matching
Output: mode to variable instance map N
A,C,N← initialize as empty arrays of size |Is

E |
for eq in E do

vars← find all variable instances in eq using V
modes← create unique identifiers for eq being solved for each var in vars
N[eq][modes]← vars . array assignment
if eq is a for-equation then

for all iterator combinations iter in eq do
row← apply function (9) on each var in vars using iter
i← apply function (12) on eq name using iter
A[i]← row . list assignment
C[i][modes]← row . array assignment

end for
else

row← apply function (9) on each var in vars
i← apply function (12) on eq
A[i]← row . list assignment
C[i][modes]← row . array assignment

end if
end for

e

f1

f2

f3

g11

g12

g13

g21

g22

g23

g31

g32

g33

x1

x2

x3

x4

y11

y12

y13

y21

y22

y23

y31

y32

y33

f

g

x

y

(a) Scalar-based digraph.

e

f1

f2

f3

g11

g12

g13

g21

g22

g23

g31

g32

g33

x1

x2

x3

x4

y11

y12

y13

y21

y22

y23

y31

y32

y33

(b) Array-based digraph.

Figure 2. Digraph for model 1. The different causalization modes are as follows:
e _ x[1] (green), f _ x[i] (red), f _ x[i+1] (blue), f _ y[i, i] (orange), g _ y[i, j] (purple).

ce :
0 _ x[1]

c f1 :
0 _ x[i]
1 _ x[i+1]
4 _ y[i, i]

c f2 :
1 _ x[i]
2 _ x[i+1]
8 _ y[i, i]

c f3 :
2 _ x[i]
3 _ x[i+1]
12 _ y[i, i]

cg11 :
4 _ y[i, j]

cg12 :
5 _ y[i, j]

cg13 :
6 _ y[i, j]

cg21 :
7 _ y[i, j]

cg22 :
8 _ y[i, j]

cg23 :
9 _ y[i, j]

cg31 :
10 _ y[i, j]

cg32 :
11 _ y[i, j]

cg33 :
12 _ y[i, j]

Figure 3. Scalar equation mode mapping. The colors indicate the corresponding causalization mode:
e _ x[1] (green), f _ x[i] (red), f _ x[i+1] (blue), f _ y[i, i] (orange), g _ y[i, j] (purple).

scalar variable index. To correctly interpret this matching
in the context of array recovery, the causalization modes
(see section 4.1.3) have to be taken into account. The
causalization modes for the given example are shown in
figure 3 but are stored as an inverse mapping for more ef-
ficient lookup by avoiding large empty arrays. The basic
idea is to iterate over all modes of a given equation un-
til the matched variable is found to determine the correct
mode. A mapping, further called buckets, or in short B,
that collects scalar equations that belong to the same array
equation and are solved for the same variable instance (in
the same causalization mode), is found by the procedure
shown in algorithm 2. The bucket structure returns a list
of scalar equations when provided with an array equation
and a causalization mode identifier. For this trivial case,
the arrays could be split up as shown in the array based
digraph from figure 2(b). More complicated cases require
the Three Step Sorting presented in the following chap-
ter 4.3.

Algorithm 2 Recover Causalization Modes
Input: matching Ω . eqn→ var
Input: mapping M−1

E . scalar→ array
Input: causalization modes C
Output: buckets B
B← empty lists for all entries
for e in 0 : length(Ω)−1 do

m←−1
do

m← m+1
var←C[e][m]

while var 6= Ω[e]
append e to B(M−1

E (e),m)
end for

4.3 Three Step Sorting
The result of the sorting process presented in section 3.3
does not have a unique solution and rather strongly de-
pends on the ordering of variables and equations and even
more so on the chosen mapping (see section 4.1.1). Since
the result is ambiguous it can be hard to recover the most
compact way of representing arrays if fragments of arrays
are scattered instead of consecutive, if possible. The Three
Step Sorting was implemented to ensure that the resulting

sorted strong components respect the original array struc-
tures.

The three steps are scalar sorting, array sorting and
internal sorting. A schematic outline for this process is
shown in example 4.2 and the basic outline is as follows:

1. Pseudo-Array Matching Perform scalar matching
while collecting all necessary information to recover
arrays, as described in section 4.2.

