Conference Agenda

Session
TOM5 S03: Resonant Nanophotonics
Time:
Wednesday, 14/Sept/2022:
4:30pm - 6:00pm

Session Chair: Costanza Toninelli, CNR-INO, Italy
Location: B120

1st floor, 70 seats

Presentations
4:30pm - 5:00pm
Invited
ID: 369 / TOM5 S03: 1
TOM 5 Resonant Nanophotonics

Tba

Humeyra Caglayan

Tampere University, Finland

Tba



5:00pm - 5:15pm
ID: 263 / TOM5 S03: 2
TOM 5 Resonant Nanophotonics

Controlling resonant surface modes by arbitrary light induced optical anisotropies

Niccolo' Marcucci1, Giorgio Zambito2, Maria Caterina Giordano2, Francesco Buatier de Mongeot2, Emiliano Descrovi1

1Politecnico di Torino, Italy; 2University of Genoa, Italy

In this work the sensitivity of Bloch Surface Waves to laser-induced anisotropy of azo-polymeric thin layers is experimentally shown. The nanoscale reshaping of the films via thermal–Scanning Probe Lithography allows to couple light to circular photonic nanocavities, tailoring on-demand resonant BSW confined within the nanocavity.



5:15pm - 5:30pm
ID: 274 / TOM5 S03: 3
TOM 5 Resonant Nanophotonics

Approaches for the RCWA-based non-destructive characterization of subwavelength-structured gratings

Julian Wüster1, Andreas Reetz1, Rüdiger Schmidt-Grund2, Andrea Knauer3, Stefan Sinzinger1

1Fachgebiet Technische Optik, Technische Universität Ilmenau, Germany; 2Fachgebiet Technische Physik 1, Technische Universität Ilmenau, Germany; 3Institut für Mikro- und Nanotechnologien, Technische Universität Ilmenau, Germany

Nano-structuring enables us to add additional degrees of freedom to the design of optical elements. Especially the possibility of controlling the polarization is of great interest in the field of nano-structured optics. For being able to exploit the whole range of form-birefringent phase shifts, the aspect ratios of the resulting element are typically much higher than the aspect ratios of conventional diffractive optical elements (DOEs), which does not only pose a challenge on fabrication but also on characterization. We evaluate several well-established approaches for the nondestructive characterization, including Müller-Matrix-Ellipsometry, measurement

of the diffraction efficiencies, scattering measurements and calibration with rigorous coupled-wave modelling. The goal is to understand the challenges with all these techniques and combine them to a reliable method for structural reconnaisance of high aspect ratio nanostructures.



5:30pm - 6:00pm
Invited
ID: 371 / TOM5 S03: 4
TOM 5 Resonant Nanophotonics

Tba

Sebastien Bidault

Institut Langevin, ESPCI Paris, CNRS, France

Tba