Conference Agenda

TOM5 & TOM8 S01: Joint session
Thursday, 15/Sept/2022:
4:00pm - 5:30pm

Session Chair: Said Rodriguez, AMOLF, Netherlands, The
Location: B035

Ground floor, 99 seats

4:00pm - 4:30pm
ID: 365 / TOM5 & TOM8 S01: 1
TOM 8 Non-linear and Quantum Optics

Photo-induced nonlinearities in silicon nitride nanophotonics

Camile-Sophie Bres

Photonic Systems Laboratory, EPFL, Switzerland

We cover recent work on photo-induced second order nonlinearities in silicon nitride waveguides and microresonators. The all-optical inscription of second order nonlinearity through the coherent photogalvanic process has been shown to allow for efficient and versatile second harmonic generation, as well as difference-frequency generation and spontaneous parametric down conversion in waveguides. We will show that such all-optical poling also occurs in resonators combining resonant enhancement without sacrificing tunability. In addition, we confirm that several multiphoton absorption processes can occur simultaneously, allowing for the inscription of distinct charge gratings for quasi-phase matching of several 2nd order nonlinear processes in the same device. Such flexible second order nonlinearity phase matching capability positions silicon nitride, as an excellent platform to explore complex physics of combined second and third order nonlinear effects in integrated photonics

4:30pm - 4:45pm
ID: 203 / TOM5 & TOM8 S01: 2
TOM 8 Non-linear and Quantum Optics

Spontaneous parametric down-conversion from GaAs nanowires at telecom wavelength

Grégoire Saerens1, Ngoc My Hanh Duoeng1, Alexander Solntsev2, Artemios Karvounis1, Thomas Dursap3, Philippe Regreny3, Andrea Morandi1, Robert J. Chapman1, Andreas Maeder1, Alexandre Danescu3, José Penuelas3, Nicolas Chauvin3, Rachel Grange1

1ETH Zuerich, Optical Nanomaterial Group, Institute for Quantum Electronics, Department of Physics, 8093 Zuerich, Switzerland; 2University of Technology Sydney, School of Mathematical and Physical Sciences, Ultimo NSW 2007, Australia; 3Univ. Lyon, CNRS, ECL, INSA Lyon, UCBL, CPE Lyon, INL, UMR 5270, 69130 Ecully, France

We report on the generation of photon pairs at 1550 nm from free-standing epitaxially grown self-assisted micrometre long GaAs nanowires. The efficiency of the spontaneous parametric down-conversion process has a rate of 320 GHz/Wm normalized to the transmission of the setup, the pump intensity, and the volume of the nanostructure. GaAs is a high index dielectric that can support electromagnetic Mie modes, therefore we model how shorter nanowires could improve the second-harmonic signal and we found that sub-micro long nanowires (600 nm length and 250 nm diameter) can support quality factors up to 15 at the pump wavelength (780 nm). We anticipate that the near field enhancement compared to micrometre long nanowires will boost the second-harmonic generation and, correspondingly, the biphoton rate efficiency.

4:45pm - 5:00pm
ID: 247 / TOM5 & TOM8 S01: 3
TOM 8 Non-linear and Quantum Optics

Cooperative spontaneous four-wave mixing in single-channel and dual-channel sequences of side-coupled ring resonators

Amideddin Mataji-Kojouri1, Massimo Borghi1, Federico A. Sabattoli1, Houssein El Dirani2, Laurene Youssef3, Camille Petit-Etienne3, Erwine Pargon3, John E. Sipe4, Marco Liscidini1, Corrado Sciancalepore2, Matteo Galli1, Daniele Bajoni5

1Dipartimento di Fisica, Università di Pavia, Via Agostino Bassi 6, 27100 Pavia, Italy; 2Univ. Grenoble Alpes, CEA-Leti, 38054 Grenoble cedex, France; 3Univ. Grenoble Alpes, CNRS, LTM, 38000 Grenoble, France; 4Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON, M5S 1A7, Canada; 5Dipartimento di Ingegneria Industriale e dell’Informazione, Università di Pavia, Via Adolfo Ferrata 5, 27100 Pavia, Italy