2. Scalar Sorting The first step of sorting using Tarjan’s
algorithm (see section 3.3).

3. Merge algebraic loop nodes Merge all equation
nodes that belong to the same strong component
in the result of step 2 and do the same for variable
nodes.

4. Merge array nodes Merge all equation nodes that be-
long to the same array and are solved for the same
variable instance, using the information preserved in
step 1. Do the same for variables. Equations and
variables that were already merged in step 3 do not
get merged in this step.

5. Array sorting Apply Tarjan’s algorithm again on the
new graph.3

6. Internal sorting Strong components of size greater
than one that are a result of step 5 are not alge-
braic loops, because these would have been found in
step 2. They are equations that have to be executed
sequentially, but alternate between different arrays
(and/or scalar equations). These strong components
will be called entwined equations in further explana-
tions. Furthermore all array and entwined equations
have to be sorted internally using Tarjan’s algorithm.

Example 4.2 (Sliced Arrays).
As a first example for hard to solve slicing problems, we
consider the following model.

model sliced_arrays
Real x[3];
Real y[6];

3By construction each super node has scalar matching edges only to
one other super node, therefore the matching for the new graph does not
have to be computed.

e1

e2

e3

f1

f2

f3

f4

g1

g2

x1

x2

x3

y1

y2

y3

y4

y5

y6

e

f

g

x

y

(a) Step 1: E, F, G as array equations and x, y as array
variables.

e1

e2

e3

f1

f2

f3

f4

g1

g2

x1

x2

x3

y1

y2

y3

y4

y5

y6

(b) Step 2: Blue super nodes represent algebraic loops and
red super nodes represent arrays.

Figure 4. The process of Three Step Sorting.

equation
for i in 1:3 loop
x[i] = y[i]*cos(time);

end for "For-equation e";
for j in 1:4 loop
y[j] = y[j+1]*2;

end for "For-equation f";
for k in 5:6 loop
y[k] = y[k-1] + sin(time);

end for "For-equation g";
end sliced_arrays;

The expected outcome of this model for the process of
causalization is as follows:

• The first for-equation will be matched to all of x.

• The second for-equation will be matched to index 1
to 4 of y.

• The third for-equation will be matched to index 5 and
6 of y.

• The last equation f4 of the second for-equation forms
an algebraic loop with the first equation g1 of the
third for-equation.

As can be seen in figure 4(a) the matching turns out as
expected. Furthermore, one can see that there is an alge-
braic loop connecting the mentioned equations f4 and g1
and y[4], y[5]. To efficiently resolve this loop, it is desir-
able to slice the for-equations in such a way, that only the
two relevant equations end up in the algebraic loop and
the rest is recovered as for-equations. After the first step
of scalar sorting one can combine all the equations of an
algebraic loop to a singular super node and do the same
with variables of each algebraic loop. Only after this is
done, the array super nodes should be created by merging
all the remaining equations and variables to super nodes,
while respecting the information gathered in section 4.1.
To achieve the desired result of minimal algebraic loops

while retaining as much array structure as possible, it is re-
quired to do array node merging after algebraic loop merg-
ing. The result of node merging can be seen in figure 4(b).

5 Generalized For-Equations
Before processing for-equations and array-equations they
have to be converted into canonical form. Any for equa-
tion that contains n > 1 body equations can be split into n
for-equations that each contain one single body equation.
If the solution requires the body equations to be evaluated
in alternating order, it will be processed as an entwined
for-equation, which is explained in the following. Fur-
thermore, array-equations can be converted into canonical
for-equations using simple transformations, allthough this
is not sufficiently tested yet.4

After the process of sorting, described in section 4.3,
there are four general types of strong components.

Explicit Strong Component. An explicit strong compo-
nent is a single assignment that can be solved explic-
itly for the chosen variable. These don’t necessarily
have to be scalar, they can be array assignments.

Implicit Strong Component. Implicit strong compo-
nents can be single equations that cannot be solved
symbolically, as well as algebraic loops, consist-
ing of multiple equations that have to be solved
simultaneously.

