Conference Agenda

Topical Meetings and Sessions:

TOM 1 - Silicon Photonics and Guided-Wave Optics
TOM 2 - Computational, Adaptive and Freeform Optics
TOM 3 - Optical System Design, Tolerancing and Manufacturing
TOM 4 - Bio-Medical Optics
TOM 5 - Resonant Nanophotonics
TOM 6 - Optical Materials: crystals, thin films, organic molecules & polymers, syntheses, characterization and applications
TOM 7 - Thermal radiation and energy management
TOM 8 - Non-linear and Quantum Optics
TOM 9 - Opto-electronic Nanotechnologies and Complex Systems
TOM 10 - Frontiers in Optical Metrology
TOM 11 - Tapered optical fibers, from fundamental to applications
TOM 12 - Optofluidics
TOM 13 - Advances and Applications of Optics and Photonics
EU Project Session
Early Stage Researcher Session

More information on the Topical Meetings

Select a date or location to show only sessions at that day or location. Select a single session for a detailed view (with abstracts and downloads when you are logged in as a registered attendee). The rest of the TOM sessions, EU project session, tutorials, and Early Stage Researcher session will be updated soon. Thank you for your patience!

Please note that all times are shown in the time zone of the conference. The current conference time is: 26th Nov 2022, 06:31:12pm WET

 
 
Session Overview
Session
TOM13 S06: Advances and Applications of Optics and Photonics
Time:
Wednesday, 14/Sept/2022:
4:30pm - 6:00pm

Session Chair: Orlando Frazão, Physics, Portugal
Location: B035

Ground floor, 99 seats

Show help for 'Increase or decrease the abstract text size'
Presentations
4:30pm - 4:45pm
ID: 269 / TOM13 S06: 1
TOM 13 Advances and Applications of Optics and Photonics

Multi-well platform manufacturing combining stereolithography and pulsed laser ablation for cellular studies

Bastián Carnero1,2, Carmen Bao-Varela1, Ana I. Gómez-Varela1, Ezequiel Álvarez3,4,5, M. Teresa Flores-Arias1

1Photonics4Life research group, Departmento de Física Aplicada, Facultade de Física and Instituto de Materiais (iMATUS), Universidade de Santiago de Compostela; 2BFlow S.L.; 3Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, Universidade de Santiago de Compostela; 4Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS); Fundación IDIS, SERGAS; 5CIBERCV

Novel cell culture platforms, with more physiological surface roughness, require different technologies capable of precisely micropattern substrates. 3D printing offers a considerable accuracy and user-friendly procedures. For its part, pulsed laser ablation proves to be a versatile technology to perform detailed surface micropatterning. In this work, both technologies were combined to easily fabricate a versatile PDMS multi-well platform for performing cellular studies on a micropatterned biocompatible surface.



4:45pm - 5:00pm
ID: 260 / TOM13 S06: 2
TOM 13 Advances and Applications of Optics and Photonics

Celebrating a face-to-face congress of young researchers in Optics after the pandemic years: the I NW MYRO

Bastián Carnero1, Alba de las Heras2, Alejandro Doval1, Alex Martín-Rodríguez2, Alicia Muñoz-Ramos1, Ana García-Cabrera2, C. Damián Rodríguez-Fernández1, Damián Insua-Costa1, Irene Romo-Díez1, Isabel Rodríguez-Pérez2, Javier Prada-Rodrigo2, Javier Varela-Carballo1, José Paz-Martín1, María Sánche-Hernández2, M. Jesús Martínez-Morillo2, Mario Guerras-Rodríguez2, Millán Pérez2, Sabela Fernández-Rodicio1, Verónica Villa-Ortega1, Víctor W. Segundo-Staels2, M. Teresa Flores-Arias1

1Dissemination Group and Students Association LUZADA, USC-OPTICA Student Chapter and Santiago USC Young Minds Section; 2OSAL Student Chapter

This contribution reports the organization and celebration after the Covid-19 pandemic of a singular scientific conference focused on early-career researchers from the Spanish universities of Santiago de Compostela and Salamanca: the “I Northwest Meeting of Young Researchers in Optics (I NW MYRO)”.



