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Introduction 

The state-of-the-art in musculoskeletal dynamics 

estimation is Physics-Informed Neural Networks 

(PINNs), which are standard machine/deep learning 

models that exploit physics law equations by integrating 

them into the loss function in order to penalize the 

estimation of forces and/or kinematics of a virtual 

character [1]. Unlike finite element and conventional 

physics-based methods, PINNs do not require to 

explicitly model the complex underlying physics that 

govern the human body, and as showed in [1][2], they 

can be physically consistent while being more fast 

compared with neural network architectures such as 

CNNs and LSTMs.  

In this work, we developed a PINN for predicting knee 

torques during intermittent isometric fatiguing tasks 

inspired by the Three-Compartment Controller Model 

(3CC) [3][4], which is a state machine that describes the 

transition of all muscle motor units of a human limb 

from one state (compartment) to another, namely active 

(MA), fatigued (MF), or resting (MR). Our model predicts 

the mean torque of the knee (in %MVC – maximum 

voluntary contractions) during active (MA) and fatigue 

state (MF) and can be used to both synthesize/simulate 

fatigue-driven motion for realistic 3D character 

animation as well as model temporally evolving 

ergonomic effects.  

 

Methods 

Our Physics-Informed Neural Network (Figure 1) 

consists of a three-layer Bidirectional Long Short-Term 

Memory (BiLSTM) network with 128 units, and a fully 

connected output layer. BiLSTM is an extension of 

LSTM that also has backward feedback connections 

along with forward ones, which aid the model to exploit 

both future and past data w.r.t. a specific time step, and 

as a result is more accurate than LSTM [5].  The model 

is fed with time steps (sec) and MA and MF (%MVC) of 

the current step (t) to produce knee mean torques of 

active and fatigue state of the next time frame (t+1). The 

loss of our model is defined as follows:  
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where MSE is the mean square error of the prediction, F 

and R show at which rate the motor units fatigue or rest, 

respectively (for knee joint F = 0.01500 and R = 0.00149 

[3]), and Eq.2 is the differential equation that describes 

fatigue state as presented in [3][4].  

We implemented and trained our model using Python’s 

Tensorflow. The training dataset was obtained from [6] 

and consists of mean torques of the knee joint from 8 

healthy (aged 29 ± 6 years old) subjects during 

intermittent isometric maximal voluntary contractions 

of the quadriceps while seated. 

 

 
Figure 1: A general overview of our PINN. 

  

Results 

We compare the performance of our PINN with other 

architectures in terms of Normalized Root Mean Square 

Error (NRMSE) as shown in Table 1. Lower values 

indicate accuracy and good performance. 

 

Method/NRMSE MA MF 

PINN (Ours) 3.01 3.95 

LSTM 3.91 4.66 

ANN 5.87 6.12 

Table 1: The NRMSE values for mean torques during 

active and fatigue state (ANN – Artificial Neural 

Network). 

 

Discussion 

The primary goal of this work is to provide an automatic 

and fast solution of predicting fatigue without using 

physics-based methods. According to the results, our 

approach performs better than standard architectures, 

thus, indicating that our PINN models effectively the 

fatigue state of 3CC. As future work we would like to 

model all three states of the 3CC into one deep learning 

network and utilize/test our model to predict the fatigue 

of an animated virtual character in real-time.  
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