Simple For-Equation. A simple for-equation is a section
of a for-equation that can be executed without the
need to perform other assignments in between.

Entwined For-Equation. Entwined for-equations are
for-equations that have mutual dependencies and

4Some array-equation to for-equation transformations are not effi-
cient e.g. if they contain a function call. These will be handled as algo-
rithms.

need to be executed in alternating order. They can
also contain explicit or implicit strong components
that have to be executed once.

The first two types of strong components pose no fur-
ther challenge an can be processed using techniques de-
scribed in section 3. The latter two for-equation based
strong components require further analysis. Simple For-
Equations have to undergo the third step of inner sorting,
described in chapter 4.3, which results in a specific order
of the for-equation body. This order might not be in a or-
der that can be represented using the original for-equation
iterator ranges because of slices being solved differently.
An example for this is shown in the following example 5.1.

Example 5.1 (Diagonal Slice).
As an example for slices of for-equations that cannot be re-
covered using the original iterator range, consider a model
where the diagonal of a matrix has to be solved in a differ-
ent equation than the rest of it. The results for following
model are shown in the two digraphs of figure 5 and con-
firm the expected results:

• The first for-equation will be solved for the diagonal
elements of x

• The second for-equation will be split up into two for-
equations:

1. i 6= j solves the remaining non-diagonal ele-
ments of x

2. i = j solves y

model diagonal_slice
Real x[3,3];
Real y[3];

equation
for i in 1:3 loop
x[i,i] = i*cos(time);

end for "For-equation e";
for i in 1:3, j in 1:3 loop
x[i,j] = y[j] + i*sin(j*time);

end for "For-equation f";
end diagonal_slice;

As can be seen in figure 5(a), the expected matching
is found. No algebraic loop super nodes are created, but
three different equation and variable super node pairs.

1. The first for-equation (e1,e2,e3) solved for the vari-
able instance x[i, i].

2. The second for-equation (f12, f13, f21, f23, f31, f32)
solved for the variable instance x[i, j].

3. The second for-equation (f11, f22, f33) solved for the
variable instance y[j].

The three resulting for-equations are Simple For-
Equation strong components and need to be sorted in-
ternally. The first for-equation does not pose a problem

since it is not sliced at all and has no structurally forced
order. Furthermore, one can safely assume that, if noth-
ing is forced, the sorting algorithm will act index-first and
keep the equation as it is:

for i in 1:3 loop
x[i,i] = i*cos(time);

end for;

The second for-equation poses the problem that it does
not use the entirety of the original for loop. Furthermore,
it cannot be represented by a single for-equation, without
using an additional element, like an if-condition to strip it
off its diagonal. Even though this technique could be used
in this specific case, a general solution is desirable. To
achieve a procedure that can be applied on for-equations
sliced and ordered in any way, the list of scalar equation
indices is iterated by applying algorithm 3. Trivially, the
same can be done for the third for-equation.

Algorithm 3 Evaluate Generic Body

Input: Scalar index eval
e← M̂−1

E (eval) . get equation body, see (13)
val←M−1

E (eval) . get iterator values, see (14)
evaluate equation e with iterator values val

The following code is representative for the code
OpenModelica generates compiling the example model
diagonal_slice, simplified for readability. It shows
the non-diagonal section of for-equation f .
void diagonal_slice_eq_1(DATA *data)
{
const int idx_lst[6] = {5,2,7,1,6,3};
for(int i=0; i<6; i++)

genericCall_0(data, idx_lst[i]);
}

The idx_lst represents the order in which the body
equations have to be solved, which is arbitrary in this spe-
cific example. This solution is provided by the sorting
algorithm and no further optimization is done since this
order might be enforced structurally, which is the case
for other examples. The function genericCall_0 rep-
resents the body of the function, which maps the scalar
index to the iterator values, as described in algorithm 3.
Allthough the theory speaks of a global mapping, in prac-
tice one uses the local mapping and the local index to eval-
uate the body equations of a for-equation.
void genericCall_0(DATA *data, int idx)
{
int tmp = idx;
int i_loc = tmp % 3;
int i = 1 * i_loc + 1;
tmp /= 3;
int j_loc = tmp % 3;
int j = 1 * j_loc + 1;
tmp /= 3;
&data->realVars[(i-1)*3+(j-1)] /∗x [i , j] ∗/

