Conference Agenda

TOM1 S03: Silicon Photonics and Guided-Wave Optics
Wednesday, 14/Sept/2022:
2:30pm - 4:00pm

Session Chair: Colin James Mitchell, University of Southampton, United Kingdom
Location: B116

1st floor, 70 seats

2:30pm - 2:45pm
ID: 348 / TOM1 S03: 1
TOM 1 Silicon Photonics and Guided-Wave Optics

Integrated optical phased arrays with circular architecture on a silicon platform

Daniel Benedikovic

University of Zilina, Slovak Republic

Optical phased arrays (OPAs) are now at the forefront of photonic research as a key beam steering technology for myriad of photonic applications, including in light detection and ranging (LIDAR), communications, and metrology, among others. Integrated OPAs with narrow beam widths and wide-angle steering are in critical need, especially for LIDARs in autonomous vehicle, drone and airplane navigation, or satellites. In this work, we numerically study the performances of OPAs having a circular layout arrangement. Compared to recently available solutions with 1D linear or 2D rectangular arrays, the proposed circular OPAs are poised to deliver effective suppression of the grating sidelobes, while improving beam steering range and obtaining narrower beamwidths. We demonstrate 110-element circular arrays with sidelobe suppression better than 10 dB and an angular beamwidth of 0.5°. Under a monochromatic operation at a 1550 nm wavelength, such array provides a solid angle steering range of 0.21π-sr, with a perspective for performance improvement by using large number of OPA elements and operating under broader spectral range.

2:45pm - 3:15pm
ID: 374 / TOM1 S03: 2
TOM 1 Silicon Photonics and Guided-Wave Optics

Advanced subwavelength metamaterial engineered devices for silicon photonics

Inigo Molina Fernandez

University of Malaga, Spain


3:15pm - 3:45pm
ID: 379 / TOM1 S03: 3
TOM 1 Silicon Photonics and Guided-Wave Optics

Ultra-low loss Si3N4 photonics platform

Quentin Wilmart

CEA-Leti, France

Ultra-low loss waveguides with tight confinement present a great interest for a wide range of applications such as quantum photonics, data-communication, neuromorphic computing, LiDAR and microwave optic. Here, we present our 200mm photonics platform based on 800nm-thick Si3N4 waveguides with high fabrication yield and wafer scale optical losses below 5dB/m.

3:45pm - 4:00pm
ID: 321 / TOM1 S03: 4
TOM 1 Silicon Photonics and Guided-Wave Optics

Highly-efficient and compact metamaterial surface grating antenna on a 300-nm silicon-on-insulator platform

Shahrzad Khajavi1, Daniele Melati3, Pavel Cheben2, Jens H. Schmid2, Dan Xia Xu2, Winnie N. Ye1

1Carleton University, Canada; 2National Research Council Canada; 3CNRS, Université Paris-Saclay

We present a high-efficiency silicon-based surface grating antenna in a 300-nm silicon-on-insulator platform. The antenna is based on metamaterial engineered L-shaped radiating nanostructures, yielding an efficiency approaching 90% and a compact footprint less than 8 µm × 5 µm.