Conference Agenda

Topical Meetings and Sessions:

TOM 1 - Silicon Photonics and Guided-Wave Optics
TOM 2 - Computational, Adaptive and Freeform Optics
TOM 3 - Optical System Design, Tolerancing and Manufacturing
TOM 4 - Bio-Medical Optics
TOM 5 - Resonant Nanophotonics
TOM 6 - Optical Materials: crystals, thin films, organic molecules & polymers, syntheses, characterization and applications
TOM 7 - Thermal radiation and energy management
TOM 8 - Non-linear and Quantum Optics
TOM 9 - Opto-electronic Nanotechnologies and Complex Systems
TOM 10 - Frontiers in Optical Metrology
TOM 11 - Tapered optical fibers, from fundamental to applications
TOM 12 - Optofluidics
TOM 13 - Advances and Applications of Optics and Photonics
EU Project Session
Early Stage Researcher Session

More information on the Topical Meetings

Select a date or location to show only sessions at that day or location. Select a single session for a detailed view (with abstracts and downloads when you are logged in as a registered attendee). The rest of the TOM sessions, EU project session, tutorials, and Early Stage Researcher session will be updated soon. Thank you for your patience!

Please note that all times are shown in the time zone of the conference. The current conference time is: 9th Dec 2022, 11:52:13pm WET

Only Sessions at Location/Venue 
Session Overview
Location: B328
3rd floor, 32 seats
Date: Tuesday, 13/Sept/2022
11:30am - 1:00pmTOM12 S01: Optofluidics: Morphological Optofluidics
Location: B328
Session Chair: Paulo Marques, University of Porto & INESCTEC, Portugal
11:30am - 12:00pm
ID: 324 / TOM12 S01: 1
TOM 12 Optofluidics

Microdroplet lasers and their applications

Matjaž Humar1,2,3

1Condensed Matter Department, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; 2Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000, Ljubljana, Slovenia; 3CENN Nanocenter, Jamova 39, SI-1000 Ljubljana, Slovenia

Bio-integrated lasers, that are lasers made of biological and biocompatible materials and implanted into cells and tissues, are gaining interest from the research community. Here we show how whispering gallery mode microlasers and microcavities made of solid beads or droplets can be used for sensing different processes in biological materials including inside cells. By making microcavities of a predefined size they can also be used to encode some information and for cell tracking. Sensing and tracking can be applied to highly scattering tissues.

12:00pm - 12:15pm
ID: 151 / TOM12 S01: 2
TOM 12 Optofluidics

Imprinting characteristics of droplet lenses on liquid-repelling surfaces into light

Valeriia Bobkova1, Eileen Otte2,3, Sarah Trinschek4, Cornelia Denz1

1Institute of Applied Physics, University of Muenster, Germany; 2Geballe Laboratory for Advance Materials, Stanford University, USA; 3Center for Soft Nanoscience, University of Muenster, Germany; 4Department of Engineering Physics, Muenster University of Applied Sciences, Germany

We propose an experimental method that allows the investigation of droplets on liquid-repelling surfaces. The described technique goes beyond the standard imaging approaches and reveals a plethora of spatial droplet information, which is usually unavailable. Liquid droplet lenses shape the transmitted light field of a Gaussian laser beam passing though them, thereby forming refracted three-dimensional (3D) light landscapes. We investigate numerically and experimentally these 3D landscapes which are customized depending on the droplet shape as well as its refractive index and demonstrate the encoding of droplet information. This approach can also be applied for analyzing droplets showing high-speed dynamics, in order to reveal even minimal shape deviations. The developed technique can be used to complement the existing conventional tools for the investigation of the droplets formed on liquid-repelling surfaces.

12:15pm - 12:30pm
ID: 210 / TOM12 S01: 3
TOM 12 Optofluidics

Design of an all-liquid anamorphic imaging device

Daniel Sauter, Pengpeng Zhao, Hans Zappe

University of Freiburg, Germany

The design of a novel anamorphic optofluidic imaging system based on a pair of liquid lenses whose toroidal surfaces create different optical powers in the symmetry-axes is presented. Using electrowetting-on-dieletrics for actuation, a cylindrical fluidic system is actuated by 32 azimuthally-distributed electrodes allowing the definition of non-rotationally-symmetric surface shapes. We present the design and simulation of this optical system and show that an anamorphic ratio of 1.43 at a maximum field of view of 6.82° is attainable.