= &data->realVars[9+(j-1)] /∗y [j] ∗/
+ i * sin(j * data->timeValue);

}

e1

e2

e3

f11

f12

f13

f21

f22

f23

f31

f32

f33

x11

x12

x13

x21

x22

x23

x31

x32

x33

y1

y2

y3

e

f

x

y

(a) Scalar-based digraph and matching.

e1

e2

e3

f11

f12

f13

f21

f22

f23

f31

f32

f33

x11

x12

x13

x21

x22

x23

x31

x32

x33

y1

y2

y3

(b) Array-based digraph and matching.

Figure 5. Causalization of the example model 5.1 requiring diagonal slicing.

Example 5.2 (Entwined Loops).
As a second example for hard to solve slicing problems,
we consider the following model.

model entwined_loops
Real x[7];
Real y[7];

equation
x[1] = 1;
y[1] = 2;
for j in 2:7 loop
x[j] = y[j-1] * sin(time);

end for "For-equation e";
for i in 2:4 loop
y[i] = x[i-1];

end for "For-equation f";
for i in 5:7 loop
y[i] = x[i-1] * 2;

end for "For-equation g";
end entwined_loops;

The expected results for this model are as follows:

• The first two scalar equations will be solved for x[1]
and y[1]

• The three for loops will be solved as follows:

1. alternating between the first and the second for
i = 2 : 4

2. alternating between the first and the third for
i = 5 : 7

Although this example seems more intricate, the same
general solution as presented in example 5.1 can be used.
The three for loops are accumulated to an entwined for-
equation and its full list of alternating scalar equation in-
dices are iterated while applying algorithm 3.

The following (simplified) code is generated by Open-
Modelica for the entwined_loops model. The body

equations genericCall_X are similar to the one pro-
vided in example 5.1 and the alternating call order is rep-
resented by the array call_order.

void entwined_loops_eq_4(DATA *data)
{
int call_indices[3] = {0,0,0};
const int call_order[12] =

{2,1,2,1,2,1,2,0,2,0,2,0};
const int idx_lst_2[6] = {0,1,2,3,4,5};
const int idx_lst_1[3] = {0,1,2};
const int idx_lst_0[3] = {0,1,2};
for(int i=0; i<12; i++)
{

switch(call_order[i])
{

case 2:
genericCall_2(data, idx_lst_2[

call_indices[0]]);
call_indices[0]++;
break;

case 1:
genericCall_1(data, idx_lst_1[

call_indices[1]]);
call_indices[1]++;
break;

case 0:
genericCall_0(data, idx_lst_0[

call_indices[2]]);
call_indices[2]++;
break;

default:
throwStreamPrint(NULL, "Call index

%d at pos %d unknown for: ",
call_order[i], i);

break;
}

}
}

s1

s2

e1

e2

e3

e4

e5

e6

f1

f2

f3

g1

g2

g3

x1

x2

x3

x4

x5

x6

x7

y1

y2

y3

y4

y5

y6

y7

e

f

g

x

y

(a) Scalar-based digraph and matching.

s1

s2

e1

e2

e3

e4

e5

e6

f1

f2

f3

g1

g2

g3

x1

x2

x3

x4

x5

x6

x7

y1

y2

y3

y4

y5

y6

y7

(b) Array-based digraph and matching.

Figure 6. Causalization of the example model 5.2 requiring entwining.

6 Performance Test Results
The algorithms discussed in the previous Sections have
been implemented in the new backend of the OpenMod-
elica compiler. Their input is the result of the flattening
process of an object-oriented Modelica model, where vari-
able arrays and for-loop equations are not expanded into
their scalar constituents. This output can be obtained from
the new OpenModelica frontend (Pop et al. 2019), which
preserves arrays during the flattening process, by skipping
the final scalarization phase.

This Section reports the results obtained with large in-
stances of some models of the ScalableTestSuite (Casella
2015), that can be run with the currently available imple-
mentation.

