Conference Agenda

Topical Meetings and Sessions:

TOM 1 - Silicon Photonics and Guided-Wave Optics
TOM 2 - Computational, Adaptive and Freeform Optics
TOM 3 - Optical System Design, Tolerancing and Manufacturing
TOM 4 - Bio-Medical Optics
TOM 5 - Resonant Nanophotonics
TOM 6 - Optical Materials: crystals, thin films, organic molecules & polymers, syntheses, characterization and applications
TOM 7 - Thermal radiation and energy management
TOM 8 - Non-linear and Quantum Optics
TOM 9 - Opto-electronic Nanotechnologies and Complex Systems
TOM 10 - Frontiers in Optical Metrology
TOM 11 - Tapered optical fibers, from fundamental to applications
TOM 12 - Optofluidics
TOM 13 - Advances and Applications of Optics and Photonics
EU Project Session
Early Stage Researcher Session

More information on the Topical Meetings

Select a date or location to show only sessions at that day or location. Select a single session for a detailed view (with abstracts and downloads when you are logged in as a registered attendee). The rest of the TOM sessions, EU project session, tutorials, and Early Stage Researcher session will be updated soon. Thank you for your patience!

Please note that all times are shown in the time zone of the conference. The current conference time is: 6th Dec 2022, 09:40:20pm WET

 
 
Session Overview
Session
PLENARY SPEECH: Rachel Grange
Time:
Tuesday, 13/Sept/2022:
10:15am - 11:00am

Session Chair: Sebastien Bidault, Institut Langevin, ESPCI Paris, CNRS, France
Location: Auditorium

1st floor, next to registration desk, 400 seats

Professor at ETH Zurich, Department of Physics, Institute for Quantum Electronics, Optical Nanomaterial Group, Switzerland

Title: Nonlinear and Electro-Optic Metal-Oxides for Telecom and Sensing Devices


Session Abstract

Nonlinear and electro-optic devices are present in our daily life with many applications: light sources for microsurgery, green laser pointers, or modulators for telecommunication. Most of them use bulk materials such as glass fibres or high-quality crystals, hardly integrable or scalable due to low signal and difficult fabrication. Generating nonlinear or electro-optic effects from materials at the nanoscale can expand the applications to biology and optoelectronics. However, the efficiency of nanostructures is low due to their small volumes.

Here I will show several strategies to enhance optical signals by engineering metal-oxides at the nanoscale with the goal of developing nonlinear and electro-optic photonics devices for a broad spectral range. We use metal-oxides such as barium titanate (BTO) and lithium niobate (LNO) as an alternative platform for nanoscale nonlinear photonics. Recently, we focused on bottom-up assemblies of BTO nanoparticles to obtain electro-optic metasurfaces and quasi phase matching effects.

The field of metal-oxides at the nanoscale has a huge potential of applications in nanophotonics, integrated optics and telecommunication.

 

About the speaker

Since 2021, Rachel Grange is an associate professor in integrated optics and nanophotonics in the Department of Physics at ETH Zurich. She has been assistant professor at ETH Zurich since 2015. From 2011 to 2014, she was junior group leader at the Friedrich Schiller University in Jena, Germany.  During her post-doc at EPFL, she worked on nonlinear bioimaging with metal-oxides nanoparticles from 2007 to 2010. She received her Ph.D. in 2006 from ETH Zurich on ultrafast laser physics.


No contributions were assigned to this session.