12:30pm - 12:45pm
ID: 332 / TOM12 S01: 4
TOM 12 Optofluidics

Analysis of size and concentration of microplastics in water using static light scattering combined with PCA and LDA

Mehrdad Lotfi Choobbari1, Leonardo Ciaccheri2, Tatevik Chalyan3, Barbara Adinolfi2, Wendy Meulebroeck3, Heidi Ottevaere3

1Vrije Universiteit Brussel, Department of Applied Physics and Photonics, Brussel Photonics, Pleinlaan 2, 1050 Brussels, Belgium; 2CNR-Istituto di Fisica Applicata "Nello Carrara", Via Madonna del Piano 10 - 50019, Sesto Fiorentino (FI) -Italy; 3Vrije Universiteit Brussel and Flanders Make, Department of Applied Physics and Photonics, Brussel Photonics, Pleinlaan 2, 1050 Brussels, Belgium

Quantitative analysis of size and concentration of microplastics is a crucial step for having a better understanding of plastic pollution in the environment. Such information is typically obtained in a single particle mode that significantly increases the analysis time and can be a cumbersome task. Therefore, we demonstrate here a measurement technique based on Static Light Scattering (SLS) combined with chemometric methods such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) for resolving the size and concentration of multiple microplastic particles in water. Two sets of samples with uniform and non-uniform size distribution of microplastics, called “monodisperse” and “polydisperse”, respectively, are fully investigated. It is shown that a relationship exists between the scattering signals of mono- and polydisperse samples on the PCA space. Hence, a PCA-LDA model that is constructed on the PCA space of monodisperse samples is used to discriminate the size of the microplastics in polydisperse samples. By specifying the size of the particles, their concentration is determined using a simple linear fit.

12:45pm - 1:00pm
ID: 296 / TOM12 S01: 5
TOM 12 Optofluidics

Deformation and shapping of optically trapped microdroplets: an ab-initio numerical study.

Hugo Chesneau1,2, Hamza Chraibi2, Jean-Pierre Delville2

1Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre d’Etudes Scientifiques et Techniques d’Aquitaine, F-33116 Le Barp, France.; 2Université de Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France

We numerically study the deformation of optically trapped microdroplets with optical tweezers using a house-made code based on the boundary elements method. Particular attention is paid to the droplets deformations itself and on the coupling between the electromagnetic waves forming the trap and the resulting droplets morphologies.

2:30pm - 4:00pmTOM12 S02: Optofluidics: Emerging Concepts
Location: B328
Session Chair: Paulo Marques, University of Porto & INESCTEC, Portugal
2:30pm - 3:00pm
ID: 159 / TOM12 S02: 1
TOM 12 Optofluidics

Heliconical Cholesterics: new opportunities for optofluidics?

Francesco Simoni

ISASI - CNR - Italy, Italy

In this presentation the novelty represented by the heliconical cholesteric liquid crystals (Ch-OH) for easy electric and optical control of optical properties are highlighted. After a quick summary of their electro-optical properties, an account of the recent experimental and theoretical achievements about the nonlinear optical response of Ch-OH will be given. The peculiar conical structure allows an easy control of the spectral location of the Bragg resonance making possible effects never observed previously in pure liquid crystals, making these materials attractive for development of several optical devices.

3:00pm - 3:15pm
ID: 333 / TOM12 S02: 2
TOM 12 Optofluidics

Trapping, characterization and reactions of biocolloids in a salinity gradient

Martin Kjærulf Rasmussen, Jonas Nyvold Pedersen, Rodolphe Marie

Technical University of Denmark, Denmark

The properties of soft matter nanoparticles like exosomes are interesting for drug delivery and diagnostics applications. However, the simultaneous characterization of multiple properties, e.g., size and zeta potential, can only be done serially and is highly sensitive to the purification prior to characterization. Here we show how a salt gradient established in a nanofluidic channel induces opposing transport of particles and liquid that trap the particles. Particles are thus accumulated in the trap. We show how optical microscopy images of the particle positions in the salinity gradient provide a measurement of the size and surface charge. We demonstrate the method on a sample of exosomes and on individual particles. Finally, we show how biomolecular reactions at the surface of the nanoparticle can be detected from the optical microscopy analysis of the particles’ trapping position

