Conference Agenda

Overview and session details of the ESB2024 congress.
Please select a date or location to view only sessions for that date or location. Please select an individual session for a detailed view (with abstracts where available).
Please select a "List View" option to access presentation abstracts directly from this page.

 
 
Session Overview
Session
8.5: Data driven healthcare and machine learning in biomechanics
Time:
Tuesday, 02/July/2024:
11:00am - 1:00pm

Session Chair: Ankush Aggarwal
Session Chair: Chotirawee Chatpattanasiri
Location: Harris Suite


Show help for 'Increase or decrease the abstract text size'
Presentations
11:00am - 11:10am
ID: 180

INTEGRATING PERSONALISED MODELS, WEARABLES, AND DEEP LEARNING FOR PREDICTING FOOT BONE STRESS DURING RUNNING

L. Xiang1, Z. Gao2, V. Shim1, A. Wang1, Y. Gu3,4, J. Fernandez1,4

1Auckland Bioengineering Institute, University of Auckland, New Zealand; 2Faculty of Engineering, University of Pannonia, Hungary; 3Faculty of Sports Science, Ningbo University, China; 4Department of Engineering Science & Biomedical Engineering, University of Auckland, New Zealand

ESB2024_180_Xiang_8.5.pdf


11:10am - 11:20am
ID: 366

IDENTIFICATION OF HYPERELASTICITY IN HUMAN ARTERIES USING A MACHINE LEARNING BASED VIRTUAL FIELDS METHOD

s. meng, A. A. Karkhaneh Yousefi, S. Avril

Mines Saint etienne, France

ESB2024_366_meng_8.5.pdf


11:20am - 11:30am
ID: 367

DATA-DRIVEN STOCHASTIC MODEL FOR GENERATING REALISTIC BONE MORPHOLOGY.

P. Henyš1, M. Vořechovský1, M. Kuchař1, N. Hammer2, B. Ondruschka3

1Technical University of Liberec, Czech Republic; 2Medizinische Universität Graz, Austria; 3Universitätsklinikum Hamburg-Eppendorf, Germany

ESB2024_367_Henyš_8.5.pdf


11:30am - 11:40am
ID: 404

WALL SHEAR STRESS PREDICTION ON A PATIENT-SPECIFIC FEMORAL ARTERY USING A ROM-BASED ML MODEL

C. Chatpattanasiri1,2, F. Ninno2,3, V. Diaz-Zuccarini1,2, S. Balabani1,2

1Department of Mechanical Engineering, University College London, UK; 2Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK; 3Department of Medical Physics and Biomedical Engineering, University College London, UK

ESB2024_404_Chatpattanasiri_8.5.pdf


11:40am - 11:50am
ID: 421

A MACHINE LEARNING APPROACH TO PREDICT IN VIVO SKIN GROWTH

M. Nagle1,2, H. Conroy Broderick2, A. Buganza Tepole3, M. Fop4, A. Ní Annaidh2,5

1SFI CRT in Foundations of Data Science, Ireland; 2School of Mechanical and Materials Engineering, UCD, Ireland; 3School of Mechanical Engineering, Purdue University, USA; 4School of Mathematics and Statistics, UCD, Ireland; 5Charles Institute of Dermatology, UCD, Ireland

ESB2024_421_Ní Annaidh_8.5.pdf


11:50am - 12:00pm
ID: 456

DATA-DRIVEN CONSTITUTIVE MODELING BASED ON GAUSSIAN PROCESSES AND NONLINEAR DIMENSIONALITY REDUCTION

A. Aggarwal1, B. S. Jensen2, C.-H. Lee3

1University of Glasgow, United Kingdom; 2Technical University of Denmark, Denmark; 3University of California, Riverside, USA

ESB2024_456_Aggarwal_8.5.pdf


12:00pm - 12:10pm
ID: 798

CGAN-BASED SYNTHETIC AUGMENTATION FOR SMALL 4D FLOW PC MRA DATASET SEGMENTATION

S. Garzia1,2, M. A. Scarpolini1,3, M. Mazzoli1,2, K. Capellini1, A. Monteleone4, F. Cademartiri4, S. Celi1

1BioCardioLab, Bioengineering Unit, Fondazione Monasterio, Italy; 2Department of Information Engineering, University of Pisa, Italy; 3Department of Industrial Engineering, University of Rome "Tor Vergata", Italy; 4Clinical Imaging Department, Fondazione Monasterio, Italy

ESB2024_798_Garzia_8.5_abstract.pdf


12:10pm - 12:20pm
ID: 1068

GAIT CONTEXTUALIZATION USING MULTI-LAYER PERCEPTRONS, MORE FEATURES DOES NOT GUARANTEE INCREASED ACCURACY

A. Dzewaltowski1, S. Hwang2, I. Ustun2, U. Huzaifa2, C. Connaboy1

1Rosalind Franklin University of Medicine & Science, United States of America; 2DePaul University, United States of America

ESB2024_1068_Dzewaltowski_8.5.pdf


12:20pm - 12:30pm
ID: 1135

ANALYSIS OF DEEP LEARNING CLASSIFICATION METHODS OF 3D KINEMATIC DATA FOR NEUROLOGICAL GAIT DISORDERS

Z. Lan1,4, M. Lempereur1,2,3, A. Aïssa-El-Bey5, F. Rousseau1,4, S. Brochard1,2,3,6

1Laboratoire de Traitement de l’Information Médicale INSERM U1101, France; 2Université de Bretagne Occidentale, Brest, France; 3CHU de Brest, Hôpital Morvan, service de médecine physique et de réadaptation, France; 4IMT Atlantique, LaTIM U1101 INSERM, France; 5IMT Atlantique, UMR CNRS 6285, Lab-STICC, Brest, France; 6Fondation Ildys, France

ESB2024_1135_Lan_8.5.pdf


12:30pm - 12:40pm
ID: 1311

PHYSICS-INFORMED MACHINE LEARNING FOR ENHANCED 4D FLOW

V. Lannelongue, P. Garnier, A. Larcher, P. Meliga, E. Hachem

Mines Paris PSL - CEMEF, France

ESB2024_1311_Lannelongue_8.5.pdf


 
Contact and Legal Notice · General Terms and Conditions · Contact Address:
Privacy Statement · Conference: ESB 2024
Conference Software: ConfTool Pro 2.8.105+TC+CC
© 2001–2025 by Dr. H. Weinreich, Hamburg, Germany