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Introduction 

The characterization of biological tissues by means of 

constitutive models is a necessary task to carry out 

realistic and reliable finite element simulations. 

The arteries, in particular, present different mechanical 

properties, such as hyperelasticity and viscoelasticity, 

which are fundamental for their correct biological 

functioning. Although it is possible to describe these 

properties through constitutive models, this task 

involves the calibration of material parameters of such 

models in order to properly mimic the mechanical 

behavior of the studied material. 

To determine these constants, optimization techniques 

that iteratively account for results computed via finite 

elements are often used, thus resulting in a very slow 

computational process. Therefore, it is proposed in this 

work to accelerate the process by creating a metamodel 

through a neural network trained with synthetic data 

obtained from finite element simulations. Adjustments 

of this type have been made with purely hyperelastic 

constitutive models [1], but have not yet been included. 

In this investigation, the non-linear viscoelastic 

component is included using a constitutive model 

recently proposed by Latorre et al. [2]. 

 

Method 

A uniaxial relaxation test in the circumferential 

direction of a one-year-old guinea pig aorta artery is 

used to study the viscous effect described in these 

experimental results. To characterize the constitutive 

model, a fully connected neural network is trained, with 

3 hidden layers formed by 6 neurons, using data from 

5000 finite element simulations, changing only the 

parameters of the viscoelastic constitutive model and 

maintaining the hyperelastic parameters previously 

adjusted in a work already published by the authors [3]. 

The input of the network are 6 parameters that 

correspond to the viscous parameters of the viscoelastic 

constitutive model, while the corresponding output is 

made up of the data produced by the reduction of the 

dimensionality applied to 4001 time points by each 

simulation performed. This reduction of the 

dimensionality is done through the use of Principal 

Component Analysis (PCA) [4]. Therefore, with this 

network a metamodel is obtained, which receive the 

viscous parameters and deliver data that represent the 

applied stresses. 

Based on this metamodel, an optimizer is applied to 

determine the viscous parameters that deliver the best fit 

to the experimentally measured stress. With this last 

step, it is possible to adjust the parameters of the 

viscoelastic constitutive model that describe the data 

obtained from the uniaxial relaxation test of an artery. 

 

Result 

A metamodel with a Mean Squared Error (MSE) of 

2.46% is obtained, which affects the accuracy of the 

parameters obtained after applying the optimizer. 

However, a set of parameters similar to that delivered by 

the classical method [3] is achieved. After plotting the 

curve delivered by the metamodel with the parameters 

obtained in [3] and contrasting it with the experimental 

data, some differences are observed in the beginning of 

the relaxation process (Figure 1) that are also attributed 

to the error of the metamodel. On the other hand, the 

time to obtain the optimal parameters is much lower 

compared to the methods that iterate with finite element 

simulations. 

Figure 1:  Comparison of the experimental response 

(black) and that of the metamodel (red) after evaluating 

the optimal viscous parameters obtained in [3]. 
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