3:15pm - 3:30pm
ID: 326 / TOM12 S02: 3
TOM 12 Optofluidics

Size-based chromosome separation in a microfluidic particle separation device using viscoelastic fluids

Therese Rahbek Wassberg1, Mathilde Lassen Witt1, Murat Serhatlioglu1, Christian Friberg Nielsen2, Ian David Hickson2, Anders Kristensen1

1Technical University of Denmark (DTU), Denmark; 2University of Copenhagen (KU), Denmark

Viscoelastic flow-based particle manipulation techniques enable bio-particle focusing, separation, and enrichment by precisely tuning the rheological parameters, flow conditions, and microchannel geometry. In this study, we fabricated a PDMS-based single inlet/outlet microchannel to separate bio-particles by their size ranging from 1-10 µm. Flow conditions and rheological properties are optimized using 2 µm and 4 µm Polystyrene beads to reach the best particle separation condition. We demonstrated the size-based separation of human chromosomes by separating 1-2 µm size small chromosomes from 8-10 µm size large chromosomes. Thanks to its miniaturized size and simplicity, the isolation chip and unique viscoelastic separation method have great potential to be used as a future pioneering tool for genetic applications to study chromosome abnormalities such as fragile-X and trisomy.

Date: Wednesday, 14/Sept/2022
9:00am - 10:30amTOM8 S01: Nonlinear and Quantum Optics 1
Location: B328
Session Chair: Said Rodriguez, AMOLF, Netherlands, The
9:00am - 9:30am
ID: 361 / TOM8 S01: 1
TOM 8 Non-linear and Quantum Optics

Engineering localised modes via drive and dissipation in photonic lattices

Alberto Amo

Laboratoire de Physique des Lasers, Atomes et Molécules, University of Lille - CNRS, France

The engineering of localised modes in photonic structures is one of the main targets of modern photonics. An efficient strategy to design these modes is to use the interplay of constructive and destructive interference in periodic photonic lattices. This mechanism is at the origin of defect modes in photonic bandgaps, bound states in the continuum and compact localised states in flat bands. In this presentation we show that in lattices of lossy resonators, the addition of external optical drives with controlled phase enlarges the possibilities of manipulating interference effects and allows designing novel types of localised modes [1]. We show that light can be localised down to a single site of a photonic lattice in a fully reconfigurable manner. We use the technique to engineer dissipative solitons in topological gaps [2]

9:30am - 9:45am
ID: 119 / TOM8 S01: 2
TOM 8 Non-linear and Quantum Optics

Pulse self-compression down to the sub-cycle regime in hollow capillary fibers with decreasing pressure gradients

Marina Fernández Galán, Enrique Conejero Jarque, Julio San Roman

Universidad de Salamanca, Spain

We theoretically demonstrate an enhancement in the generation of clean, near-infrared sub-cycle laser pulses by soliton self-compression in gas-filled hollow capillary fibers using decreasing pressure gradients. Furthermore, we identify the optimal input parameters for high quality compression and the main advantages of this promising technique which paves the way towards ultrafast vacuum experiments.

9:45am - 10:00am
ID: 169 / TOM8 S01: 3
TOM 8 Non-linear and Quantum Optics

Supercontinuum generation in the enhanced frequency chirp regime in multipass cells

Victor W. Segundo Staels1, Enrique Conejero Jarque1, Daniel Carlson2, Michaël Hemmer2, Henry C. Kapteyn2, Margaret M. Murnane2, Julio San Roman1

1Aplicaciones del Láser y Fotónica, Universidad de Salamanca, Salamanca, Spain; 2JILA and STROBE NSF Science & Technology Center, University of Colorado and NIST, Boulder, Colorado, United States

We identify, via numerical simulations, the regime of enhanced frequency chirp during nonlinear propagation in multipass cell. This regime - used before the dawn of chirped pulse amplification to generate ultrashort pulses - paves the way for the generation of temporally clean fewcycle pulses. Here, we demonstrate numerically that the spectra of pulses from an Yb-based laser system can be broadened into a flat supercontinuum with a smooth spectral phase compatible with a clean few-cycle pulse with temporal secondary structures with peak intensity below 0.5% that of the main peak.