The tests were run on an AMD Ryzen 9 5950X 16-Core
Processor, 63 GB RAM, running Ubuntu 22.04.2 LTS.
The tests are run one at a time, so they can exploit par-
allelism on the 16 cores for garbage collection, code gen-
eration and C compilation. Also, simulations run at full
speed, because they are not hindered by other processes
competing for DMA channels. All simulations use vari-
able step-size algorithms with error control.

The following models were run:

• CascadedFirstOrder: the model is a cascaded con-
nection of N first-order linear systems, approximat-
ing a delay line. The response to a smooth increase
of the system input is simulated with the sparse stiff
solver IDA.

• HarmonicOscillator: the model describes the se-

quential connection of N masses with N−1 springs.
It has 2N state variables and equations, where the
initial position of the first mass is set off the equi-
librium value, which initiates the propagation of an
elastic wave through the system. As the system is
only moderately stiff, the transient is simulated using
the explicit DOPRI45 Runge-Kutta solver, whose ex-
ecution time scales more favorably with system size.

• OneDHeatTransferTT_FD: this model contains the
finite-volume discretization of 1D Fourier’s equa-
tion, describing heat conduction in a rod, with N vol-
umes and prescribed temperatures at the two ends. It
has N states and about 2N equations. We simulate a
transient with the sparse IDA solver, increasing the
two boundary temperatures and observing how that
change propagates through the length of the rod.

• CounterCurrentHeatExchangerEquations: this
model contains a finite-volume discretization of
a 1D counter-current heat exchanger model, con-
sidering the thermal inertia of the primary fluid,
secondary fluid, and separating wall. Fluids are
assumed to be incompressible and with constant
specific heat capacity. The model has 3N states and
7N equations. We simulate a transient where we
apply a step increase of the inlet temperature of one
of the two fluids, using the sparse IDA solver.

Results are shown in Figure 7. On the x-axis, the num-
ber of model equations is shown; on the y-axis, build time
(in red) and simulation time (in blue) are shown, compar-

104 105

100

101

102

PAC - Build

SCC - Build

PAC - Simulate

SCC - Simulate

(a) CascadedFirstOrder

103 104 105 106

10−1

100

101

102

PAC - Build

SCC - Build

PAC - Simulate

SCC - Simulate

(b) HarmonicOscillator

103 104 105 106

10−1

100

101

102

103

PAC - Build

SCC - Build

PAC - Simulate

SCC - Simulate

(c) OneDHeatTransferTT_FD

104 105

10−1

100

101

102

PAC - Build

SCC - Build

PAC - Simulate

SCC - Simulate

(d) CounterCurrentHeatExchangerEquations

Figure 7. Comparison of Pseudo Array Causalization (PAC) to Scalarized Causalization (SCC) on a logarithmic scale. The x-axis
shows the number of equations and the y-axis shows the time spent in seconds. The largest tests could not be run with SCC methods
on the provided machine, due to timeout or memory overflow.

ing the pseudo-array-causalization algorithm (PAC) with
the scalar causalization algorithm (SCC).

The first interesting result is that the build time with
PAC is nearly constant below 1,000 equations, and only
starts growing linearly for substantially large sizes, where
the time spent for the scalarized causalization dominates
all other phases of code generation and compilation. As
a consequence, the build time is one/two orders of mag-
nitude smaller with PAC than with SCC, with increasing
advantage as the size of the model grows. In fact, PAC al-
lows to build the code of models with size exceeding one
million equations, which are simply not manageable with
the SCC algorithm. The time is saved mostly by avoid-
ing to re-run code optimizations (e.g. alias elimination or
CSE) on each instance of array equation, as well as avoid-
ing to compile huge amounts of nearly identical C-code.

The second interesting result is that simulation time is
also appreciably lower with PAC, though by a constant
factor of about two-three. This is probably due to the ex-
ecution of for-loops in the simulation code being more ef-
ficient than the execution of similar lines of code.

Last, but not least, we observe that build time, which
used to be much larger than simulation time with SCC, is
now comparable or possibly shorter than simulation time.