Cooperative photon pair generation by Spontaneous Four-Wave Mixing (SFWM) process in single-channel and dual-channel side-coupled ring resonator sequences is investigated. Our analysis shows that super-linear growth of generation rate with respect to the number of rings is possible even in presence of loss. Experimental evidence of super-SFWM is provided by comparing individual and collective generation rates obtained from a dual-channel ring resonator sequence. The results are in good agreement with theory and suggest that high photon pair generation rates can be achieved from integrated silicon ring resonator sequences without initiating nonlinear absorption processes.

5:00pm - 5:15pm
ID: 158 / TOM5 & TOM8 S01: 4
TOM 5 Resonant Nanophotonics

Towards harmonic generation enhancement on silicon

Laura Rodríguez1, Michael Scalora2, Crina Cojocaru1, Neset Akozbek3, Ramon Vilaseca1, Jose Trull1

1Universitat Politècnica de Catalunya, Physics Department, Rambla Sant Nebridi 22, 08222 Terrassa, Spain; 2Aviation and Missile Center, US Army CCDC, Redstone Arsenal, Huntsville, AL, United States; 3US Army Space & Missile Defense Command, Tech Center, Redstone Arsenal, AL 35898, United States

Nowadays, nanostructures are routinely fabricated and integrated in different photonic devices for a variety of purposes and applications. For instance, nonlinear silicon photonics is an area of interest due to its high compatibility with CMOS technology, offering structure sizes down to 10nm at low cost. When the nanoscale is reached, light-matter interactions can display new phenomena, conventional approximations may not always be applicable, and new strategies must be sought in order to study and understand light-matter interactions at the nanoscale. In this work, we report a comparative experimental and theoretical study of second and third harmonic generation from silicon with the aim of explaining the nonlinear optical properties of this material at the nanoscale. We measure second and third harmonic efficiencies as a function of angle of incidence, polarization and pump wavelength. We compare these measurements with numerical simulations based on a microscopic hydrodynamic model which accounts for different possible contributions to the nonlinear polarization. This way, we have the ability to explain properly the SH and TH signals arising from different silicon samples. Once we have this knowledge, we are able to design more complex structures, such as silicon nanowires, where higher conversion efficiencies can be achieved.

5:15pm - 5:30pm
ID: 272 / TOM5 & TOM8 S01: 5
TOM 5 Resonant Nanophotonics

Controlling the nonlinear excitation of perovskite nanocrystals by a chiral dielectric metasurface

Ilka Vincon1, Fedja J. Wendisch2, Daniele De Gregorio2, Stefanie D. Pritzl1, Quinten A. Akkerman1, Haoran Ren3,2, Leonardo de S. Menezes2,4, Stefan A. Maier5,2, Jochen Feldmann1

1Chair for Photonics and Optoelectronics, Nano-Institute Munich, LMU, Königinstraße 10, 80539 Munich, Germany; 2Chair in Hybrid Nanosystems, Nano-Institute Munich, LMU, Königinstraße 10, 80539 Munich, Germany; 3MQ Photonics Research Centre, Macquarie University, Macquarie Park, NSW 2109, Australia; 4Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife-PE, Brasil; 5School of Physics and Astronomy, Monash University, Clayton Victoria 3800, Australia

We demonstrate that pronounced chiral resonances of a dielectric metasurface can be applied to induce polarization effects in two-photon absorption processes of inorganic perovskite nanocrystals. In our hybrid system, a monolayer of cubic all-inorganic lead halide perovskite nanocrystals was deposited on a z-shaped Si-metasurface. The two-photon excited photoluminescence emission of the perovskite nanocrystals is enhanced by up to one order of magnitude in this configuration. In particular, the enhancement is controllable by the excitation wavelength and by its polarization. This demonstrated control of perovskite light emission can become highly relevant for sensing and display technologies.