10:00am - 10:30am
ID: 403 / TOM8 S01: 4
TOM 8 Non-linear and Quantum Optics

Photon-photon interactions using a single quantum emitter in a photonic waveguide

Hanna Le Jeannic

CNRS, France


2:30pm - 4:00pmTOM8 S02: Nonlinear and Quantum Optics 2
Location: B328
Session Chair: Sile Nic Chormaic, OIST Graduate University, Japan
2:30pm - 3:00pm
ID: 162 / TOM8 S02: 1
TOM 8 Non-linear and Quantum Optics

Superfluid light through dissipation

Giel Keijsers1, Torben Ham1, Zhou Geng1, Kevin J. H. Peters1, Michiel Wouters2, Said R. K. Rodriguez1

1AMOLF, Amsterdam, the Netherlands; 2Universiteit Antwerpen, Antwerp, Belgium

Light in a nonlinear cavity is expected to flow without friction - like a superfluid - under certain conditions. Until now, part-light part-matter (i.e., polariton) superfluids have been observed either at liquid helium temperatures in steady state, or at room temperature for sub-picosecond timescales. Here we report superfluid cavity photons (not polaritons) for the first time. When launching a photon fluid against a defect, we observe a suppression of backscattering above a critical density and below a critical velocity. Room-temperature and steady-state photon superfluidity emerges thanks to the strong thermo-optical nonlinearity of our oil-filled cavity. Surprisingly, dissipationless superfluid flow is achieved by absorptive dissipation inducing the thermal nonlinearity. We also show how the thermal relaxation of the oil sets the timescale at which superfluidity emerges. Our experimental observations are reproduced qualitatively by numerical calculations based on a generalized Gross-Pitaevskii equation for photons coupled to a thermal field. The interpretation of superfluid photons is further substantiated by phase dislocations appearing in the wake of a defect at the breakdown of superfluidity. Our results establish thermo-optical nonlinear cavities as platforms for probing photon superfluidity at room temperature, and offer perspectives for exploring superfluidity in arbitrary potential landscapes using structured mirrors.

3:00pm - 3:30pm
ID: 115 / TOM8 S02: 2
TOM 8 Non-linear and Quantum Optics

Quantum vacuum excitation of a quasi-normal mode in an analog model of black hole spacetime

Maxime Jacquet

CNRS, France

Vacuum quantum fluctuations near horizons are known to yield correlated emission by the Hawking effect. In this talk, I will explain how a 1 dimensional flow of microcavity polaritons may be engineered to produce an effective curved spacetime with a black hole horizon. I will present numerical computations of correlated emission on this spacetime and show that, in addition to the Hawking effect at the sonic horizon, quantum fluctuations may result in a sizeable stationary excitation of a quasi-normal mode of the field theory. Observable signatures of the excitation of the quasi-normal mode are found in the spatial density fluctuations as well as in the spectrum of Hawking emission. I will explain how the driven-dissipative dynamics of the polariton fluid are key to observing the quantum excitation of the quasi-normal mode. Nonetheless, this observation suggests a general and intrinsic fluctuation-driven mechanism leading to the quantum excitation of quasi-normal modes on black hole spacetimes.

3:30pm - 3:45pm
ID: 116 / TOM8 S02: 3
TOM 8 Non-linear and Quantum Optics

Paraxial quantum fluids light in hot atomic vapors

Murad Abuzarli, Tangui Aladjidi, Nicolas Cherroret, Quentin Glorieux

LKB, France

Hot atomic vapors are widely used in non-linear and quantum optics due to their large Kerr non-linearity. This non-linearity induces effective photon-photon interactions allowing light to behave as a fluid displaying quantum properties such as superfluidity. In this presentation, I will show that we have full control over the Hamiltonian that drives the system and that we can engineer an analogue simulator with light.

3:45pm - 4:00pm
ID: 394 / TOM8 S02: 4
Post Deadline submission

Photonic Maxwell's demon: feed-forward methods for photonic thermodynamic tasks

Maxime Jacquet

Laboratoire Kastler Brossel, CNRS, France

Maxwell's Demon is at the heart of the interrelation between quantum information processing and thermodynamics. In this thought experiment, a demon extracts work from two thermal baths at equilibrium by gaining information about them at the single-particle level and applying classical feed-forward operations.

In this talk I will show how to implement a photonic version of Maxwell's Demon with active feed-forward in a fiber-based system using ultrafast optical switches.

