Session | ||
PLENARY SPEECH by Kishan Dholakia "Viewing life without labels: Advanced biomedical imaging approaches for the preimplantation embryo"
Kishan Dholakia is an Australian Research Council Laureate Fellow and Director of the newly established Centre of Light for Life at the University of Adelaide. He is also a Professor at the University of St Andrews, Scotland. His team’s works on a broad range of fundamental and interdisciplinary aspects of photonics, using structured (shaped) light fields. As an example, his group has pioneered the understanding and use of propagation invariant beams in imaging, optical manipulation and cell nanosurgery. Present topics in the group focus on imaging, sensing and manipulation. They include speckle metrology, advanced light sheet imaging including label-free approaches and optical trapping, including rotational levitated optomechanics. His group has been central to addressing key biological problems with such advanced photonics. He is a Fellow of the Royal Society of Edinburgh, the Optical Society and SPIE. He has won a number of national and international awards including the R.W. Wood Prize of the Optical Society (2016), the IOP Thomas Young Medal and Prize (2017) and SPIE Dennis Gabor Award (2018). His work in light sheet imaging and manipulation has been seen very successful industry translation, with instruments used in over ten countries worldwide. | ||
Session Abstract | ||
In this talk I will describe the use of a range of advanced photonics-based approaches of light sheet microscopy and digital holographic microscopy for label-free imaging. A driver for this work is the understanding of the development of the pre-implantation mammalian embryo [1-4] and improve IVF outcomes. Embryo quality is a crucial factor affecting live birth outcomes. However, an accurate diagnostic for embryo quality remains elusive in the IVF clinic. Exploiting advanced optical imaging can assess the embryo in 3D and determine its metabolic rate and other physical parameters. This may ultimately prove to be a new multimodal diagnostic approach for embryo health. Cellular metabolism is a key regulator of energetics, cell growth, regeneration, and homeostasis. The endogenous metabolic cofactors, nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD) can be imaged through their autofluorescence. By performing this with hyperspectral imaging at subcellular resolution may assist in determining embryo viability in a clinical setting. Such hyperspectral imaging can be used to determine the ploidy status of the embryo [1]. By using new implementations of light sheet imaging, we can extend this imaging to 3D [2]. Separately, we can tailor digital holographic microscopy (DHM) to measure spatio-temporal changes in refractive index during the development of the embryo that are reflective of its lipid content. Accumulation of intracellular lipid is known to compromise embryo health thus making this a further useful approach for diagnosis [3]. Overall, advanced photonics adds useful, label-free multimodal information for IVF success and can be gentle enough to not effect viability [4]. [1] T. C. Y. Tan et al., Hum. Reprod. 37(1), 14–29 (2021). [2] Josephine Morizet et al., ACS Photonics 10, 4177-4187 (2023) [3] George O. Dwapanyin et al., Biomed. Opt. Express 14, 3327-3342 (2023) [4] C. A. Campugan et al., J. Assist. Reprod. Genet. 39(8), 1825–1837 (2022) | ||
No contributions were assigned to this session. |