This is a key usability improvement in the model develop-
ment process, which is characterized by an iterative build-
simulate-analyze-modify workflow.

These results were obtained with simple models writ-
ten by array variables and for-loop equations. However,
large number of components of the same type can be col-
lected into arrays, eventually leading to the same kind of
array-based structure once flattened, provided that arrays
are preserved during flattening.

Hence, we can claim that the PAC algorithm un-
locks the possibility of handling Modelica models in the
million-equations range, characterized by large arrays of
variables and/or components, which was not previously
practically possible with state-of-the-art Modelica tools.

7 Conclusions
In this paper, a new Pseudo-Array-Causalization (PAC)
algorithm was presented. When dealing with equation-
based models using arrays of variables and equations, PAC
allows to first carry out the causalization process on the
fully flattened bipartite graph, as it is currently done in
Modelica tools, without ever scalarizing them symboli-
cally. This allows to generate much more compact sim-

ulation code that exploits for-loops, and to do so much
faster.

The presented algorithm was demonstrated in a few
simple cases on the paper, but also successfully imple-
mented and tested in the OpenModelica compiler. Early
results obtained on simple but large-sized models from the
ScalableTestSuite show improvements of one/two orders
of magnitude in the simulation code build time, and of a
factor two/three in the simulation run time, thus unlocking
the possibility of simulating models with over a million
equations within reasonable amounts of time.

Future work includes improving the implementation so
it can be tested in realistic use cases (e.g., large transmis-
sion or distribution power system models), and most im-
portantly handling static and dynamic index reduction.

Furthermore, generating large integer lists for the
generic for-equations might become a bottle neck in the
future, therefore sequence compression methods will be
used to reduce the used disk space and access time.

References
Braun, Willi et al. (n.d.). “Fast Simulation of Fluid Models with

Colored Jacobians”. In: Proceedings of the 9th International
Modelica Conference. DOI: 10.3384/ecp12076247. PDF.

Casella, Francesco (2015-09). “Simulation of Large-Scale Mod-
els in Modelica: State of the Art and Future Perspectives”. In:
Proceedings of the 11th International Modelica Conference,
pp. 459–468. DOI: 10.3384/ecp15118459.

Casella, Francesco, Alberto Leva, and Andrea Bartolini (2017).
“Simulation of Large Grids in OpenModelica: reflections and
perspectives”. In: Proceedings of the 12th International Mod-
elica Conference.

Duff, Iain S., Kamer Kaya, and Bora Uçcar (2012). “Design, Im-
plementation, and Analysis of Maximum Transversal Algo-
rithms”. In: ACM Trans. Math. Softw. 38.2. ISSN: 0098-3500.
DOI: 10.1145/2049673.2049677. URL: https:/ /doi.org/10.
1145/2049673.2049677.

Ford, L. R. and D. R. Fulkerson (1956). “Maximal Flow
Through a Network”. In: Canadian Journal of Mathematics
8, pp. 399–404. DOI: 10.4153/CJM-1956-045-5.

Fritzson, Peter et al. (2020-10). “The OpenModelica Integrated
Environment for Modeling, Simulation, and Model-Based
Development”. In: Modeling, Identification and Control: A
Norwegian Research Bulletin 41, pp. 241–295. DOI: 10.4173/
mic.2020.4.1.

Henningsson, Erik, Hans Olsson, and Luigi Vanfretti (2019-02).
“DAE Solvers for Large-Scale Hybrid Models”. In: pp. 491–
502. DOI: 10.3384/ecp19157491.

Kaya, Kamer et al. (2011-01). “Experiments on Push-Relabel-
based Maximum Cardinality Matching Algorithms for Bipar-
tite Graphs”. In: Technical Report TR/PA/11/33, CER-FACS.

Kofránek, Jiří et al. (2010). “Modelica – a language for inte-
grative and system physiology modelling”. In: Institute of
Pathophysiology, First Faculty of Medicine, Charles Univer-
sity, Prague.

Mattheij, R. and J. Molenaar (2002). Ordinary Differential
Equations in Theory and Practice. Society for Industrial and
Applied Mathematics. URL: https://epubs.siam.org/doi/pdf/
10.1137/1.9780898719178.

