Conference Agenda

Please note small changes to the agenda are still possible.

Read about the Topical Meetings and sessions of the conference

Select a date or location to show sessions only on that day or location.
Select a single session for a detailed view (with abstracts and downloads when you are logged in as a registered attendee).

 
 
Session Overview
Session
PLENARY SPEECH by Claudio Conti "Photonic spin glasses: from fundamentals to combinatorial optimization and machine learning"
Time:
Wednesday, 11/Sept/2024:
11:30am - 12:15pm

Location: AULA MAGNA


Claudio Conti is associate professor at the Department of Physics of the University Sapienza in Rome. He has been Director of the Institute of Complex Systems of the Italian National Research Council. He received the New Talent Grant from the Research Center Enrico Fermi and a Humboldt fellowship at the Max Planck Institute for the Science of Light. He participated in various research projects, including an ERC Grant, “Light and Complexity,” that led to the first observation of replica symmetry breaking, cited in the Nobel Prize in Physics in 2021. CC authored over 250 articles in top-level journals; his research interests encompass complex systems, machine learning, photonics, and nonlinear optics with applications such as Ising machines and fundamental tests of quantum mechanics.

Claudio's website: complexlight.org

More information


Session Abstract

Nonlinear and disordered photonic systems exhibit intricate dynamics, encompassing extreme events like rogue waves and non-trivial statistical behaviors. Remarkably, the application of spin-glass theory provides a fitting theoretical framework to elucidate the complexities inherent in these nonlinear optical systems. Experiments involving disordered lasers and nonlinear optical propagation have unveiled direct evidence of Replica Symmetry-Breaking transitions, a pivotal prediction of the spin-glass theory that had eluded confirmation for decades.
While spin-glass theory has found prominence in modern machine learning, combinatorial optimizations, and artificial intelligence, its interdisciplinary connections with photonic systems present a compelling opportunity. We explore the potential to harness these connections to develop innovative non von Neumann devices tailored for large-scale computing.
An introductory review of photonic spin glasses theory and experiments is presented alongside new findings that pave the way toward a new generation of computing devices demonstrating superior scalability compared to existing quantum annealers and Ising machines.

References

1. N. Ghofraniha, et al., Experimental evidence of replica symmetry breaking in random lasers, Nature Communications 6, 6058 (2015)

2. D. Pierangeli, et al., Large-scale photonic Ising machine by spatial light modulation, Phys. Rev. Lett. 122, 213902 (2019)

3. M. Calvanse Strinati, et al., Hyperscaling in the coherent hyperspin machine, Phys. Rev. Lett. 132 (2024)


No contributions were assigned to this session.