Conference Agenda

The conference agenda provides an overview and details of sessions. In order to view sessions on a specific day or for a certain room, please select an appropriate date or room link. You may also select a session to explore available abstracts and download papers and presentations.

Session Overview
10-11: Remote sensing and deep learning for agricultural productivity
Thursday, 28/Mar/2019:
10:30am - 12:00pm

Session Chair: Felix Rembold, Joint Research Centre of the European Commission, Italy
Location: MC C1-100

Show help for 'Increase or decrease the abstract text size'
ID: 1227 / 10-11: 1
Individual Papers
Topics: Use of remote sensing and land use policy
Keywords: remote sensing, land use, environmental regulations

Use of earth observation and land parcel identification in supporting the implementation of the common agricultural policy

Felix Rembold

Joint Research Centre of the European Commission, Italy



ID: 1192 / 10-11: 2
Individual Papers
Topics: Use of remote sensing and land use policy
Keywords: Land use, remote sensing, classification, machine learning

Satellite crop monitoring within World Bank project on land management transparency in Ukraine

Nataliia Kussul1, Denys Nizalov2, Andrii Shelestov1, Mykola Lavreniuk3, Sergii Skakun4, Andrii Kolotii1, Vladimir Vasiliev5, Eugene Karlov5

1Space Research Institute of National Academy of Sciences of Ukraine and State Space Agency of Ukraine; 2University of Kent/ KEI at KSE, United Kingdom; 3National Technical University of Ukraine, Ukraine; 4University of Maryland College Park, United States of America; 5EOS Data Analytics, Ukraine

Remote sensing of agricultural land use is one of the essential objectives of the EBRD project “Supporting Transparent Land Governance in Ukraine”. The main goal of the project is Land Cover/Land Use classification based on free satellite data as well as development of efficient automated technologies of land management utilizing remote sensing data.

Within the project we have investigated the applicability of three information platforms — Sen2Agri (developed under ESA support), Google Earth Engine (GEE) cloud platform and our own approach based on artificial neural networks.

All the results of the pilot project should establish the preconditions for transparent functioning of agricultural land market, improving efficiency of land use and creation the foundations for investments in the agricultural sector and rural development.


ID: 758 / 10-11: 3
Individual Papers
Topics: New ways of land data capture & analysis (incl. machine learning)
Keywords: Google Street View imagery, Image classification, Food cultivation practices, Deep learning, Convolutional neural network

Proximate sensing of food types and land uses in Thailand using street-level photography and deep learning

Martha Bohm, John Ringland, So-Ra Baek

University at Buffalo, United States of America

We present new tools to exploit street-level imagery to inventory crop types and land uses. We describe two classifiers using Google Street View imagery and a deep convolutional neural network. First, a multi-class classifier distinguishes six crops and three land uses. Second, a specialized detector recognizes the presence of a single species. We tested these tools along roadside transects in Thailand.

The overall accuracy of the multi-class classifier was 83.3%. For several classes the producer's accuracy was over 90%. This performance compares favorably to some remote-sensing classifiers. The overall classifier accuracy on the top 40% of images is excellent: 99.0%. The area under the specialized detector’s receiver operating characteristic curve was 0.9905, indicating excellent performance.

This approach shows potential for fine-grained analysis over large areas. We are developing it further for places where home gardens provide significant diet supplementation, but are poorly characterized when quantifying macro-economically important crops.