Neumayr, Andrea and Martin Otter (2023). “Modelling and
Simulation of Physical Systems with Dynamically Changing
Degrees of Freedom”. In: Electronics 12.3. ISSN: 2079-9292.
DOI: 10.3390/electronics12030500. URL: https://www.mdpi.
com/2079-9292/12/3/500.

Otter, Martin and Hilding Elmqvist (2017). “Transformation of
Differential Algebraic Array Equations to Index One Form”.
In: Proceedings of the 11th International Modelica Confer-
ence.

Penrose, R. (1955). “A generalized inverse for matrices”.
In: Mathematical Proceedings of the Cambridge Philo-
sophical Society 51.3, pp. 406–413. DOI: 10 . 1017 /
S0305004100030401.

Pop, Adrian et al. (2019-02). “A New OpenModelica Compiler
High Performance Frontend”. In: Proceedings of the 13th
International Modelica Conference, pp. 689–698. DOI: 10 .
3384/ecp19157689.

Proß, Sabrina and Bernhard Bachmann (2011). “An Advanced
Environment for Hybrid Modeling of Biological Systems
Based on Modelica”. In: J. Integrative Bioinformatics 8.1,
pp. 1–34. DOI: 10 .2390/biecoll - jib - 2011- 152. URL: http :
//dx.doi.org/10.2390/biecoll-jib-2011-152. PDF.

Qi, Le (2014). “Modelica Driven Power System: Modeling,
Simulation and Validation”. MA thesis. KTH Institute of
Technology.

Tarjan, Robert (1972). “Depth-First Search and Linear Graph
Algorithms”. In: SIAM Journal on Computing 1.2, pp. 146–
160. DOI: 10.1137/0201010.

Viruez, Raul et al. (2017). “A Tool to ease Modelica-based Dy-
namic Power System Simulations”. In: Proceedings of the
12th International Modelica Conference.

Zimmermann, Pablo, Joaquín Fernández, and Ernesto Kofman
(2020). “Set-Based Graph Methods for Fast Equation Sort-
ing in Large DAE Systems”. In: Proceedings of the 9th In-
ternational Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. EOOLT ’19. Berlin, Ger-
many: Association for Computing Machinery, pp. 45–54.
ISBN: 9781450377133. DOI: 10 . 1145 / 3365984 . 3365991.
URL: https://doi.org/10.1145/3365984.3365991.

https://doi.org/10.3384/ecp12076247
http://www.ep.liu.se/ecp/076/024/ecp12076024.pdf
https://doi.org/10.3384/ecp15118459
https://doi.org/10.1145/2049673.2049677
https://doi.org/10.1145/2049673.2049677
https://doi.org/10.1145/2049673.2049677
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.4173/mic.2020.4.1
https://doi.org/10.4173/mic.2020.4.1
https://doi.org/10.3384/ecp19157491
https://epubs.siam.org/doi/pdf/10.1137/1.9780898719178
https://epubs.siam.org/doi/pdf/10.1137/1.9780898719178
https://doi.org/10.3390/electronics12030500
https://www.mdpi.com/2079-9292/12/3/500
https://www.mdpi.com/2079-9292/12/3/500
https://doi.org/10.1017/S0305004100030401
https://doi.org/10.1017/S0305004100030401
https://doi.org/10.3384/ecp19157689
https://doi.org/10.3384/ecp19157689
https://doi.org/10.2390/biecoll-jib-2011-152
http://dx.doi.org/10.2390/biecoll-jib-2011-152
http://dx.doi.org/10.2390/biecoll-jib-2011-152
http://dx.doi.org/10.2390/biecoll-jib-2011-152
https://doi.org/10.1137/0201010
https://doi.org/10.1145/3365984.3365991
https://doi.org/10.1145/3365984.3365991

	Introduction
	State of the Art
	Causalization
	Scalarization
	Matching
	Sorting

	Pseudo Array Causalization
	Preparation for Causalization
	Mapping
	Matrix
	Modes

	Pseudo-Array Matching
	Three Step Sorting

	Generalized For-Equations
	Performance Test Results
	Conclusions

