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Introduction 

Despite the complexity and widespread use of micro-

FE solvers in bone mechanics research, little attention 

has been paid to their code verification [1]. The present 

study uses the method of manufactured solutions 

(MMS) to verify the open-source micro-FE solver 

ParOSol [2] which is widely used in bone mechanics 

research. 

 

Methods 

MMS was originally developed for CFD codes [3], [4]. 

It has only recently been used to verify commercial FE 

solvers [1]. Here, one “manufactures” an analytical 

displacement vector field ����, which need not be 

physically meaningful. This is used to derive strain and 

stress tensor (�) fields, the latter by applying a set of 

chosen constitutive laws. The stress divergence ∇·� is 

usually non-zero, and has to be balanced by “fictitious 

body forces” (�) [1], the analytical expression for 

which can be determined easily using � � 	
 ⋅ �, as 

the right hand side is already known. The 

computational problem is set up by defining the mesh, 

posing the manufactured displacement at all boundary 

nodes and the manufactured body forces at all nodes, 

and setting material properties for all elements. 
 

 
Fig. 1: Unit cube domain and grid spacing h (left), 

contour plot of the chosen displacement field in y 

direction at a cross section of x= 0.5(right) 

 

The manufactured solution used in the present study is 

adapted from [1]. The domain is a unit cube 

(homogenous, isotropic linear elastic) with a grid 

spacing of h (Fig. 1). The displacement field is 

infinitely differentiable and sufficiently complex to 

exercise all terms in the governing equations. The 

analytical forms of strains, stresses and body forces 

based on this displacement field are obtained using the 

symbolic computing software Maple. HDF5 input files 

with this problem set-up were created corresponding to 

5 different grid spacing values (h = 0.2, 0.1, 0.05, 

0.025, 0.0125). The original version of ParOSol was 

modified to be able to apply the distributed body force. 

The error at each node is defined as the magnitude of 

the difference between the numerical and analytical 

(i.e. manufactured) displacement vectors |
��� 	

���|, normalised by the maximum value of the error 

across all nodes. The �� and �� norms of these errors 

were analysed in dependence of grid spacing. At each 

refinement step, the observed order of convergence of 

the �� and �� error norms were calculated as ������ �
ln��� ��⁄ ! /ln �$�. Here, �� and �� correspond 

respectively to the error norms (�� or ��) at the 

immediately coarser and finer meshes, and $ is the 

ratio of grid spacings between the two meshes. 

 

Results and Discussion 

 
Fig. 2: Normalized error norms (left) and observed 

orders of convergence OOCobs (right) 

 

The observed convergence rates of l2 and l∞ error 

norms asymptotically approach the expected 

theoretical convergence rate (Fig. 2), evidencing a low 

likelihood of coding errors in the tested ParOSol 

version that can negatively influence the simulation 

results for linear elastostatic problems. 

 

Conclusion 

Expanding the suite of manufactured solutions will 

reduce this likelihood further. The methodology can be 

applied to newer versions of ParOSol that involve 

different constitutive models or require additional 

governing equations such as contact interactions. 
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