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Introduction 

Human myocardium is formed by locally parallel 

muscle fibres which are arranged in layers, sometimes 
called sheets [1]. This structure determines the 

orthotropic mechanical response of myocardium, as 

evidenced by the results of biaxial extension tests and 

simple shear tests [2]. A suitable hyperelastic model for 

myocardium should reflect its structure and produce an 

orthotropic response with highest stiffness in the fibre 

direction, f, intermediate in the sheet direction, s, and 

lowest in the sheet-normal direction, n (f, s and n are 

mutually orthogonal). The most widely used model 

which satisfies these requirements is that proposed by 

Holzapfel and Ogden [3]. It introduces two orthogonal 
families of fibres, one in the f direction and the other in 

the s direction. The families are represented by two 

exponential terms in the strain-energy density function, 

formulated in terms of invariants 𝐼4f = 𝐟 ∙ 𝐂𝐟 and 𝐼4s =
𝐬 ∙ 𝐂𝐬 which equal the square of stretch in f and s 

directions, respectively (𝐂 is the right Cauchy-Green 

tensor). However, the family in the s direction is 

somewhat artificial since in myocardium there is no 

distinct family of fibres (collagen of others) arranged 

predominantly perpendicular to the muscle fibres; 
instead, the chains of myocytes are bundled by 

endomysial connective tissue with membraneous 

appearance [4]. For this reason, we present a 

modification of the model which reflects more 

accurately the laminar structure of myocardium and 

turns out to have better capability to reproduce 

experimental responses. 

 

Methods 

In our modification of the strain-energy density function 

the exponential term with the invariant 𝐼4𝑠 was replaced 
by the term 

 

 Ψfs =
𝑎fs

2𝑏fs
(exp(𝑏fs(𝐾1 − 1)2 − 1)) (1) 

 

which employs an uncommon invariant 𝐾1 defined in 

terms of the cofactor of 𝐂, cof(𝐂), and the sheet-normal 

unit vector n (perpendicular to the sheets) as 𝐾1 = 𝐧 ∙
cof(𝐂)𝐧 [5]. This invariant is essentially a 2-

dimensional analogue of the invariant 𝐼4 because it 

expresses the square of stretch of an infinitesimal area 

initially perpendicular to n; more precisely it is the ratio 

of the area of the deformed infinitesimal sheet to its 

referential (initial) area. Thus, unlike the original model 

[3], our model explicitly includes a mathematical 

representation of the layered blocks of endomysial 

connective tissue (apparent in electron microscope [4]) 

that bind together the muscle fibres. The fibres and the 

isotropic matrix are modelled in the same way as in the 

original model [3] (i.e. by means of invariants 𝐼4f and 

𝐼1 = tr(𝐂)). 
 

Results 

The modified model was fitted to the results of 5 

different biaxial tests and 6 different simple shear tests 

published in [2]. Although the proposed modification is 

quite subtle, it significantly improved the ability of the 

model to reproduce all the above-mentioned 

experimental data (𝑅2 increased from 0.90 to 0.98). As 

an example, Figure 1 shows the final fit to the data from 

equibiaxial extension test. 

 
Figure 1: Fit of the proposed hyperelastic model to the 

equibiaxial experimental data from [2]. 

 

Discussion 

The proposed model reflects more accurately the 

microstructure of ventricular myocardium and it has 

great capability to describe the mechanical response of 

myocardium in different biaxial and simple shear 

loading modes. However, derivation of the spatial 

elasticity tensor (necessary for implementation into 

commercial finite-element packages) is rather 

complicated due to the new term (1) of the strain-energy 

function. 
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