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Introduction 

Physics-Informed Neural Networks (PINNs) has 
emerged as a powerful approach to encode governing 
partial differential equations (PDEs) and training data to 
solve complex engineering problems. In cardiovascular 
applications, PINNs can be designed to encode Navier-
Stokes equations and clinically-acquired hemodynamic 
data (e.g., from 4D Flow MRI) into the loss function to 
improve predictions. However, minimizing the loss 
function during the training process is challenging.  

One strategy to improve the training operation is to 
use functions that maintain differentiability, non-
linearity and minimize vanishing gradients; however, 
most popular activation functions lack these properties.  

We propose to use a recently-introduced Fourier-
based activation function that utilizes a periodic sine 
function [1]. The derivative of a sine function is a 
cosine, a phase-shifted sine, and thus, inherit the 
properties of the original function. 
 
Methods 
Test Case – 2D Stenosis: A 2D eccentric stenosis was 
created based on Varghese et al [2]. CFD simulations 
were performed using a higher-order finite-element 
solver, Oasis [3], at Re=5000 on a 240k triangle mesh. 
PINNs Model: The solution 𝑢(𝒙, 𝑡) was approximated 
with a deep learning network 𝑓(𝒙, 𝑡; 𝜃), where 𝜃 
represents the trainable parameters of the neural 
network. The loss function is defined as: 
							ℒ!"!#$	(𝜃) = ℒ%&' + 𝜆()ℒ() + 𝜆*+,+ℒ*+,+								(1)	 
where ℒ%&', ℒ() and ℒ*+,+ correspond to the loss term 
for the Navier-Stokes equation, boundary conditions, 
and known sensor data, respectively. The parameters 
𝜆() and 𝜆*+,+ aim to balance the interplay of the 
different terms in the loss function. The network 
consisted of 4 layers with 128 neurons/layer. The 
boundary conditions and velocity field at the mesh 
nodes were treated as unknown quantities. Sensitivity to 
sensor data (obtained from CFD) were tested by 
increasing sensor points from 25 to 400.  
Activation Functions: We compared two standard 
activation functions, swish and tanh against a Fourier-
based, periodic sine function (i.e., SIREN[1]). The 
formulation of the three activations functions are 

							𝑠𝑤𝑖𝑠ℎ: 𝑓(𝑥) = 𝑥. 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)													(4)	

														𝑡𝑎𝑛ℎ: 𝑓(𝑥) =
𝑒- − 𝑒.-

𝑒- + 𝑒.- 																				(5)	
														𝑆𝑖𝑛𝑢𝑠: 𝑓(𝑥) = sin(𝜔/𝑥)																						(6) 

Sinus requires special initialization for the first layer and 
normalization of the input parameters from -1 to 1. We 
applied a strategy proposed by Pan et al. in our work [3].  

Results 
While PINNs model with sinus and swish activation 
functions converged, the tanh solution diverged due to 
diminishing gradients issues. Figure 2A shows presence 
of unsteady vortical structures due to the geometric 
perturbation (i.e., non-axisymmetric stenosis). Figure 
2B shows a monotonic decrease in L2 errors as the 
number of sensor data increases from 25 to 400. There 
is a rapid decrease in error norm from 25 to 100 points 
for sine function compared to swish function. Figure 2C 
shows the velocity field estimated by PINNs for 25 and 
400 sensor points, marked with P1 and P4 respectively. 
Even with 25 sensor points, the sine-based velocity field 
shows the spatial dynamics that are not captured by 
swish activation function. At 400 sensor points swish 
and sine show similar L2 norms; however, the qualitative 
velocity maps demonstrate that sine-based predictions 
better match the CFD results. 

 
Figure 1: A) Temporal evolution of vortical 

structures over non-dimensional time, 𝑡∗ = 𝑡𝑢1/𝐷. 
B) Decrease in error with increasing sensor data, 

and C) PINNs-predicted velocity for sine and swish 
activation functions at 𝑡∗ = 35. 

Discussion 
We have demonstrated that sine activation function can 
substantially improve velocity field predictions 
compared to conventional activation functions. Second, 
sine activation function was able to reconstruct the gross 
velocity field even with 25 sensor points. The reduced 
requirements on sensor data are beneficial since 
clinically-acquired hemodynamic data is often scarce 
and sparse, for example, in 4D Flow MRI or dynamic 
perfusion CT imaging.  
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