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Introduction 
Single fish keratocyte crawling in a two dimensional 
substrate is driven by actin polymerization forming 
protrusions at the leading edge and a dense actomyosin 
network known as lamellipodium; adhesion to substrate 
at the front; actomyosin retraction and finally 
detachment of the trailing edge. During this 
phenomenon, the centripetal flow of actin networks 
occur inside the cell powered by myosin motors. Here, 
a free boundary computational model has been 
developed considering momentum balance of actin 
flow, free and bound myosin dynamics, and actin 
dynamics. With an objective of quantitative 
understanding of complex dynamics during cell 
crawling and comparison with the experimental 
observations, we focus on the one dimensional 
“traveling-wave” solutions of the model. Later, these 
solutions are used to train a Physics-Informed-Neural 
Network (PINN) model in order to reproduce the 
solutions for any new one-dimensional domain with 
given specific boundary conditions. 
 
Methods 
The model developed is the viscoelastic flow model 
used in [1] with the incorporation of free boundary 
conditions. The governing equations are coupled 
nonlinear Partial Differential Equations (PDEs) which 
in general are difficult to solve analytically. To 
understand the spatial variation of actin velocity, actin 
density and myosin densities, we remove the complexity 
of time-dependence from the model and convert the 
system of PDEs to a set of Ordinary Differential 
Equations using a “traveling-wave” ansatz as discussed 
in [2]. The solution from this method is used to validate 
the prediction obtained by training a PINN model [3]. 
The free boundary model of cell crawling has four PDEs 
which are given below. Using Newton’s second law, the 
one-dimensional governing equation for the actin flow 
is of the form 
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The mass conservation equation for actin network, free 
myosin and bound myosin are of the form 
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and the boundary conditions are given by 
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Free boundary conditions are given through boundary 
velocities  

Vf+ = Vp+(u)|
B(t)

 ;  Vf- = (u)|A(t)   

Here, A(t) and B(t) are the positions of the rear and front 
boundaries of the one dimensional cell, respectively. Vp 
is the growth velocity at front, while all other variables 
and parameters have the same meaning as given in [1]. 
 
Results 
By training a PINN we obtain a one dimensional 
“traveling-wave” solution for the actin flow velocity and 
the densities of F-Actin and myosin. They coincide well 
with the experimental observations as well as with the 
solution which was given in [1] and computed using 
classical methods of numerical analysis. 

 
Figure 1: Spatial variation of actin flow velocity inside 
the cell crawling with a constant velocity. 
 
Discussion 
This project serves as a proof of concept which we 
intend to extended to two dimensions with temporal 
dynamics. Our goal is to combine data and physics to 
develop a deep learning-based simulation framework to 
analyze cell migration and validate the simulation 
results with experimental observations.  
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