Conference Agenda

TOM9 S05: Opto-electronic Nanotechnologies and Complex Systems: Nanostructures
Wednesday, 14/Sept/2022:
2:30pm - 4:00pm

Session Chair: Concita Sibilia, Università di Roma La Sapienza, Italy
Location: B231

2nd floor, 70 seats

2:30pm - 3:00pm
ID: 349 / TOM9 S05: 1
TOM 9 Opto-electronic Nanotechnologies and Complex Systems

Nanostructured films of two-dimensional materials: electronic transport, electronic devices and wearable electronics

Felice Torrisi

Imperial College London/Universita' di Catania, United Kingdom

Wearable electronics is a primary technology to enable remote healthcare provision, which is highly important in a post-pandemic society. Graphene and related 2D materials (GRMs) hold a great potential for wearable electronics for their novel electrical and optical properties.

3:00pm - 3:15pm
ID: 221 / TOM9 S05: 2
TOM 9 Opto-electronic Nanotechnologies and Complex Systems

Active tuning of the optical response of field-effect-gated transparent conductive oxides

Maria Sygletou1, Emilio Bellingeri2, Maurizio Canepa1, Francesco Bisio2

1OPTMATLAB Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy; 2CNR-SPIN, Corso F.M. Perrone 24, 16152 Genova, Italy

Transparent Conductive Oxides (TCOs) are a class of materials with high optical transparency and electrical conductivity. This combination makes them extremely appealing for solar cells, optoelectronics and infrared-plasmonics applications. In this work, we report the active tuning of the optical response of aluminium-doped ZnO (AZO) films upon electrical gating within a parallel-plate capacitor configuration. We investigated the electrical-bias-dependent optical response of thin AZO films fabricated by pulsed laser deposition by means of spectroscopic ellipsometry (SE). Calculations based on an exponentially-decaying spatial distribution of injected/depleted charge density in the AZO film are in accordance with experimental observations, allowing the extraction of the Debye length.

3:15pm - 3:45pm
ID: 391 / TOM9 S05: 3
TOM 9 Opto-electronic Nanotechnologies and Complex Systems

Ultrasensitive PCR and label-free optical biosensors based on photonics transduction

Sabrina Conoci

Università di Messina, Italy

The molecular analysis of Nucleic Acids (NA), DNA and RNA, has become nowadays crucial in many medical fields for early and accurate diagnosis, personalized therapy and preventive screening. It is particularly relevant in the field of the infectious diseases that can catastrophically affect the health of population, as it is the case of the current pandemics due to the SARS-CoV-2 virus that – up to now – infected up to 434 millions of people causing 6 millions of deaths worldwide. Currently, the molecular analysis of NA is based on PCR (Polymerase Chain Reaction) method, that however includes complex procedures (sample preparation and detection); this limits, de facto, its use for massive screening. In this contribution, two PCR- free innovative approaches using photonics transduction are presented and discussed. Both approaches are based on the capture of whole genomes of pathogens at inorganic surface (silicon or electrode surface) through cooperative hybridization with two complementary capture probes (single strand DNA or RNA) immobilized on this surface.