Conference Agenda

Topical Meetings and Sessions:

TOM 1 - Silicon Photonics and Guided-Wave Optics
TOM 2 - Computational, Adaptive and Freeform Optics
TOM 3 - Optical System Design, Tolerancing and Manufacturing
TOM 4 - Bio-Medical Optics
TOM 5 - Resonant Nanophotonics
TOM 6 - Optical Materials: crystals, thin films, organic molecules & polymers, syntheses, characterization and applications
TOM 7 - Thermal radiation and energy management
TOM 8 - Non-linear and Quantum Optics
TOM 9 - Opto-electronic Nanotechnologies and Complex Systems
TOM 10 - Frontiers in Optical Metrology
TOM 11 - Tapered optical fibers, from fundamental to applications
TOM 12 - Optofluidics
TOM 13 - Advances and Applications of Optics and Photonics
EU Project Session
Early Stage Researcher Session

More information on the Topical Meetings

Select a date or location to show only sessions at that day or location. Select a single session for a detailed view (with abstracts and downloads when you are logged in as a registered attendee). The rest of the TOM sessions, EU project session, tutorials, and Early Stage Researcher session will be updated soon. Thank you for your patience!

Please note that all times are shown in the time zone of the conference. The current conference time is: 30th Nov 2022, 07:36:12am WET

 
 
Session Overview
Session
PLENARY SPEECH: Silvia Vignolini
Time:
Wednesday, 14/Sept/2022:
11:15am - 12:00pm

Session Chair: Magnus Jonsson, Linköping University, Sweden
Location: Auditorium

1st floor, next to registration desk, 400 seats

Professor at University of Cambridge, United Kingdom

Title: Light management for control of visual appearance, from nature to applications


Session Abstract

The most brilliant colours in nature are obtained by structuring transparent materials on the scale of the wavelength of visible light. By designing the dimensions of such nanostructures, it is possible to achieve extremely intense colourations over the entire visible spectrum without using pigments or colorants. Colour obtained through structure, namely structural colour, is widespread in the animal and plant kingdom. Such natural photonic nanostructures are generally synthesised in ambient conditions using a limited range of biopolymers. Given these limitations, an amazing range of optical structures exists: from very ordered photonic structures, to partially disordered, to completely random ones. 
In this seminar, I will introduce some striking examples of natural photonic structures and share some insight on their development. Then I will review our recent advances to fabricate bio-mimetic photonic structures using the same material as nature. Developing biomimetic structures with cellulose enables us to fabricate novel photonic materials using low cost polymers in ambient conditions. Importantly, it also allows us to understand the biological processes at work during the growth of these structures in nature.

 

More about the speaker

Silvia Vignolini is currently a University Professor in Sustainability and Bio-inspired materials at the Chemistry Department in Cambridge. She studied Physics at the University of Florence, Italy. In 2009, she was awarded a PhD in Solid State Physics at the European Laboratory for non-Linear Spectroscopy and the Physics Department at the University of Florence. In 2010, she moved to Cambridge as a post-doctoral research associate working in the Cavendish Laboratory and the Plant Science Department. Her research interest lies at the interface of chemistry, soft-matter physics, optics, and biology. In particular, her research focuses on the study of how natural biopolymers (like cellulose) are assembled into complex architectures within living organisms and they can be exploited to fabricate a sustainable functional materials. 


No contributions were assigned to this session.


 
Contact and Legal Notice · Contact Address:
Privacy Statement · Conference: EOSAM 2022
Conference Software - ConfTool Pro 2.6.145+TC+CC
© 2001–2022 by Dr. H. Weinreich, Hamburg, Germany