This is the first realisation of an active Demon.

The experiment shows that, if correlations exist between the two thermal baths, the Demon can extract over an order of magnitude more work than without correlations.

This demonstrates the great potential of photonic experiments -- which provide a unique degree of control on the system -- to access new regimes in quantum thermodynamics.

4:30pm - 6:00pmTOM8 S03: Nonlinear and Quantum Optics 3
Location: B328
Session Chair: Kamel Bencheikh, Centre of Nanoscience and Nanotechnology, C2N-CNRS, France
4:30pm - 5:00pm
ID: 397 / TOM8 S03: 1
TOM 8 Non-linear and Quantum Optics

Quantum networks and computations with spins in diamond.

Tim Hugo Taminiau

QuTech, Netherlands, The

Electron-nuclear spin systems based on optically active defects in diamond provide a promising platform for distributed quantum simulations and computation. In this approach, optically active defect spins are used to form multi-qubit processors that can be linked together in a network through photonic links [1,2]. Quantum error correction and computations are then distributed over the network.

In this talk I will introduce such spin-based distributed quantum computations and present our recent progress. In particular, we have recently shown that it is possible to control large numbers of nuclear spins around a single NV center [1], and to use these qubits for quantum simulations of many-body physics [3] and for encoding fault-tolerant logical qubits [4].


[1] C. E. Bradley et al., Phys. Rev. X. 9, 031045 (2019)

[2] M. Pompili et al., Science 372, 259 (2021)

[3] J. Randall et al., Science 374, 1474 (2021)

[4] M. H. Abobeih et al. Nature 606, 884 (2021)

5:00pm - 5:15pm
ID: 293 / TOM8 S03: 2
TOM 8 Non-linear and Quantum Optics

Wide-field broadband CARS microscopy

Chiara Ceconello1, Federico Vernuccio1, Alejandro De la Cadena1, Arianna Bresci1, Francesco Manetti1, Subir Das1, Renzo Vanna2, Giulio Cerullo1,2, Dario Polli1,2

1Department of Physics, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milan, Italy; 2CNR Institute for photonics and nanotechnologies (IFN), P.zza Leonardo da Vinci 32, 20133 Milan, Italy

Coherent anti-Stokes Raman scattering is an extremely powerful non-linear optical (NLO) microscopy technique for label-free vibrational imaging allowing for a detailed study of biological samples in their native state. To overcome the long acquisition times associated with raster sample scanning required in NLO microscopy, which impair real-time investigation of fast biological dynamics, we employ here wide-field signal generation over a large field of view, covering tens of micrometers. To this aim, we exploit an innovative approach based on the use of an amplified femtosecond ytterbium laser source delivering high energy (≈μJ) pulses in the near infrared. This enables the generation of stable broadband Stokes pulses to measure the entire fingerprint region of the molecular vibrational spectrum, the richest in chemical information. Our results pave the way for future translational applications and clinical diagnostics with video-rate imaging capabilities.

5:15pm - 5:30pm
ID: 149 / TOM8 S03: 3
TOM 8 Non-linear and Quantum Optics

Demonstration of propagation-invariant 3D space-time wave packets

Murat Yessenov1, Justin Free2, Zhaozhong Chen3, Eric Johnson2, Martin Lavery3, Miguel Alonso4,5, Ayman Abouraddy1

1University of Central Florida, United States of America; 2Clemson University, United States of America; 3University of Glasgow, United Kingdom; 4Aix Marseille University, France; 5University of Rochester, United States of America

We present the first demonstration of propagation-invariant space-time (ST) wave packets localized in all dimensions. By introducing orbital-angular-momentum into the wave packets, we produce propagation-invariant ST-OAM wave packets traveling at arbitrary group velocities.

5:30pm - 6:00pm
ID: 196 / TOM8 S03: 4
TOM 8 Non-linear and Quantum Optics

Non-locality and single object spectroscopy in THz Landau polaritons

Giacomo Scalari1, Shima Rajabali1, Elsa Jöchl1, Sergej Markmann1, Simone De Liberato2, Erika Cortese2, Mattias Beck1, Jerome Faist1

1Insititute for Quantum Electronics, ETH Zürich, Switzerland; 2Department of Physics and Astronomy, Univ. of Southampton, UK

We will discuss, theoretically and experimentally, the existence of a limit to the possibility of arbitrarily increasing electromagnetic confinement in polaritonic systems. Strongly sub-wavelength fields can excite a continuum of high-momenta propagative magnetoplasmons. This leads to peculiar nonlocal polaritonic effects, as certain polaritonic features disappear and the system enters in the regime of discrete-to-continuum strong coupling. We will as well discuss experiments reporting spectroscopy of a single, ultrastrongly coupled, highly subwavelength resonator operating at 300 GHz.

