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Introduction 

One of the main concerns in implant design is stress 

shielding minimization. As bone regeneration occurs 

due to the a stress stimulus happening in the bone, a low 

stimulus caused by improper load transfer to the bone 

can lead to bone decay and further problems. 

Porous geometries are commonly used in scaffold 

design for promoting cell adhesion and proliferation. 

Additionally, with porous geometries it is possible to 

tune the mechanical properties through topological 

design. [1] 

The aim of this work is to achieve an optimal 

design by training the neural network so that for any 

given constitutive matrix it has as the output the optimal 

unit cell topology (Figure 1). The network is therefore 

able to reverse the homogenization procedure [2]. 

 
Figure 1 - Neural network scheme indicating the input 

and output data 

 

Materials and methods 

For a set of several different geometries, 

homogenization with periodic boundary conditions 

(PBC) was performed. A uniform mesh of square 2D 

elements allows to directly impose the PBC. The 

original geometry is therefore simplified to fit the 

uniform mesh. The linear-elastic analysis is run using 

ABAQUS as the solver. 

A feed-forward neural network was created 

and trained in MATLAB. Each neuron i passes 

information forward in the network, according to (1) 

𝑧 =  𝑓(𝑏 + 𝑤𝑥) = 𝑓(𝑏 + ∑ 𝑤𝑖𝑥𝑖
𝑚
𝑖=1 )   (1) 

where f is the activation function, b is the bias, wi is the 

weight from the neuron in the previous layer and xi is the 

value from the neuron in the previous layer. The training 

procedure adjusts the weights and bias by minimizing 

and error function for example the mean squared error 

(MSE). 

The constitutive matrix was obtained by 

applying a unit strain in each of the three components 

(normal in the xx direction, normal in the yy direction 

and shear). Thus, the macro-stress tensor for each strain 

component provides a line of the constitutive matrix.  

The macro-stress and macro-strain tensors are 

calculated through averaging theory 
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where V is the volume, v is the volume of the integration 

point, σij is the stress component ij and εij is the strain 

component, both evaluated at the integration point. 

Figure 2 shows some examples of geometries from the 

training dataset. 

 
Figure 2 – Examples of geometries from the lattice 

dataset 

 

Discussion 

The NN allows for further optimization by taking as 

input the properties of bone, as shown in Figure 3. 

Therefore, it is possible to minimize the difference in 

mechanical properties between the scaffold and the bone 

in its surroundings, which leads to stress shielding. 

 
Figure 3 – Stress shielding minimization framework 
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