5:00pm - 5:15pm
ID: 155 / TOM13 S06: 3
TOM 13 Advances and Applications of Optics and Photonics

Fluorescence for non-contact detection of salmon lice in fish farms

Kari Anne Hestnes Bakke, Jon Tschudi, Trine Kirkhus

SINTEF, Norway

This work presents a promising method for automatic non-contact detection and counting of salmon lice infested on salmon in an aquacultural farm setting. The method uses fluorescence in the visual part of spectrum to enhance the contrast between fish skin and lice. The wavelengths used are compatible with an underwater measurement system.



5:15pm - 5:30pm
ID: 139 / TOM13 S06: 4
TOM 13 Advances and Applications of Optics and Photonics

Imaging of water samples for the detection and identification of microplastics

Matthieu Roussey1, Boniphace Kanyathare1, Blaž Hrovat2, Nikolaos Papamatthaiakis3, Joni Hattuniemi4, Benjamin O. Asamoah1, Antti Haapala3, Arto Koistinen2, Kai-Erik Peiponen1

1Department of Physics and Mathematics, Institute of Photonics, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland; 2SIB Labs, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; 3School of Forest Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland; 4Valmet Automation Inc., Kehräämöntie 3, 87400 Kajaani, Finland

We demonstrate that direct imaging is a powerful tool for the detection and recognition of microplastics in water, even in case of complex matrices. We use a commercial high-resolution imagining device (FS5, Valmet Oy.) originally developed for the observation of wood fibres in papermill water systems. We show how to discriminate microplastics from other particles in suspension in real water samples. We show differences between several common plastic types in homemade samples.



5:30pm - 5:45pm
ID: 250 / TOM13 S06: 5
TOM 13 Advances and Applications of Optics and Photonics

Quadrics for structuring invariant space-time wave packets

Pierre Béjot, Bertrand Kibler

Laboratoire ICB - CNRS, France

We provide a general approach for structuring invariant 3D+1 optical wave packets in both bulk and structured dispersive media, through a simple engineering of phase-matched space-time frequencies on quadric surfaces.



5:45pm - 6:00pm
ID: 306 / TOM13 S06: 6
TOM 13 Advances and Applications of Optics and Photonics

Plug and play colorimetric carbon dioxide sensor

Nuno alexandre Mendes1,2, João Pedro Mendes2,3, Pedro Alberto Jorge1,2, Luís Carlos Coelho1,2

1Department of Physics and Astronomy, Faculty of Sciences of University of Porto; 2INESC TEC – Institute for Systems and Computer Engineering, Technology and Science, and Faculty of Sciences of University of Porto; 3Chemistry Research Unit – Chemistry and Biochemistry Department, Faculty of Sciences of University of Porto

Carbon dioxide measurement is an important endeavor in many industries such as food packaging, grain storage and health industry. This work presents a reversible, plug and play and low-cost colorimetric CO2 sensor calibrated in a proper concentration ranging from 1% to 3% of CO2. The sensor showed potential for improvement to increase resolution, for measuring lower CO2 concentrations and for more accurate readings.



6:00pm - 6:15pm
ID: 245 / TOM13 S06: 7
TOM 13 Advances and Applications of Optics and Photonics

Automation strategies and machine learning algorithms towards real-time identification of optically trapped particles

João Miguel Oliveira1,2, Vicente Vieira Rocha1,2, Nuno A. Silva1,2, Pedro A. S. Jorge1,2

1INESC, Portugal; 2Dep. de Física e Astronomia da Universidade do Porto

To automatically trap, manipulate and probe physical properties of micron-sized particles is a step of paramount importance for the development of intelligent and integrated optomicrofluidic devices. In this work, we aim at

implementing an automatic classifier of micro-particles immersed in a fluid based on the concept of optical tweezers. We describe the automation steps of an experimental setup together with the implemented classification models using the forward scattered signal. The results show satisfactory accuracy around 80% for the identification of the type and size of particles using signals of 250 milliseconds of duration, which paves the path for future improvements towards real-time analysis of the trapped specimens.