Date: Thursday, 15/Sept/2022
8:30am - 10:00amTOM8 S04: Nonlinear and Quantum Optics 4
Location: B328
Session Chair: Hanna Le Jeannic, CNRS, France
8:30am - 9:00am
ID: 363 / TOM8 S04: 1
TOM 8 Non-linear and Quantum Optics

Quantum imaging with entangled photons

Hugo Defienne

School of Physics and Astronomy, University of Glasgow, United Kingdom


9:00am - 9:30am
ID: 362 / TOM8 S04: 2
TOM 8 Non-linear and Quantum Optics

Quantum technologies with single molecules and photons

Costanza Toninelli, Maja Collautti

CNR-INO, Italy

This presentation will be presented by Maja Collautti.

The generation and manipulation of quantum states of light is required for key applications, such as photonic quantum simulation, linear optical quantum com- puting, quantum communication proto- cols, and quantum metrology. In this con- text, single organic molecules in the family of polycyclic aromatic hydrocar- bons (PAH), once embedded in suitable host matrices, offer competitive proper- ties and key advantages. Being very small and with well-defined transition dipole moments, they can be used as nanoscopic sensors of e.g. pressure, strain, temperature, electric and magnet- ic fields, as well as optical fields. Fur- thermore, PAH molecules can be easily fabricated and exhibit strong zero- phonon lines, which reach their Fourier- limited natural linewidth at liquid helium temperature, thus providing very bright and stable sources of coherent photons in the solid state.

9:30am - 9:45am
ID: 266 / TOM8 S04: 3
TOM 8 Non-linear and Quantum Optics

Single atom photon pair source

Jürgen Volz, Xinxin Hu, Garbiele Maron, Luke Master, Lucas Pache, Arno Rauschenbeutel

Department of Physics, Humboldt Universität zu Berlin, Germany

Sources of entangled photon pairs are a crucial ingredient for many applications in quantum information and communication. Of particular interest are narrow-band sources with bandwidths that are compatible with solid state systems such as atomic media for storage and manipulation of the photons. Here, we experimentally realize a source of energy-time entangled photon pairs where the photons pairs are generated by scattering light from a single two-level atom and separated from the coherently scattered light via a narrow-band filter. We verify the performance of our pair-source by measuring the second order correlation function of the atomic fluorescence and we observe that one can continuously tune the photon statistics of the atomic fluorescence from perfect photon anti-bunching to strong photon bunching expected for a photon pair source. Our experiment demonstrates a novel way to realize a photon pair source for photons with spectral bandwidths and resonance frequencies that are inherently compatible with atomic media.

9:45am - 10:00am
ID: 200 / TOM8 S04: 4
TOM 8 Non-linear and Quantum Optics

Fourier-limited attosecond pulse generation with magnetically pumped high-order harmonic generation

Rodrigo Martín-Hernández, Luis Plaja, Carlos Hernández-García

Universidad de Salamanca, Spain

After more than two decades of attosecond physics, the generation and control of the shortest laser pulses available remains as a complex task. One of the main limitations of reducing the temporal duration of attosecond pulses emitted from high-order harmonic generation (HHG) is the attochirp. In this contribution, we demonstrate that HHG assisted by strong fast oscillating magnetic fields enables the generation of Fourier-limited attosecond pulses in the water window. In short, the magnetic field generates a nanowire-like structure, which transversally confines the electronic wavefunction in the HHG process. We demonstrate that the resulting HHG spectrum extends well beyond the semiclassical cutoff frequency, and most interestingly, it is emitted in the form of few-cycle, Fourier-limited, attosecond pulses.


Contact and Legal Notice · Contact Address:
Privacy Statement · Conference: EOSAM 2022
Conference Software - ConfTool Pro 2.6.145+TC+CC
© 2001–2022 by Dr. H. Weinreich, Hamburg, Germany